Previous Issue
Volume 9, June
 
 

Instruments, Volume 9, Issue 3 (September 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
9 pages, 550 KiB  
Article
An Experimental Setup to Study Electron Transport and Thermalization in Cryogenic Para-Hydrogen Crystal Matrices
by Piergiorgio Antonini, Massimo Benettoni, Armando F. Borghesani, Caterina Braggio, Roberto Calabrese, Giovanni Carugno, Federico Chiossi, Ugo Gasparini, Franco Gonella, Marco Guarise, Alen Khanbekyan, Alessandro Lippi, Augusto Lombardi, Emilio Mariotti, Madiha M. Makhdoom, Giuseppe Messineo, Jacopo Pazzini, Giuseppe Ruoso, Luca Tomassetti and Marco Zanetti
Instruments 2025, 9(3), 16; https://doi.org/10.3390/instruments9030016 - 29 Jun 2025
Viewed by 252
Abstract
We present an experimental apparatus to investigate electron transport and thermalization in cryogenic para-hydrogen crystal matrices. This paper describes the techniques used to grow and characterize the cryogenic para-hydrogen crystals, the optical system employed to photoextract electrons, and the charge collection system used [...] Read more.
We present an experimental apparatus to investigate electron transport and thermalization in cryogenic para-hydrogen crystal matrices. This paper describes the techniques used to grow and characterize the cryogenic para-hydrogen crystals, the optical system employed to photoextract electrons, and the charge collection system used to study the behavior of electrons within the solid matrix. By probing the fundamental charge transport and energy loss processes in a quantum solid, such as para-hydrogen, this study paves the way for future precision experiments that leverage the unique properties of cryogenic crystal matrices. Full article
Show Figures

Figure 1

13 pages, 4454 KiB  
Article
Proton Irradiation and Thermal Restoration of SiPMs for LEO Missions
by Alexis Luszczak, Lucas Finazzi, Leandro Gagliardi, Milagros Moreno, Maria L. Ibarra, Federico Golmar and Gabriel A. Sanca
Instruments 2025, 9(3), 15; https://doi.org/10.3390/instruments9030015 - 26 Jun 2025
Viewed by 216
Abstract
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from [...] Read more.
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from trapped protons and electrons. The dominant radiation-induced effect in SiPMs is an increase in dark current, which can compromise detector sensitivity. This study investigates the potential of thermal annealing as a mitigation strategy for radiation damage in SiPMs. We designed and tested PCB-integrated heaters to selectively heat irradiated SiPMs and induce recovery processes. A PID-controlled system was developed to stabilize the temperature at 100 °C, and a remotely controlled experimental setup was implemented to operate under irradiation conditions. Two SiPMs were simultaneously irradiated with 9 MeV protons at the EDRA facility, reaching a 1 MeV neutron equivalent cumulative fluence of (9.5 ± 0.2) × 108 cm−2. One sensor underwent thermal annealing between irradiation cycles, while the other served as a control. Throughout the experiment, dark current was continuously monitored using a source measure unit, and I–V curves were recorded before and after irradiation. A recovery of more than 39% was achieved after only 5 min of thermal cycling at 100 °C, supporting this recovery approach as a low-complexity strategy to mitigate radiation-induced damage in space-based SiPM applications and increase device lifetime in harsh environments. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop