Hadronic Energy Scale Calibration of Calorimeters in Space Using the Moon’s Shadow
Abstract
:1. Introduction
- Particle Beams: the energy scale can be measured directly by studying the calorimeter response to particle beams of known energy. This calibration is limited by the maximum energy achievable for particle beams, currently set at most at a few hundred GeV [31].
- Geomagnetic Cutoff: in Earth’s magnetosphere, trajectories of particles with rigidity below a given geomagnetic cutoff are forbidden. The geomagnetic cutoff depends on satellite location and particle direction and can be calculated by tracing particles in the geomagnetic field. However, the use of this effect to calibrate the energy scale is limited by the maximum geomagnetic cutoff achievable in space, of the order of tens of GeV [32].
- Cross-calibration: including in the experiment design other devices able to measure particle momentum would allow for energy scale cross-calibration. Some possible solutions may include a magnetic spectrometer or a transition radiation detector [27,28,29]. This solution usually involves a higher degree of design complexity, often not viable for experiments in space.
2. Simulation
3. Analysis
4. Results
- Parameterization: possible biases due to parametrization of have been checked by applying the minimization procedure on the same samples used to create the parametrization. Given the large statistics employed, the likelihood is conveniently approximated by . For any employed sample, the estimated from the minimization is in agreement with k within a percent.
- Energy Scale: the log-likelihood procedure has been tested with the 5-year synthetic data introducing different energy shifts s from 0.8 to 1.2, and applying to those samples the same minimization procedure described above. The result is exemplified in Figure 4, where the likelihood profile enables estimating for two samples with and . The corresponding estimated values are, respectively, and , in agreement with the imposed energy scale offsets.
- Spectral Shape: to check for a possible systematic effect due to the cosmic ray proton spectrum knowledge, data used to create the Moon’s shadow parametrization have been weighted using a simple power law with index −2.7. The resulting likelihood function has been used to test the synthetic 5-year sample used before and generated following Lipari’s double-break spectral shape. The scale factor has been measured being , with no sizeable impact coming from the different weighting.
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASI | Agenzia Spaziale Italiana (Italian Space Agency) |
CALO | HERD calorimeter |
CR | Cosmic ray |
CSS | Chinese Space Station |
EAS | Extensive air showers |
HERD | High-energy cosmic radiation detection |
IACT | Imaging Atmospheric Cherenkov Telescope |
IGRF | International Geomagnetic Reference Field |
INFN | Istituto Nazionale di Fisica Nucleare (Italian National Institute of Nuclear Physics) |
References
- Clark, G.W. Arrival Directions of Cosmic-Ray Air Showers from the Northern Sky. Phys. Rev. 1957, 108, 450. [Google Scholar] [CrossRef]
- Alexandreas, D.E.; Allen, R.C.; Berley, D.; Biller, S.D.; Burman, R.L.; Cady, D.R.; Chang, C.Y.; Dingus, B.L.; Dion, G.M.; Ellsworth, R.W.; et al. Observation of shadowing of ultrahigh-energy cosmic rays by the Moon and the Sun. Phys. Rev. D 1991, 43, 1735. [Google Scholar] [CrossRef]
- Amenomori, M.; Cao, Z.; Ding, L.K.; Feng, Z.Y.; Hibino, K.; Hotta, N.; Huang, Q.; Huo, A.X.; Jia, H.Y.; Jiang, G.Z.; et al. Cosmic-ray deficit from the directions of the Moon and the Sun detected with the Tibet air-shower array. Phys. Rev. D 1993, 47, 2675. [Google Scholar] [CrossRef] [PubMed]
- Borione, A.; Catanese, M.; Covault, C.E.; Cronin, J.W.; Fick, B.E.; Gibbs, K.G.; Green, K.D.; Hauptfeld, S.; Kieda, D.; Krimm, H.A.; et al. Observation of the shadows of the Moon and Sun using 100 TeV cosmic rays. Phys. Rev. D 1994, 49, 1171. [Google Scholar] [CrossRef]
- Merck, M.; Karle, A.; Martinez, S.; Arqueros, F.; Becker, K.H.; Bott-Bodenhausen, M.; Eckmann, R.; Faleiro, E.; Fernandez, J.; Fernandez, P.; et al. Methods to determine the angular resolution of the HEGRA extended air shower scintillator array. Astrop. Phys. 1996, 5, 379–392. [Google Scholar] [CrossRef]
- Amenomori, M.; Ayabe, S.; Bi, X.J.; Chen, D.; Cui, S.W.; Ding, L.K.; Ding, X.H.; Feng, C.F.; Feng, Z.; Feng, Z.Y.; et al. Moon shadow by cosmic rays under the influence of geomagnetic field and search for antiprotons at multi-TeV energies. Astrop. Phys. 2007, 28, 137–142. [Google Scholar] [CrossRef]
- Bartoli, B.; Bernardini, P.; Bi, X.J.; Bleve, C.; Bolognino, I.; Branchini, P.; Budano, A.; Melcarne, A.K.C.; Camarri, P.; Cao, Z.; et al. Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector. Phys. Rev. D 2012, 85, 022002. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.A.; Belmont-Moreno, E.; et al. Constraining the ratio in TeV cosmic rays with observations of the Moon shadow by HAWC. Phys. Rev. D 2018, 97, 102005. [Google Scholar] [CrossRef]
- Aharonian, F.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. Calibration of the air shower energy scale of the water and air Cherenkov techniques in the LHAASO experiment. Phys. Rev. D 2011, 104, 062007. [Google Scholar] [CrossRef]
- Oshima, A.; Dugad, S.R.; Goswami, U.D.; Gupta, S.K.; Hayashi, Y.; Ito, N.; Iyer, A.; Jagadeesan, P.; Jain, A.; Kawakami, S.; et al. The angular resolution of the GRAPES-3 array from the shadows of the Moon and the Sun. Astrop. Phys. 2010, 33, 97–107. [Google Scholar] [CrossRef]
- Pattanaik, D.; Ahmad, S.; Chakraborty, M.; Dugad, S.R.; Goswami, U.D.; Gupta, S.K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; et al. Validating the improved angular resolution of the GRAPES-3 air shower array by observing the Moon shadow in cosmic rays. Phys. Rev. D 2022, 106, 022009. [Google Scholar] [CrossRef]
- Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; et al. Observation of the shadowing of cosmic rays by the Moon using a deep underground detector. Phys. Rev. D 1998, 59, 012003. [Google Scholar] [CrossRef]
- Cobb, J.H.; Marshak, M.L.; Allison, W.W.M.; Alner, G.J.; Ayres, D.S.; Barrett, W.L.; Bode, C.; Border, P.M.; Brooks, C.B.; Cotton, R.J.; et al. Observation of a shadow of the Moon in the underground muon flux in the Soudan 2 detector. Phys. Rev. D 2000, 61, 092002. [Google Scholar] [CrossRef]
- Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Akker, M.v.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; et al. Measurement of the shadowing of high-energy cosmic rays by the Moon: A search for TeV-energy antiprotons. Astrop. Phys. 2005, 23, 411–434. [Google Scholar] [CrossRef]
- Adamson, P.; Andreopoulos, C.; Ayres, D.S.; Backhouse, C.; Barr, G.; Barrett, W.L.; Bishai, M.; Blake, A.; Bock, B.; Bock, G.J.; et al. Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon. Astrop. Phys. 2011, 34, 457–466. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; et al. Observation of the cosmic-ray shadow of the Moon with IceCube. Phys. Rev. D 2014, 89, 102004. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martít, J.; et al. The cosmic ray shadow of the Moon observed with the ANTARES neutrino telescope. Eur. Phys. J. C 2018, 78, 1006. [Google Scholar] [CrossRef]
- Urban, M.; Fleury, P.; Lestienne, R.; Plouin, F. Can we detect antimatter from other galaxies by the use of the Earth’s magnetic field and the Moon as an absorber? Nucl. Phys. B (Proc. Suppl.) 1990, 14B, 223–236. [Google Scholar] [CrossRef]
- Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; et al. Moon and Sun shadowing effect in the MACRO detector. Astrop. Phys. 2003, 20, 145–156. [Google Scholar] [CrossRef]
- Bartoli, B.; Bernardini, P.; Bi, X.J.; Bleve, C.; Bolognino, I.; Branchini, P.; Budano, A.; Melcarne, A.K.C.; Camarri, P.; Cao, Z.; et al. Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment. Phys. Rev. D 2011, 84, 022003. [Google Scholar] [CrossRef]
- Pomarède, D.; Boyle, P.J.; Urban, M.; Badran, H.M.; Behr, L.; Brunetti, M.T.; Fegan, D.J.; Weekes, T.C. Search for shadowing of primary cosmic radiation by the moon at TeV energies. Astrop. Phys. 2001, 14, 287–317. [Google Scholar] [CrossRef]
- Colin, P.; Tridon, D.B.; Ortega, A.D.; Doert, M.; Doro, M.; Pochon, J.; Strah, N.; Suric, T.; Teshima, M. Probing the CR positron/electron ratio at few hundreds GeV through Moon shadow observation with the MAGIC telescopes. arXiv Prepr. 2011, arXiv:1110.0183. [Google Scholar] [CrossRef]
- Bird, R. Observing the Cosmic Ray Moon Shadow with VERITAS. arXiv Prepr. 2015, arXiv:1508.07197. [Google Scholar] [CrossRef]
- Aguilar, M.; Cavasonza, L.A.; Ambrosi, G.; Arruda, L.; Attig, N.; Barao, F.; Barrin, L.; Bartoloni, A.; Pree, S.B.; Bates, J.; et al. The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II—Results from the first seven years. Phys. Rep. 2021, 894, 1–116. [Google Scholar] [CrossRef]
- Torii, S. Highlights from the CALET observations for 7.5 years on the International Space Station. In Proceedings of the 38th International Cosmic Ray Conference, Nagoya, Japan, 26 July–3 August 2023; p. 2. [Google Scholar] [CrossRef]
- Alemanno, F.; Altomare, C.; An, Q.; Azzarello, P.; Barbato, F.C.T.; Bernardini, P.; Bi, X.J.; Cagnoli, I.; Cai, M.S.; Casilli, E.; et al. DArk Matter Particle Explorer: 7 years in Space. In Proceedings of the 38th International Cosmic Ray Conference, Nagoya, Japan, 26 July–3 August 2023; p. 3. [Google Scholar] [CrossRef]
- Gargano, F. The High Energy cosmic-Radiation Detection (HERD) facility on board the Chinese Space Station: Hunting for high-energy cosmic rays. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 15–22 July 2021; p. 26. [Google Scholar] [CrossRef]
- Schael, S.; Atanasyan, A.; Berdugo, J.; Bretz, T.; Czupalla, M.; Dachwald, B.; von Doetinchem, P.; Duranti, M.; Gast, H.; Karpinski, W.; et al. AMS-100: The next generation magnetic spectrometer in space—An international science platform for physics and astrophysics at Lagrange point 2. Nucl. Inst. Meth. Phys. Res. A 2019, 944, 162561. [Google Scholar] [CrossRef]
- Adriani, O.; Altomare, C.; Ambrosi, G.; Azzarello, P.; Barbato, F.C.T.; Battiston, R.; Baudouy, B.; Bergmann, B.; Berti, E.; Bertucci, B.; et al. Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO). Instruments 2022, 6, 19. [Google Scholar] [CrossRef]
- Asaoka, Y.; Akaike, Y.; Komiya, Y.; Miyata, R.; Torii, S.; Adriani, O.; Asano, K.; Bagliesi, M.G.; Bigongiari, G.; Binns, W.R.; et al. Energy calibration of CALET onboard the International Space Station. Astrop. Phys. 2017, 91, 1–10. [Google Scholar] [CrossRef]
- Brogi, P.; Kobayashi, K. Measurement of the energy spectrum of cosmic-ray helium with CALET on the International Space Station. Phys. Rev. Lett. 2023, 130, 171002. [Google Scholar] [CrossRef]
- Zang, J.; Yue, C.; Li, X. Measurement of absolute energy scale of ECAL of DAMPE with geomagnetic rigidity cutoff. In Proceedings of the 35th International Cosmic Ray Conference, Busan, Republic of Korea, 12–20 July 2017; p. 197. [Google Scholar] [CrossRef]
- Oliva, A.; Altomare, C.; Ambrosi, G.; Barbanera, M.; Bertucci, B.; Cui, Y.X.; Duranti, M.; Formato, V.; Gong, K.; Graziani, M.; et al. The Silicon Charge Detector of the High Energy Cosmic Radiation Detection facility. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 15–22 July 2021; p. 87. [Google Scholar] [CrossRef]
- Pacini, L.; Adriani, O.; Bai, Y.L.; Bao, T.W.; Berti, E.; Bottai, S.; Cao, W.W.; Casaus, J.; Cui, X.Z.; D’Alessandro, R.; et al. Design and expected performances of the large acceptance calorimeter for the HERD space mission. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 15–22 July 2021; p. 66. [Google Scholar] [CrossRef]
- Meeus, J.H. Astronomical Algorithms, 2nd ed.; Willmann-Bell Inc.: Richmond, VA, USA, 1999. [Google Scholar]
- Fehlberg, E. New High-Order Runge-Kutta Formulas with Step Size Control for Systems of First-and Second-Order Differential Equations. Z. Angew. Math. Mech. 1964, 44, T17–T19. [Google Scholar] [CrossRef]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Valencia, M.; Giovacchini, F.; Oliva, A. Observation of Z > 2 trapped nuclei by AMS on ISS. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 15–22 July 2021; p. 1288. [Google Scholar] [CrossRef]
- Sciascio, G.D.; Iuppa, R. Simulation of the cosmic ray Moon shadow in the geomagnetic field. Nucl. Instr. Meth. Phys. Res. A 2011, 630, 301–305. [Google Scholar] [CrossRef]
- Lipari, P.; Vernetto, S. The shape of the cosmic ray proton spectrum. Astrop. Phys. 2020, 120, 102441. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliva, A. Hadronic Energy Scale Calibration of Calorimeters in Space Using the Moon’s Shadow. Instruments 2024, 8, 7. https://doi.org/10.3390/instruments8010007
Oliva A. Hadronic Energy Scale Calibration of Calorimeters in Space Using the Moon’s Shadow. Instruments. 2024; 8(1):7. https://doi.org/10.3390/instruments8010007
Chicago/Turabian StyleOliva, Alberto. 2024. "Hadronic Energy Scale Calibration of Calorimeters in Space Using the Moon’s Shadow" Instruments 8, no. 1: 7. https://doi.org/10.3390/instruments8010007
APA StyleOliva, A. (2024). Hadronic Energy Scale Calibration of Calorimeters in Space Using the Moon’s Shadow. Instruments, 8(1), 7. https://doi.org/10.3390/instruments8010007