Production of Medical Radionuclides in the Center for Radiopharmaceutical Tumor Research—A Status Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
- Acceleration of H− and extraction of H+ ions;
- External multi-cusp ion source, ion current up to 300 μA;
- Adjustable energy in the range of 18 MeV (14 MeV) up to 30 MeV;
- Dual-beam operation with split ratios 1:100 to 50:50;
- Two [18F]F− water targets and one [18F]F2 gas target;
- One [11C]CO2 target;
- One 30° and one 90° solid-state target holder.
2.2. Materials
3. Results
3.1. Routine Production of PET Radionuclides
3.1.1. [18F]F− Production with a Water Target
3.1.2. [18F]F2 Production with a Gas Target
3.1.3. [11C]CO2 Production with a Gas Target
3.1.4. [64Cu]CuCl2 Production with a Solid Target System
3.2. Targetry and Process Development
3.2.1. [61Cu]CuCl2 Production
3.2.2. [67Cu]CuCl2 Production
3.2.3. [67Ga]GaCl3 Production
3.2.4. [133La]LaCl3 Production
3.2.5. [131Ba]Ba(NO3)2 Production
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kreller, M.; Pietzsch, H.J.; Walther, M.; Tietze, H.; Kaever, P.; Knieß, T.; Füchtner, F.; Steinbach, J.; Preusche, S. Introduction of the New Center for Radiopharmaceutical Cancer Research at Helmholtz-Zentrum Dresden-Rossendorf. Instruments 2019, 3, 9. [Google Scholar] [CrossRef]
- Watt, R.; Gyles, W.; Zyuzin, A. Building on TR-24 success: Advanced Cyclotron Systems Inc. launches a new cyclotron model. J. Radioanal. Nucl. Chem. 2015, 305, 93–98. [Google Scholar] [CrossRef]
- Knieß, T.; Kreller, M.; Zessin, J.; Kopka, K. Elektrophile Synthese von 6-L-[18F]FDOPA mit [18F]F2: Ein Statusbericht über das Gastarget am Zyklotron TR-Flex. Nuklearmedizin 2023, 62, 150. [Google Scholar] [CrossRef]
- Antuganov, D.O.; Zykov, M.P.; Ryzhkova, D.V.; Zykova, T.A.; Vinal’ev, A.A.; Antuganova, Y.O.; Samburov, O.P. Synthesis of [18F]-L-DOPA radiopharmaceutical on a modified GE TracerLAB Fx FE platform. Radiochemistry 2016, 58, 649–653. [Google Scholar] [CrossRef]
- Andersen, V.L.; Soerensen, M.A.; Dam, J.H.; Langkjaer, N.; Petersen, H.; Bender, D.A.; Fugloe, D.; Huynh, T.H.V. GMP production of 6-[18F]Fluoro-L-DOPA for PET/CT imaging by different synthetic routes: A three center experience. EJNMMI Radiopharm. Chem. 2021, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Mäding, P.; Zessin, J.; Kreller, M.; Kopka, K.; Knieß, T. Actions for increased yields and easier maintenance at the Tracerlab FXC-pro system in the synthesis of L-[11C]methionine. EJNMMI Radiopharm. Chem. 2023, 8, 14. [Google Scholar]
- Pichler, V.; Vraka, C.; Berroterán-Infante, N.; Krcal, A.; Eidherr, H.; Traub-Weidinger, T.; Hacker, M.; Mitterhauser, M.; Wadsak, W. L-[S-methyl-11C]methionine—An example of radiosynthetic optimization. Appl. Rad. Isot. 2018, 141, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Brühlmann, S.A.; Walther, M.; Kopka, K.; Kreller, M. Production of the PET radionuclide 61Cu via the 62Ni(p,2n)61Cu nuclear reaction. EJNMMI Radiopharm. Chem. 2024, 9, 3. [Google Scholar] [CrossRef]
- Avila-Rodriguez, M.A.; Nye, J.A.; Nickles, R.J. Simultaneous production of high specific activity 64Cu and 61Co with 11.4MeV protons on enriched 64Ni nuclei. Appl. Radiat. Isot. 2007, 65, 1115–1120. [Google Scholar] [CrossRef]
- McCarthy, D.W.; Shefer, R.E.; Klinkowstein, R.E.; Bass, L.A.; Margeneau, W.H.; Cutler, C.S.; Anderson, C.J.; Welch, M.J. Efficient Production of High Specific Activity 64Cu Using a Biomedical Cyclotron. Nucl. Med. Biol. 1997, 24, 35–43. [Google Scholar] [CrossRef]
- IAEA. Nuclear Data Services. 2021. Available online: https://www-nds.iaea.org/ (accessed on 1 December 2023).
- McCarthy, D.W.; Bass, L.A.; Cutler, P.; Shefer, R.E.; Klinkowstein, R.E.; Herrero, P.; Lewis, J.S.; Cutler, C.S.; Anderson, C.J.; Welch, M.J. High purity production and potential applications of copper-60 and copper-61. Nucl. Med. Biol. 1999, 26, 351–358. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, H.; Niu, G.; Valdovinos, H.F.; Orbay, H.; Nayak, T.R.; Chen, X.; Barnhart, T.E.; Cai, W. Positron Emission Tomography Imaging of Vascular Endothelial Growth Factor Receptor Expression with 61Cu-Labeled Lysine-Tagged VEGF121. Mol. Pharm. 2012, 9, 3586–3594. [Google Scholar] [CrossRef] [PubMed]
- Dellepiane, G.; Casolaro, P.; Mateu, I.; Scampoli, P.; Voeten, N.; Braccini, S. Cross-section measurement for an optimized 61Cu production at an 18 MeV medical cyclotron from natural Zn and enriched 64Zn solid targets. Appl. Radiat. Isot. 2022, 190, 110466. [Google Scholar] [CrossRef]
- Svedjehed, J.; Kutyreff, C.J.; Engle, J.W.; Gagnon, K. Automated, cassette-based isolation and formulation of high-purity [61Cu]CuCl2 from solid Ni targets. EJNMMI Radiopharm. Chem. 2020, 5, 21. [Google Scholar] [CrossRef]
- Alves, V.H.; Carmo, S.J.C.D.; Alves, F.; Abrunhosa, A.J. Automated Purification of Radiometals Produced by Liquid Targets. Instruments 2018, 2, 17. [Google Scholar] [CrossRef]
- Fonseca, A.I.; Carmo, S.J.C.D.; Hrynchak, I.; Alves, V.; Alves, F.; Abrunhosa, A.J. Purification of Copper Radioisotopes for Medical Applications: Chromatographic Methods and Challenges. Sep. Purif. Rev. 2023, 1–22. [Google Scholar] [CrossRef]
- Hussain, M.; Qaim, S.M.; Spahn, I.; Aslam, M.N.; Neumaier, B. Copper radionuclides for theranostic applications: Towards standardisation of their nuclear data. A mini-review. Front. Chem. 2023, 11, 1270351. [Google Scholar] [CrossRef]
- Mou, L.; Martini, P.; Pupillo, G.; Cieszykowska, I.; Cutler, C.S.; Mikołajczak, R. 67Cu Production Capabilities: A Mini Review. Molecules 2022, 27, 1501. [Google Scholar] [CrossRef]
- IAEA. Copper-64 Radiopharmaceuticals: Production, Quality Control and Clinical Applications; IAEA: Vienna, Austria, 2023. [Google Scholar]
- Brühlmann, S.A.; Walther, M.; Kreller, M.; Reissig, F.; Pietzsch, H.-J.; Kniess, T.; Kopka, K. Cyclotron-Based Production of 67Cu for Radionuclide Theranostics via the 70Zn(p,α)67Cu Reaction. Pharmaceuticals 2023, 16, 314. [Google Scholar] [CrossRef]
- Lee, J.Y.; Chae, J.H.; Hur, M.G.; Yang, S.D.; Kong, Y.B.; Lee, J.; Ju, J.S.; Choi, P.S.; Park, J.H. Theragnostic 64Cu/67Cu Radioisotopes Production With RFT-30 Cyclotron. Front. Med. 2022, 9, 889640. [Google Scholar] [CrossRef]
- Morgan, K.A.; Rudd, S.E.; Noor, A.; Donnelly, P.S. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem. Rev. 2023, 123, 12004–12035. [Google Scholar] [CrossRef] [PubMed]
- Engle, J.; Lopez-Rodriguez, V.; Gaspar-Carcamo, R.; Valdovinos, H.; Valle-Gonzalez, M.; Trejo-Ballado, F.; Severin, G.; Barnhart, T.; Nickles, R.; Avila-Rodriguez, M. Very high specific activity 66/68Ga from zinc targets for PET. Appl. Radiat. Isot. 2012, 70, 1792–1796. [Google Scholar] [CrossRef] [PubMed]
- Price, E.W.; Zeglis, B.M.; Cawthray, J.F.; Ramogida, C.F.; Ramos, N.; Lewis, J.S.; Adam, M.J.; Orvig, C. H4octapa-trastuzumab: Versatile acyclic chelate system for 111In and 177Lu imaging and therapy. J. Am. Chem. Soc. 2013, 135, 12707–12721. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jaraquemada-Peláez, M.d.G.; Kuo, H.-T.; Merkens, H.; Choudhary, N.; Gitschtaler, K.; Jermilova, U.; Colpo, N.; Uribe-Munoz, C.; Radchenko, V.; et al. Functionally versatile and highly stable chelator for 111In and 177Lu: Proof-of-principle prostate-specific membrane antigen targeting. Bioconjugate Chem. 2019, 30, 1539–1553. [Google Scholar] [CrossRef] [PubMed]
- Reissig, F.; Bauer, D.; Ullrich, M.; Kreller, M.; Pietzsch, J.; Mamat, C.; Kopka, K.; Pietzsch, H.-J.; Walther, M. Recent insights in barium-131 as a diagnostic match for radium-223: Cyclotron production, separation, radiolabeling, and imaging. Pharmaceuticals 2020, 13, 272. [Google Scholar] [CrossRef]
- Brühlmann, S.; Kreller, M.; Pietzsch, H.-J.; Kopka, K.; Mamat, C.; Walther, M.; Reissig, F. Efficient Production of the PET Radionuclide 133La for Theranostic Purposes in Targeted Alpha Therapy Using the 134Ba(p,2n)133La Reaction. Pharmaceuticals 2022, 15, 1167. [Google Scholar] [CrossRef]
- Svedjehed, J.; Pärnaste, M.; Gagnon, K. Demystifying solid targets: Simple and rapid distribution-scale production of [68Ga] GaCl3 and [68Ga] Ga-PSMA-11. Nucl. Med. Biol. 2022, 104, 1–10. [Google Scholar] [CrossRef]
- Guerra Liberal, F.D.C.; O’Sullivan, J.M.; McMahon, S.J.; Prise, K.M. Targeted Alpha Therapy: Current Clinical Applications. Cancer Biother. Radiopharm. 2020, 35, 404–417. [Google Scholar] [CrossRef]
- Nelson, B.J.B.; Andersson, J.D.; Wuest, F. Targeted Alpha Therapy: Progress in Radionuclide Production, Radiochemistry, and Applications. Pharmaceutics 2020, 13, 49. [Google Scholar] [CrossRef]
- Thiele, N.A.; Brown, V.; Kelly, J.M.; Amor-Coarasa, A.; Jermilova, U.; MacMillan, S.N.; Nikolopoulou, A.; Ponnala, S.; Ramogida, C.F.; Robertson, A.K.H.; et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem. Int. Ed. Engl. 2017, 56, 14712–14717. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.J.B.; Wilson, J.; Andersson, J.D.; Wuest, F. High yield cyclotron production of a novel 133/135La theranostic pair for nuclear medicine. Sci. Rep. 2020, 10, 22203. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.J.B.; Wilson, J.; Andersson, J.D.; Wuest, F. Theranostic Imaging Surrogates for Targeted Alpha Therapy: Progress in Production, Purification, and Applications. Pharmaceuticals 2023, 16, 1622. [Google Scholar] [CrossRef] [PubMed]
- Proton Sub-Library-TENDL-2019. TENDL. (1 November 2019). Available online: https://tendl.web.psi.ch/tendl_2019/proton_html/Ba/ProtonBa.html (accessed on 30 July 2022).
- Spencer, R.P.; Lange, R.C.; Treves, S. Use of Ba-135m and Ba-131 as Bone-Scanning Agents. J. Nucl. Med. 1971, 12, 216–221. [Google Scholar] [PubMed]
- Salutsky, M.L.; Kirby, H.W. The Radiochemistry of Radium; National Bureau of Standards, U.S. Department of Commerce: Springfield, VA, USA, 1964; p. 210. [Google Scholar]
Product | Target Area Density [mg/cm2] | Proton Energy [MeV] | Proton Current [µA] | Irradiation Time [h] | Activities @EOB (GBq) | Saturation Yield @EOB (MBq/µA) |
---|---|---|---|---|---|---|
[61Cu]CuCl2 | 130–260 | 20.8–18.7 | 70 | 1–2 | 10–20 | 800–1500 |
[64Cu]CuCl2 | 104–286 | 13.5–13 | 70 | 2–3 | 10–55 | 1350–5000 |
[67Cu]CuCl2 | 120 | 16.8 | 60 | 8–20 (in 2 days) | 0.3–0.9 | 90 |
[67Ga]GaCl3 | 70 | 19 | 35 | 1.5–2 | 1–2 | 3200 |
[131Ba]Ba(NO3)2 | 70 | 27.5 | 20 | 2–4 | 0.13–0.26 | 1200 |
[133La]LaCl3 | 39 | 18.7 | 35 | 0.25–1 | 1–3 | 600 |
[18F]F− | 1800 | 18 | 80–110 | 0.3–1 | 80–300 | 9000 |
[18F]F2 | 600 | 18 | 35 | 1 | 28 | 2600 |
[11C]CO2 | 500 | 18 | 40 | 0.6 | 140 | 5000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kreller, M.; Brühlmann, S.A.; Knieß, T.; Kopka, K.; Walther, M. Production of Medical Radionuclides in the Center for Radiopharmaceutical Tumor Research—A Status Report. Instruments 2024, 8, 10. https://doi.org/10.3390/instruments8010010
Kreller M, Brühlmann SA, Knieß T, Kopka K, Walther M. Production of Medical Radionuclides in the Center for Radiopharmaceutical Tumor Research—A Status Report. Instruments. 2024; 8(1):10. https://doi.org/10.3390/instruments8010010
Chicago/Turabian StyleKreller, Martin, Santiago Andrés Brühlmann, Torsten Knieß, Klaus Kopka, and Martin Walther. 2024. "Production of Medical Radionuclides in the Center for Radiopharmaceutical Tumor Research—A Status Report" Instruments 8, no. 1: 10. https://doi.org/10.3390/instruments8010010