Previous Issue
Volume 9, June
 
 

Instruments, Volume 9, Issue 3 (September 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 2829 KiB  
Article
Apparatus and Experiments Towards Fully Automated Medical Isotope Production Using an Ion Beam Accelerator
by Abdulaziz Yahya M. Hussain, Aliaksandr Baidak, Ananya Choudhury, Andy Smith, Carl Andrews, Eliza Wojcik, Liam Brown, Matthew Nancekievill, Samir De Moraes Shubeita, Tim A. D. Smith, Volkan Yasakci and Frederick Currell
Instruments 2025, 9(3), 18; https://doi.org/10.3390/instruments9030018 - 18 Jul 2025
Viewed by 245
Abstract
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated [...] Read more.
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated system for the agile and reliable production of radiopharmaceuticals. The system performs transmutations, dissolution, and separation for a range of radioisotopes. Steps in the production of 89Zr-oxalate are used as an exemplar to illustrate its use. Three-dimensional (3D) printing was exploited to design and manufacture a target holder able to include solid targets, in this case an 89Y foil. Spot welding was used to attach 89Y to a refractory tantalum (Ta) substrate. A commercially available CPU chiller was repurposed to efficiently cool the metal target. Furthermore, a commercial resin (ZR Resin) and compact peristaltic pumps were employed in a compact (10 × 10 × 10 cm3) chemical separation unit that operates automatically via computer-controlled software. Additionally, a standalone 3D-printed unit was designed with three automated functionalities: photolabelling, vortex mixing, and controlled heating. All components of the assembly, except for the target holder, are housed inside a commercially available hot cell, ensuring safe and efficient operation in a controlled environment. This paper details the design, construction, and modelling of the entire assembly, emphasising its innovative integration and operational efficiency for widespread radiopharmaceutical automation. Full article
Show Figures

Figure 1

14 pages, 3005 KiB  
Article
Technique for Extracting Initial Parameters of Longitudinal Phase Space of Freshly Injected Bunches in Storage Rings, and Its Applications
by Hongshuang Wang, Yongbin Leng and Yimei Zhou
Instruments 2025, 9(3), 17; https://doi.org/10.3390/instruments9030017 - 17 Jul 2025
Viewed by 179
Abstract
This paper presents a technique for extracting the initial parameters of the longitudinal phase space of freshly injected bunches in an electron storage ring. This technique combines simulation of single-bunch longitudinal phase space evolution with a bunch-by-bunch data acquisition and processing system, enabling [...] Read more.
This paper presents a technique for extracting the initial parameters of the longitudinal phase space of freshly injected bunches in an electron storage ring. This technique combines simulation of single-bunch longitudinal phase space evolution with a bunch-by-bunch data acquisition and processing system, enabling high-precision determination of initial phase space parameters during electron storage ring injection—including the initial phase, initial bunch length, initial energy offset, initial energy spread, and initial energy chirp. In our experiments, a high-speed oscilloscope captured beam injection signals, which were then processed by the bunch-by-bunch data acquisition system to extract the evolution of the injected bunch’s phase and length. Additionally, a single-bunch simulation software package was developed, based on mbtrack2 and PyQt5, that is capable of simulating the phase space evolution of bunches under different initial parameters after injection. By employing a genetic algorithm to iteratively align simulation results with experimental data, the remaining initial phase space parameters of the injected bunch can be accurately determined. Full article
Show Figures

Figure 1

9 pages, 550 KiB  
Article
An Experimental Setup to Study Electron Transport and Thermalization in Cryogenic Para-Hydrogen Crystal Matrices
by Piergiorgio Antonini, Massimo Benettoni, Armando F. Borghesani, Caterina Braggio, Roberto Calabrese, Giovanni Carugno, Federico Chiossi, Ugo Gasparini, Franco Gonella, Marco Guarise, Alen Khanbekyan, Alessandro Lippi, Augusto Lombardi, Emilio Mariotti, Madiha M. Makhdoom, Giuseppe Messineo, Jacopo Pazzini, Giuseppe Ruoso, Luca Tomassetti and Marco Zanetti
Instruments 2025, 9(3), 16; https://doi.org/10.3390/instruments9030016 - 29 Jun 2025
Viewed by 362
Abstract
We present an experimental apparatus to investigate electron transport and thermalization in cryogenic para-hydrogen crystal matrices. This paper describes the techniques used to grow and characterize the cryogenic para-hydrogen crystals, the optical system employed to photoextract electrons, and the charge collection system used [...] Read more.
We present an experimental apparatus to investigate electron transport and thermalization in cryogenic para-hydrogen crystal matrices. This paper describes the techniques used to grow and characterize the cryogenic para-hydrogen crystals, the optical system employed to photoextract electrons, and the charge collection system used to study the behavior of electrons within the solid matrix. By probing the fundamental charge transport and energy loss processes in a quantum solid, such as para-hydrogen, this study paves the way for future precision experiments that leverage the unique properties of cryogenic crystal matrices. Full article
Show Figures

Figure 1

13 pages, 4454 KiB  
Article
Proton Irradiation and Thermal Restoration of SiPMs for LEO Missions
by Alexis Luszczak, Lucas Finazzi, Leandro Gagliardi, Milagros Moreno, Maria L. Ibarra, Federico Golmar and Gabriel A. Sanca
Instruments 2025, 9(3), 15; https://doi.org/10.3390/instruments9030015 - 26 Jun 2025
Viewed by 320
Abstract
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from [...] Read more.
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from trapped protons and electrons. The dominant radiation-induced effect in SiPMs is an increase in dark current, which can compromise detector sensitivity. This study investigates the potential of thermal annealing as a mitigation strategy for radiation damage in SiPMs. We designed and tested PCB-integrated heaters to selectively heat irradiated SiPMs and induce recovery processes. A PID-controlled system was developed to stabilize the temperature at 100 °C, and a remotely controlled experimental setup was implemented to operate under irradiation conditions. Two SiPMs were simultaneously irradiated with 9 MeV protons at the EDRA facility, reaching a 1 MeV neutron equivalent cumulative fluence of (9.5 ± 0.2) × 108 cm−2. One sensor underwent thermal annealing between irradiation cycles, while the other served as a control. Throughout the experiment, dark current was continuously monitored using a source measure unit, and I–V curves were recorded before and after irradiation. A recovery of more than 39% was achieved after only 5 min of thermal cycling at 100 °C, supporting this recovery approach as a low-complexity strategy to mitigate radiation-induced damage in space-based SiPM applications and increase device lifetime in harsh environments. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop