Spontaneous Food Fermentations and Potential Risks for Human Health
Abstract
:1. Fermented Foods and Beverages: Scientific Dimension, Social Relevance, and Economic Significance
2. The Microbiology of Fermented Foods and Beverages: “Microbiodiversity”, Impact on Food Qualities and on Human Health
3. Risks for Human Health Associated with Fermentations
4. Spontaneous Versus Induced Fermentation: Starter Cultures, Scientific Evidence and Actual Trends
5. How to Conciliate Fermented Food Safety with Instances of an Enhanced Contribution of Microbes Associated to Spontaneous Fermentation
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Capozzi, V.; Spano, G.; Biasioli, F. Proton transfer reaction-mass spectrometry: Online and rapid determination of volatile organic compounds of microbial origin. Appl. Microbiol. Biotechnol. 2015, 99, 3787–3795. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Russo, P.; Dueñas, M.T.; López, P.; Spano, G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012, 96, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Ercolini, D. High-Throughput Sequencing and Metagenomics: Moving Forward in the Culture-Independent Analysis of Food Microbial Ecology. Appl. Environ. Microbiol. 2013, 79, 3148–3155. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-J. Foodomics: A novel approach for food microbiology. TrAC Trends Anal. Chem. 2017. [Google Scholar] [CrossRef]
- Mozzi, F.; Ortiz, M.E.; Bleckwedel, J.; De Vuyst, L.; Pescuma, M. Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Res. Int. 2013, 54, 1152–1161. [Google Scholar] [CrossRef]
- Pinu, F.R.; Villas-boas, S.G. Rapid Quantification of Major Volatile Metabolites in Fermented Food and Beverages Using Gas Chromatography-Mass Spectrometry. Metabolites 2017, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Yener, S.; Khomenko, I.; Farneti, B.; Cappellin, L.; Gasperi, F.; Scampicchio, M.; Biasioli, F. PTR-ToF-MS Coupled with an Automated Sampling System and Tailored Data Analysis for Food Studies: Bioprocess Monitoring, Screening and Nose-space Analysis. J. Vis. Exp. JoVE 2017. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.J.; Lee, J.-E.; Lee, C.-H. Importance of lactic acid bacteria in Asian fermented foods. Microb. Cell Fact. 2011, 10, S5. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Kailasapathy, K. Fermented Foods and Beverages of the World; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-4200-9496-1. [Google Scholar]
- Odunfa, S.A.; Oyewole, O.B. African fermented foods. In Microbiology of Fermented Foods; Springer: Boston, MA, USA, 1998; pp. 713–752. ISBN 978-1-4613-7990-4. [Google Scholar]
- Penna, A.L.B.; Nero, L.A.; Todorov, S.D. Fermented Foods of Latin America: From Traditional Knowledge to Innovative Applications; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-35243-5. [Google Scholar]
- Campbell-Platt, G. Fermented foods—A world perspective. Food Res. Int. 1994, 27, 253–257. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Spano, G. Microbial information regimen in EU geographical indications. World Pat. Inf. 2012, 34, 229–231. [Google Scholar] [CrossRef]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Chilton, S.N.; Burton, J.P.; Reid, G. Inclusion of Fermented Foods in Food Guides around the World. Nutrients 2015, 7, 390–404. [Google Scholar] [CrossRef] [PubMed]
- Bell, V.; Ferrão, J.; Fernandes, T. Nutritional Guidelines and Fermented Food Frameworks. Foods 2017, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Paul Ross, R.; Morgan, S.; Hill, C. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 2002, 79, 3–16. [Google Scholar] [CrossRef]
- Petruzzi, L.; Capozzi, V.; Berbegal, C.; Corbo, M.R.; Bevilacqua, A.; Spano, G.; Sinigaglia, M. Microbial Resources and Enological Significance: Opportunities and Benefits. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Greppi, A.; Rantsiou, K.; Padonou, W.; Hounhouigan, J.; Jespersen, L.; Jakobsen, M.; Cocolin, L. Determination of yeast diversity in ogi, mawè, gowé and tchoukoutou by using culture-dependent and -independent methods. Int. J. Food Microbiol. 2013, 165, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Capozzi, V.; Spano, G.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Metabolites of Microbial Origin with an Impact on Health: Ochratoxin A and Biogenic Amines. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Benozzi, E.; Romano, A.; Capozzi, V.; Makhoul, S.; Cappellin, L.; Khomenko, I.; Aprea, E.; Scampicchio, M.; Spano, G.; Märk, T.D.; et al. Monitoring of lactic fermentation driven by different starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. Food Res. Int. 2015, 76, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Menga, V.; Digesu, A.M.; De Vita, P.; van Sinderen, D.; Cattivelli, L.; Fares, C.; Spano, G. Biotechnological production of vitamin B2-enriched bread and pasta. J. Agric. Food Chem. 2011, 59, 8013–8020. [Google Scholar] [CrossRef] [PubMed]
- Bove, P.; Russo, P.; Capozzi, V.; Gallone, A.; Spano, G.; Fiocco, D. Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol. Res. 2013, 168, 351–359. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, P.; Tristezza, M.; Haidukowski, M.; Fanelli, F.; Sisto, A.; Mulè, G.; Grieco, F. Biodegradation of Ochratoxin A by Bacterial Strains Isolated from Vineyard Soils. Toxins 2015, 7, 5079–5093. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Russo, P.; Fragasso, M.; De Vita, P.; Fiocco, D.; Spano, G. Biotechnology and Pasta-Making: Lactic Acid Bacteria as a New Driver of Innovation. Front. Microbiol. 2012, 3. [Google Scholar] [CrossRef] [PubMed]
- Klayraung, S.; Viernstein, H.; Sirithunyalug, J.; Okonogi, S. Probiotic Properties of Lactobacilli Isolated from Thai Traditional Food. Sci. Pharm. 2008, 76, 485–504. [Google Scholar] [CrossRef]
- Russo, P.; de Chiara, M.L.V.; Capozzi, V.; Arena, M.P.; Amodio, M.L.; Rascón, A.; Dueñas, M.T.; López, P.; Spano, G. Lactobacillus plantarum strains for multifunctional oat-based foods. LWT Food Sci. Technol. 2016, 68, 288–294. [Google Scholar] [CrossRef]
- Müller, R.; Rappert, S. Pyrazines: Occurrence, formation and biodegradation. Appl. Microbiol. Biotechnol. 2010, 85, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Anraku, K.; Nonaka, K.; Yamaga, T.; Yamamoto, T.; Shin, M.-C.; Wakita, M.; Hamamoto, A.; Akaike, N. Removal of Toxin (Tetrodotoxin) from Puffer Ovary by Traditional Fermentation. Toxins 2013, 5, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Russo, P.; Ladero, V.; Fernandez, M.; Fiocco, D.; Alvarez, M.A.; Grieco, F.; Spano, G. Biogenic Amines Degradation by Lactobacillus plantarum: Toward a Potential Application in Wine. Front. Microbiol. 2012, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhães da Veiga Moreira, I.; de Figueiredo Vilela, L.; da Cruz Pedroso Miguel, M.G.; Santos, C.; Lima, N.; Freitas Schwan, R. Impact of a Microbial Cocktail Used as a Starter Culture on Cocoa Fermentation and Chocolate Flavor. Molecules 2017, 22, 766. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Makhoul, S.; Aprea, E.; Romano, A.; Cappellin, L.; Sanchez Jimena, A.; Spano, G.; Gasperi, F.; Scampicchio, M.; Biasioli, F. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin. Molecules 2016, 21, 483. [Google Scholar] [CrossRef] [PubMed]
- Fessard, A.; Kapoor, A.; Patche, J.; Assemat, S.; Hoarau, M.; Bourdon, E.; Bahorun, T.; Remize, F. Lactic Fermentation as an Efficient Tool to Enhance the Antioxidant Activity of Tropical Fruit Juices and Teas. Microorganisms 2017, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Hemalatha, S.; Platel, K.; Srinivasan, K. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. Eur. J. Clin. Nutr. 2007, 61, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Fawale, O.S.; Gbadamosi, S.O.; Ige, M.M.; Kadiri, O. Effects of cooking and fermentation on the chemical composition, functional, and antinutritional properties of kariya (Hildergardia barteri) seeds. Food Sci. Nutr. 2017. [Google Scholar] [CrossRef]
- Morelli, L. Yogurt, living cultures, and gut health. Am. J. Clin. Nutr. 2014, 99, 1248S–1250S. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.P.; Caggianiello, G.; Russo, P.; Albenzio, M.; Massa, S.; Fiocco, D.; Capozzi, V.; Spano, G. Functional Starters for Functional Yogurt. Foods 2015, 4, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramos, A.; Mohedano, M.L.; López, P.; Spano, G.; Fiocco, D.; Russo, P.; Capozzi, V. In Situ β-Glucan Fortification of Cereal-Based Matrices by Pediococcus parvulus 2.6: Technological Aspects and Prebiotic Potential. Int. J. Mol. Sci. 2017, 18, 1588. [Google Scholar] [CrossRef] [PubMed]
- Nout, M.J.R. Fermented foods and food safety. Food Res. Int. 1994, 27, 291–298. [Google Scholar] [CrossRef]
- Mena, C.; Almeida, G.; Carneiro, L.; Teixeira, P.; Hogg, T.; Gibbs, P.A. Incidence of Listeria monocytogenes in different food products commercialized in Portugal. Food Microbiol. 2004, 21, 213–216. [Google Scholar] [CrossRef]
- Gadaga, T.H.; Nyanga, L.K.; Mutukumira, A.N. The Occurrence, Growth and Control of Pathogens in African Fermented Foods. Afr. J. Food Agric. Nutr. Dev. 2007, 4. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Ruprich, J. Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins 2013, 5, 1574–1586. [Google Scholar] [CrossRef] [PubMed]
- Suzzi, G.; Gardini, F. Biogenic amines in dry fermented sausages: A review. Int. J. Food Microbiol. 2003, 88, 41–54. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, H.J.; Jeong, M.C.; Koo, M. Occurrence of Toxigenic Bacillus cereus and Bacillus thuringiensis in Doenjang, a Korean Fermented Soybean Paste. J. Food Prot. 2016, 79, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Escherichia coli O157:H7 outbreak linked to commercially distributed dry-cured salami—Washington and California, 1994. Morb. Mortal. Wkly. Rep. 1995, 44, 157–160. [Google Scholar]
- Besser, R.E.; Lett, S.M.; Weber, J.T.; Doyle, M.P.; Barrett, T.J.; Wells, J.G.; Griffin, P.M. An Outbreak of Diarrhea and Hemolytic Uremic Syndrome from Escherichia coli O157:H7 in Fresh-Pressed Apple Cider. JAMA 1993, 269, 2217–2220. [Google Scholar] [CrossRef] [PubMed]
- Adedeji, B.S.; Ezeokoli, O.T.; Ezekiel, C.N.; Obadina, A.O.; Somorin, Y.M.; Sulyok, M.; Adeleke, R.A.; Warth, B.; Nwangburuka, C.C.; Omemu, A.M.; et al. Bacterial species and mycotoxin contamination associated with locust bean, melon and their fermented products in south-western Nigeria. Int. J. Food Microbiol. 2017, 258, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Gilsdorf, A.; Jansen, A.; Alpers, K.; Dieckmann, H.; van Treeck, U.; Hauri, A.M.; Fell, G.; Littmann, M.; Rautenberg, P.; Prager, R.; et al. A nationwide outbreak of Salmonella Bovismorbificans PT24, Germany, December 2004-March 2005. Eur. Surveill. 2005, 10, E050324.1. [Google Scholar]
- Dano, S.D.; Manda, P.; Dembélé, A.; Kouassi Abla, A.M.-J.; Bibaud, J.H.; Gouet, J.Z.; Ze Maria Sika, C.B. Influence of Fermentation and Drying Materials on the Contamination of Cocoa Beans by Ochratoxin A. Toxins 2013, 5, 2310–2323. [Google Scholar] [CrossRef] [PubMed]
- Beneduce, L.; Romano, A.; Capozzi, V.; Lucas, P.; Barnavon, L.; Bach, B.; Vuchot, P.; Grieco, F.; Spano, G. Biogenic amine in wines. Ann. Microbiol. 2010, 60, 573–578. [Google Scholar] [CrossRef]
- Rabie, M.A.; Elsaidy, S.; el-Badawy, A.-A.; Siliha, H.; Malcata, F.X. Biogenic amine contents in selected Egyptian fermented foods as determined by ion-exchange chromatography. J. Food Prot. 2011, 74, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Uthurry, C.A.; Lepe, J.A.S.; Lombardero, J.; García Del Hierro, J.R. Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chem. 2006, 94, 262–270. [Google Scholar] [CrossRef]
- Da Rocha, M.E.B.; Freire, F.; Maia, F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- Milićević, D.R.; Škrinjar, M.; Baltić, T. Real and Perceived Risks for Mycotoxin Contamination in Foods and Feeds: Challenges for Food Safety Control. Toxins 2010, 2, 572–592. [Google Scholar] [CrossRef] [PubMed]
- Ladero, V.; Fernández, M.; Calles-Enríquez, M.; Sánchez-Llana, E.; Cañedo, E.; Martín, M.C.; Alvarez, M.A. Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol. 2012, 30, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Ladero, V.; Beneduce, L.; Fernández, M.; Alvarez, M.A.; Benoit, B.; Laurent, B.; Grieco, F.; Spano, G. Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiol. 2011, 28, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Tristezza, M.; Vetrano, C.; Bleve, G.; Spano, G.; Capozzi, V.; Logrieco, A.; Mita, G.; Grieco, F. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 2013, 36, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Spano, G.; Russo, P.; Lonvaud-Funel, A.; Lucas, P.; Alexandre, H.; Grandvalet, C.; Coton, E.; Coton, M.; Barnavon, L.; Bach, B.; et al. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 2010, 64 (Suppl. S3), S95–S100. [Google Scholar] [CrossRef] [PubMed]
- Straub, B.W.; Kicherer, M.; Schilcher, S.M.; Hammes, W.P. The formation of biogenic amines by fermentation organisms. Z. Lebensm. Unters. Forsch. 1995, 201, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, Z.; Couto, J.A.; Hogg, T. Citrulline as the main precursor of ethyl carbamate in model fortified wines inoculated with Lactobacillus hilgardii: A marker of the levels in a spoiled fortified wine. Lett. Appl. Microbiol. 2002, 34, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.E.; Manca de Nadra, M.C. Biogenic amine production by Lactobacillus. J. Appl. Microbiol. 2001, 90, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Spano, G.; Capozzi, V. Safety evaluation of starter cultures. In Starter Cultures in Food Production; Speranza, B., Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 101–128. ISBN 978-1-118-93379-4. [Google Scholar]
- Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J.C.; Gerds, M.L.; Hammes, W.P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; et al. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 2012, 154, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Rizzotti, L.; Felis, G.E.; Torriani, S. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives. Food Microbiol. 2014, 42, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Gueimonde, M.; Sánchez, B.; G de Los Reyes-Gavilán, C.; Margolles, A. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 2013, 4, 202. [Google Scholar] [CrossRef] [PubMed]
- Bernardeau, M.; Vernoux, J.P.; Henri-Dubernet, S.; Guéguen, M. Safety assessment of dairy microorganisms: The Lactobacillus genus. Int. J. Food Microbiol. 2008, 126, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Brandt, M.J. Starter cultures for cereal based foods. Food Microbiol. 2014, 37, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Vogel, R.F.; Hammes, W.P.; Habermeyer, M.; Engel, K.-H.; Knorr, D.; Eisenbrand, G. Microbial food cultures—Opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol. Nutr. Food Res. 2011, 55, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.B. STARTER CULTURES/Uses in the Food Industry. In Encyclopedia of Food Microbiology (Second Edition); Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 529–534. ISBN 978-0-12-384733-1. [Google Scholar]
- De Angelis, M.; Campanella, D.; Cosmai, L.; Summo, C.; Rizzello, C.G.; Caponio, F. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 2015, 52, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Park, H.-K.; Lee, J.-S.; Kim, J.-K.; Kim, M. Reduction of biogenic amines and aflatoxins in Doenjang samples fermented with various Meju as starter cultures. Food Control 2014, 42, 181–187. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Zhou, T.; Li, J.; Yang, J.; Chen, W.; Xiong, Y.L. Two efficient nitrite-reducing Lactobacillus strains isolated from traditional fermented pork (Nanx Wudl) as competitive starter cultures for Chinese fermented dry sausage. Meat Sci. 2016, 121, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Sanchart, C.; Rattanaporn, O.; Haltrich, D.; Phukpattaranont, P.; Maneerat, S. Enhancement of gamma-aminobutyric acid (GABA) levels using an autochthonous Lactobacillus futsaii CS3 as starter culture in Thai fermented shrimp (Kung-Som). World J. Microbiol. Biotechnol. 2017, 33, 152. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, N.; Mucciarella, M.R.; Marsilio, V. Volatile compounds in uninoculated and inoculated table olives with Lactobacillus plantarum (Olea europaea L., cv. Moresca and Kalamata). LWT Food Sci. Technol. 2008, 41, 2017–2022. [Google Scholar] [CrossRef]
- Comunian, R.; Ferrocino, I.; Paba, A.; Daga, E.; Campus, M.; Di Salvo, R.; Cauli, E.; Piras, F.; Zurru, R.; Cocolin, L. Evolution of microbiota during spontaneous and inoculated Tonda di Cagliari table olives fermentation and impact on sensory characteristics. LWT Food Sci. Technol. 2017, 84, 64–72. [Google Scholar] [CrossRef]
- Yang, J.; Ji, Y.; Park, H.; Lee, J.; Park, S.; Yeo, S.; Shin, H.; Holzapfel, W.H. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.). Int. J. Food Microbiol. 2014, 191, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Gómez, M.; Fonseca, S. Effect of commercial starter cultures on physicochemical characteristics, microbial counts and free fatty acid composition of dry-cured foal sausage. Food Control 2014, 46, 382–389. [Google Scholar] [CrossRef]
- Ciuciu Simion, A.M.; Vizireanu, C.; Alexe, P.; Franco, I.; Carballo, J. Effect of the use of selected starter cultures on some quality, safety and sensorial properties of Dacia sausage, a traditional Romanian dry-sausage variety. Food Control 2014, 35, 123–131. [Google Scholar] [CrossRef]
- Xie, C.; Wang, H.-H.; Nie, X.-K.; Chen, L.; Deng, S.-L.; Xu, X.-L. Reduction of biogenic amine concentration in fermented sausage by selected starter cultures. CyTA J. Food 2015, 13, 491–497. [Google Scholar] [CrossRef]
- Tosukhowong, A.; Visessanguan, W.; Pumpuang, L.; Tepkasikul, P.; Panya, A.; Valyasevi, R. Biogenic amine formation in Nham, a Thai fermented sausage, and the reduction by commercial starter culture, Lactobacillus plantarum BCC 9546. Food Chem. 2011, 129, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Lonvaud-Funel, A. Biogenic amines in wines: Role of lactic acid bacteria. FEMS Microbiol. Lett. 2001, 199, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, F.; Ndagijimana, M.; Belletti, N.; Gardini, F.; Vernocchi, P.; Lanciotti, R. Biogenic Amines and Ethyl Carbamate in Primitivo Wine: Survey of Their Concentrations in Commercial Products and Relationship with the Use of Malolactic Starter. J. Food Prot. 2012, 75, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Costantini, A.; Vaudano, E.; Del Prete, V.; Danei, M.; Garcia-Moruno, E. Biogenic amine production by contaminating bacteria found in starter preparations used in winemaking. J. Agric. Food Chem. 2009, 57, 10664–10669. [Google Scholar] [CrossRef] [PubMed]
- Van Ba, H.; Seo, H.-W.; Kim, J.-H.; Cho, S.-H.; Kim, Y.-S.; Ham, J.-S.; Park, B.-Y.; Kim, H.-W.; Kim, T.-B.; Seong, P.-N. The effects of starter culture types on the technological quality, lipid oxidation and biogenic amines in fermented sausages. LWT Food Sci. Technol. 2016, 74, 191–198. [Google Scholar] [CrossRef]
- Torrea, D.; Ancín, C. Content of Biogenic Amines in a Chardonnay Wine Obtained through Spontaneous and Inoculated Fermentations. J. Agric. Food Chem. 2002, 50, 4895–4899. [Google Scholar] [CrossRef] [PubMed]
- Salvetti, E.; Orrù, L.; Capozzi, V.; Martina, A.; Lamontanara, A.; Keller, D.; Cash, H.; Felis, G.E.; Cattivelli, L.; Torriani, S.; et al. Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Appl. Microbiol. Biotechnol. 2016, 100, 4595–4605. [Google Scholar] [CrossRef] [PubMed]
- Orrù, L.; Salvetti, E.; Cattivelli, L.; Lamontanara, A.; Michelotti, V.; Capozzi, V.; Spano, G.; Keller, D.; Cash, H.; Martina, A.; et al. Draft Genome Sequence of Bacillus coagulans GBI-30, 6086, a Widely Used Spore-Forming Probiotic Strain. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Panagou, E.Z.; Tassou, C.C.; Vamvakoula, P.; Saravanos, E.K.A.; Nychas, G.-J.E. Survival of Bacillus cereus vegetative cells during Spanish-style fermentation of conservolea green olives. J. Food Prot. 2008, 71, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, W.H. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 2002, 75, 197–212. [Google Scholar] [CrossRef]
- Spano, G.; Capozzi, V. Food Microbial Biodiversity and “Microbes of Protected Origin”. Front. Microbiol. 2011, 2. [Google Scholar] [CrossRef]
- Capozzi, V.; Spano, G.; Fiocco, D. Transdisciplinarity and Microbiology Education. J. Microbiol. Biol. Educ. JMBE 2012, 13, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.; Siebert, T.; Cozzolino, D.; Rose, L.; Mclean, H.; Henschke, P.A. Discovering a chemical basis for differentiating wines made by fermentation with “wild” indigenous and inoculated yeasts: Role of yeast volatile compounds. Aust. J. Grape Wine Res. 2009, 15, 238–248. [Google Scholar] [CrossRef]
- Liu, P.-T.; Lu, L.; Duan, C.-Q.; Yan, G.-L. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT Food Sci. Technol. 2016, 71, 356–363. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Garofalo, C.; Chiriatti, M.A.; Grieco, F.; Spano, G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol. Res. 2015, 181, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. mBio 2016, 7, e00631-16. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Arena, M.P.; Laddomada, B.; Cappello, M.S.; Bleve, G.; Grieco, F.; Beneduce, L.; Berbegal, C.; Spano, G.; Capozzi, V. Starter Cultures for Sparkling Wine. Fermentation 2016, 2, 21. [Google Scholar] [CrossRef]
- Johnson, A.J. Artisanal food microbiology. Nat. Microbiol. 2016, 1, nmicrobiol201639. [Google Scholar] [CrossRef] [PubMed]
- Cocolin, L.; Gobbetti, M.; Neviani, E.; Daffonchio, D. Ensuring safety in artisanal food microbiology. Nat. Microbiol. 2016, 1, nmicrobiol2016171. [Google Scholar] [CrossRef] [PubMed]
- Maqueda, M.; Pérez-Nevado, F.; Regodón, J.A.; Zamora, E.; Alvarez, M.L.; Rebollo, J.E.; Ramírez, M. A low-cost procedure for production of fresh autochthonous wine yeast. J. Ind. Microbiol. Biotechnol. 2011, 38, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Okeke, C.A.; Ezekiel, C.N.; Nwangburuka, C.C.; Sulyok, M.; Ezeamagu, C.O.; Adeleke, R.A.; Dike, S.K.; Krska, R. Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Romi, W.; Ahmed, G.; Jeyaram, K. Three-phase succession of autochthonous lactic acid bacteria to reach a stable ecosystem within 7 days of natural bamboo shoot fermentation as revealed by different molecular approaches. Mol. Ecol. 2015, 24, 3372–3389. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Gao, W.; Ren, D.; Chen, X.; Li, J. Evaluation of bacterial flora during the ripening of Kedong sufu, a typical Chinese traditional bacteria-fermented soybean product. J. Sci. Food Agric. 2013, 93, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Huch Née Kostinek, M.; Hanak, A.; Specht, I.; Dortu, C.M.; Thonart, P.; Mbugua, S.; Holzapfel, W.H.; Hertel, C.; Franz, C.M.A.P. Use of Lactobacillus strains to start cassava fermentations for Gari production. Int. J. Food Microbiol. 2008, 128, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Motato, K.E.; Milani, C.; Ventura, M.; Valencia, F.E.; Ruas-Madiedo, P.; Delgado, S. Bacterial diversity of the Colombian fermented milk “Suero Costeño” assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. Food Microbiol. 2017, 68, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Casquete, R.; Benito, M.J.; Martín, A.; Ruiz-Moyano, S.; Hernández, A.; Córdoba, M.G. Effect of autochthonous starter cultures in the production of “salchichón”, a traditional Iberian dry-fermented sausage, with different ripening processes. LWT Food Sci. Technol. 2011, 44, 1562–1571. [Google Scholar] [CrossRef]
- Guan, L.; Cho, K.H.; Lee, J.-H. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol. 2011, 28, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Gullo, M.; Giudici, P. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. Int. J. Food Microbiol. 2008, 125, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Bueso, G.; Esteve-Zarzoso, B.; Gil-Díaz, M.; García, M.; Cabellos, J.M.; Arroyo, T. Improvement of Malvar Wine Quality by Use of Locally-Selected Saccharomyces cerevisiae Strains. Fermentation 2016, 2, 7. [Google Scholar] [CrossRef]
- Ricciardi, A.; Parente, E.; Piraino, P.; Paraggio, M.; Romano, P. Phenotypic characterization of lactic acid bacteria from sourdoughs for Altamura bread produced in Apulia (Southern Italy). Int. J. Food Microbiol. 2005, 98, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Aquilanti, L.; Zannini, E.; Zocchetti, A.; Osimani, A.; Clementi, F. Polyphasic characterization of indigenous lactobacilli and lactococci from PDO Canestrato Pugliese cheese. LWT Food Sci. Technol. 2007, 40, 1146–1155. [Google Scholar] [CrossRef]
- De Candia, S.; De Angelis, M.; Dunlea, E.; Minervini, F.; McSweeney, P.L.H.; Faccia, M.; Gobbetti, M. Molecular identification and typing of natural whey starter cultures and microbiological and compositional properties of related traditional Mozzarella cheeses. Int. J. Food Microbiol. 2007, 119, 182–191. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; de Candia, S.; Calasso, M.P.; Faccia, M.; Guinee, T.P.; Simonetti, M.C.; Gobbetti, M. Selection and use of autochthonous multiple strain cultures for the manufacture of high-moisture traditional Mozzarella cheese. Int. J. Food Microbiol. 2008, 125, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Perricone, M.; Cannarsi, M.; Corbo, M.R.; Sinigaglia, M. Technological and spoiling characteristics of the yeast microflora isolated from Bella Di Cerignola table olives. Int. J. Food Sci. Technol. 2009, 44, 2198–2207. [Google Scholar] [CrossRef]
- Perricone, M.; Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiol. 2014, 38, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Altieri, C.; Corbo, M.R.; Sinigaglia, M.; Ouoba, L.I.I. Characterization of Lactic Acid Bacteria Isolated from Italian Bella di Cerignola Table Olives: Selection of Potential Multifunctional Starter Cultures. J. Food Sci. 2010, 75, M536–M544. [Google Scholar] [CrossRef] [PubMed]
- Speranza, B.; Bevilacqua, A.; Corbo, M.R.; Altieri, C.; Sinigaglia, M. Selection of autochthonous strains as promising starter cultures for Fior di Latte, a traditional cheese of southern Italy. J. Sci. Food Agric. 2015, 95, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Bleve, G.; Tufariello, M.; Durante, M.; Perbellini, E.; Ramires, F.A.; Grieco, F.; Cappello, M.S.; De Domenico, S.; Mita, G.; Tasioula-Margari, M.; et al. Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardò and Leccino table olives. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; El Khoury, M.; Lucas, P.; Bely, M.; Russo, P.; Spano, G.; Capozzi, V. Autochthonous starter cultures and indigenous grape variety for regional wine production. J. Appl. Microbiol. 2015, 118, 1395–1408. [Google Scholar] [CrossRef] [PubMed]
- Tristezza, M.; Tufariello, M.; Capozzi, V.; Spano, G.; Mita, G.; Grieco, F. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Lamontanara, A.; Orrù, L.; Cattivelli, L.; Russo, P.; Spano, G.; Capozzi, V. Genome Sequence of Oenococcus oeni OM27, the First Fully Assembled Genome of a Strain Isolated from an Italian Wine. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Russo, P.; Lamontanara, A.; Orrù, L.; Cattivelli, L.; Spano, G. Genome Sequences of Five Oenococcus oeni Strains Isolated from Nero Di Troia Wine from the Same Terroir in Apulia, Southern Italy. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Lamontanara, A.; Caggianiello, G.; Orrù, L.; Capozzi, V.; Michelotti, V.; Bayjanov, J.R.; Renckens, B.; van Hijum, S.A.F.T.; Cattivelli, L.; Spano, G. Draft Genome Sequence of Lactobacillus plantarum Lp90 Isolated from Wine. Genome Announc. 2015, 3, e00097-15. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Russo, P.; Beneduce, L.; Massa, S.; Spano, G.; Capozzi, V. Non-Saccharomyces biodiversity in wine and the ‘microbial terroir’: A survey on Nero di Troia wine from the Apulian region, Italy. Ann. Microbiol. 2016, 66, 143–150. [Google Scholar] [CrossRef]
- Tristezza, M.; di Feo, L.; Tufariello, M.; Grieco, F.; Capozzi, V.; Spano, G.; Mita, G.; Grieco, F. Simultaneous inoculation of yeasts and lactic acid bacteria: Effects on fermentation dynamics and chemical composition of Negroamaro wine. LWT Food Sci. Technol. 2016, 66, 406–412. [Google Scholar] [CrossRef]
- Garofalo, C.; Tristezza, M.; Grieco, F.; Spano, G.; Capozzi, V. From grape berries to wine: Population dynamics of cultivable yeasts associated to “Nero di Troia” autochthonous grape cultivar. World J. Microbiol. Biotechnol. 2016, 32, 59. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Di Toro, M.R.; Grieco, F.; Michelotti, V.; Salma, M.; Lamontanara, A.; Russo, P.; Orrù, L.; Alexandre, H.; Spano, G. Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomic approach. Food Microbiol. 2016, 59, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Di Toro, M.R.; Capozzi, V.; Beneduce, L.; Alexandre, H.; Tristezza, M.; Durante, M.; Tufariello, M.; Grieco, F.; Spano, G. Intraspecific biodiversity and “spoilage potential” of Brettanomyces bruxellensis in Apulian wines. LWT Food Sci. Technol. 2015, 60, 102–108. [Google Scholar] [CrossRef]
- Berbegal, C.; Peña, N.; Russo, P.; Grieco, F.; Pardo, I.; Ferrer, S.; Spano, G.; Capozzi, V. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiol. 2016, 57, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Petruzzi, L.; Bevilacqua, A.; Corbo, M.R.; Speranza, B.; Capozzi, V.; Sinigaglia, M. A Focus on Quality and Safety Traits of Saccharomyces cerevisiae Isolated from Uva di Troia Grape Variety. J. Food Sci. 2017, 82, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Van Hijum, S.A.; Vaughan, E.E.; Vogel, R.F. Application of state-of-art sequencing technologies to indigenous food fermentations. Curr. Opin. Biotechnol. 2013, 24, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, L.; Carminati, D.; Zago, M.; Giraffa, G. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters. Int. J. Food Microbiol. 2009, 130, 70–73. [Google Scholar] [CrossRef] [PubMed]
Major Groups Global Fermented Foods | Fermented Product (Raw Material, Geographical Diffusion): Microorganisms Involved in the Fermentation Process |
---|---|
(a) Fermented cereals | Sourdough (Rye, wheat; America, Europe, Australia): Lb. sanfranciscensis, Lb. alimentarius, Lb. buchneri, Lb. casei, Lb. delbrueckii, Lb. fructivorans, Lb. plantarum, Lb. reuteri, Lb. johnsonii, Cand. humili, Issatchenkia orientalis |
Ogi (Maize, sorghum, millet; Nigeria): Lb. plantarum, Lb. pantheris, Lb. vaccinostercus, Corynebacterium sp., Aerobacter sp., Candida krusei, Clavispora lusitaniae, Sacch. cerevisiae, Rhodotorula sp., Cephalosporium sp., Fusarium sp., Aspergillus sp., Penicillium sp. | |
Idli (Rice, black gram or other dehusked pulses; India, Sri Lanka, Malaysia, Singapore): Leuc. mesenteroides, Lb. delbrueckii, Lb. fermenti, Lb. coryniformis, Ped. acidilactis, Ped. cerevisae, Streptococcus sp., Ent. faecalis, Lact. lactis, B. amyloliquefaciens, Cand. cacaoi, Cand. fragicola, Cand. glabrata, Cand. kefyr, Cand. pseudotropicalis, Cand. sake, Cand. tropicalis, Deb. hansenii, Deb. tamarii, Issatchenkia terricola, Rhiz. graminis, Sacch. cerevisiae, Tor. candida, Tor. holmii | |
(b) Fermented vegetables and bamboo shoots | Table Olives (Olive; USA, Spain, Portugal, Italy, Greece, Peru, Chile): Leuc. mesenteroides, Ped. pentosaceus; Lb. plantarum Lb. pentosus/Lb. plantarum, Lb. paracollinoides, Lb. vaccinostercus/Lb. suebicus and Pediococcus sp. non-lactics (Gordonia sp./Pseudomonas sp., Halorubrum orientalis, Halosarcina pallid, Sphingomonas sp./Sphingobium sp./Sphingopyxis sp., Thalassomonas agarivorans) and yeasts (Candida cf. apicola, Pichia sp., Pic. manshurica/Pic. galeiformis, Sacch. cerevisiae) |
Kimchi (Cabbage, green onion, hot pepper, ginger; Korea): Leuc. mesenteroides, Leuc. citreum, Leuc. gasicomitatum, Leuc. kimchii, Leuc. inhae, W. koreensis, W. kimchii, W. cibaria, Lb. plantarum, Lb. sakei, Lb. delbrueckii, Lb. buchneri, Lb. brevis, Lb. fermentum, Ped. acidilactici, Ped. pentosaceus, Lc. lactis, yeasts species of Candida, Halococcus, Haloterrigena, Kluyveromyces, Lodderomyces, Natrialba, Natronococcus, Pichia, Saccharomyces, Sporisorium, Trichosporon | |
Soibum (Bamboo shoot; India): Lb. plantarum, Lb. brevis, Lb. coryniformis, Lb. delbrueckii, Leuc. fallax, Leuc. Lact. lactis, Leuc. mesenteroides, Ent. durans, Strep. lactis, B. subtilis, B. lichniformis, B. coagulans, B. cereus, B. pumilus, Pseudomonas fluorescens, Saccharomyces sp., Torulopsis sp. | |
(c) Fermented legumes | Tempeh (Soybean; Indonesia, The Netherlands, Japan, USA): Rhiz. oligisporus, Rhiz. arrhizus, Rhiz. oryzae, Rhiz. stolonifer, Asp. niger, Citrobacter freundii, Enterobacter cloacae, K. pneumoniae, K. pneumoniae subsp. ozaenae, Pseudomas fluorescens, Lb. fermentum, Lb. lactis, Lb. plantarum, Lb. reuteri |
Dawadawa (Locust bean; Ghana, Nigeria): B. pumilus, B. licheniformis, B. subtilis, B. firmus, B. atrophaeus, B. amyloliquefaciens, B. mojavensis, Lysininbacillus sphaericus. | |
(d) Fermented roots/tubers | Fufu (Cassava; West Africa): Bacillus sp., Lb. plantarum, Leuc. mesenteroides, Lb. cellobiosus, Lb. brevis; Lb. coprophilus, Lc. lactis; Leuc. lactis, Lb. bulgaricus, Klebsiella sp., Leuconostoc sp., Corynebacterium sp., Candida sp. |
Tapé (Cassava; Indonesia): Streptococcus sp., Rhizopus sp., Saccharomycopsis fibuligera | |
(e) Fermented milk products | Cheese (Animal milk; Worldwide): Lc. lactis subsp. cremoris, Lc. lactis subsp. lactis, Lb. delbrueckii subsp. delbrueckii, Lb. delbrueckii subsp. lactis, Lb. helveticus, Lb. casei, Lb. plantarum, Lb. salivarius, Leuconostoc spp., Strep. thermophilus, Ent. durans, Ent. faecium, and Staphylococcus spp., Brevibacterium linens, Propionibacterium freudenreichii, Debaryomyces hansenii, Geotrichum candidum, Penicillium camemberti, P. roqueforti |
Kefir (Goat, sheep, cow; Russia): Lb. brevis, Lb. caucasicus, Lb. kefiri, Strep. thermophilus, Lb. bulgaricus, Lb. plantarum, Lb. casei, Lb. brevis, Tor. holmii, Tor. delbruechii | |
(f) Fermented and preserved meat products | Chorizo (Pork; Spain): Lb. sake, Lb. curvatus, Lb. plantarum |
Nem-chua (Pork, salt, cooked rice; Vietnam): Lb. pentosus, Lb. plantarum, Lb. brevis, Lb. paracasei, Lb. fermentum, Lb. acidipiscis, Lb. farciminis, Lb. rossiae, Lb. fuchuensis, Lb. namurensis, Lc. lactis, Leuc. citreum, Leuc. fallax, Ped. acidilactici, Ped. pentosaceus, Ped. stilesii, Weissella cibaria, W. paramesenteroides | |
(g) Fermented, dried and smoked fish products | Ngari (Fish, salt; India): Lact. lactis, Lb. plantarum, Lb. pobuzihii, Lb. fructosus, Lb. amylophilus, Lb. coryniformis, Ent. faecium, B. subtilis, B. pumilus, B indicus, Micrococcus sp., Staphy. cohnii subsp. cohnii, Staphy. carnosus, Tetragenococcus halophilus subsp. flandriensis, Clostridium irregular, Azorhizobium caulinodans, Candida sp., Saccharomycopsis sp. |
Surströmming (Fish; Sweden): Haloanaerobium praevalens | |
(h) Miscellaneous fermented products | Balsamic Vinegar (Grape must; Italy): Acetobacter aceti subsp. aceti, Acetobacter pasteurianus, Acetobacter polyxygenes, Acetobacter xylinum, Acetobacter malorum, Acetobacter pomorum, Candida lactis-condensi, Candida stellata, Hanseniaspora valbyensis, Hanseniaspora osmophila, Saccharomycodes ludwigii, Sacch. cerevisiae, Zygosaccharomyces bailii, Zygosaccharomyces bisporus, Zygosaccharomyces lentus, Zygosaccharomyces mellis, Zygosaccharomyces Pseudorouxii, Zygosaccharomyces Rouxii |
Pidan (duck eggs; Chinese): B. cereus, B. macerans, Staph. cohnii, Staph. epidermidis, Staph. Haemolyticus, Staph. warneri | |
(i) Alcoholic beverages | Wine (Grape must; Worldwide): Saccharomyces and non-Saccharomyces (so-called “wild”) yeasts (e.g., Candida colliculosa, C. stellata, Hanseniaspora uvarum, Kloeckera apiculata, Kl. thermotolerans, Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia fermentans, Schizosaccharomyces pombe, Hanseniaspora uvarum); bacteria (Oenococcus oeni, Lactobacillus plantatum) |
Pulque (cactus (Agave) plant of Mexico): LAB (Lc. lactis subsp. lactis, Lb. acetotolerans, Lb. acidophilus, Lb. hilgardii, Lb. kefir, Lb. plantarum, Leuc. citreum, Leuc. kimchi, Leuc. mesenteroides, Leuc. pseudomesenteroides), the γ-Proteobacteria (Erwinia rhapontici, Enterobacter spp., and Acinetobacter radioresistens, several α-Proteobacteria), Zymomonas mobilis, Acetobacter malorum, A. pomorium, Microbacterium arborescens, Flavobacterium johnsoniae, Gluconobacter oxydans, Hafnia alvei | |
Tchoukoutou (spontaneously fermented beer) (sorghum, Benin): S. cerevisiae, Candida krusei, Clavispora lusitaniae, Candida rugosa |
Global Quality | Positive Effect of Fermentations | References |
---|---|---|
hygienic quality | Pyrazines biodegradation | [30] |
Toxins biodegradation | [26,31] | |
Biogenic amines biodegradation | [32] | |
sensory quality | Flavor improvement | [33,34] |
Texturizing properties | [29,35] | |
nutritional quality | Vitamin bio-fortification | [4,27] |
Increased bioaccessibility of minerals | [36] | |
Reduction of antinutritional properties | [37] | |
Reduction of lactose | [38] | |
functional quality | Antioxidant activity enhancement | [35] |
Probiotic properties of selected strains | [28,39] | |
Bio-fortification in microbial β-glucans | [40] | |
Gluten degradation | [41] |
Safety Issue | Evidence | Reference |
---|---|---|
Pathogens | Some fermented foods (ready-to-eat) were found positive for the presence of Listeria monocytogenes in a global survey on several types of food products on sale in Portugal | [42] |
The most commonly encountered pathogens in African fermented foods include Bacillus cereus, Escherichia coli, Salmonella sp., Staphylococcus aureus, Vibrio cholera, Aeromonas, Klebsiella, Campylobacter and Shigella sp. | [43] | |
51 doenjang samples have been found broadly contaminated with Bacillus cereus; while, only one sample was positive for Bacillus thuringiensis. All B. cereus isolates from doenjang were positive for diarrheal toxin genes. | [46] | |
Epidemiologic investigation linked Escherichia coli O157:H7 infection with consumption of a commercial dry-cured salami product distributed in several western U.S. states. | [47] | |
An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. | [48] | |
Two commonly consumed traditional condiments (iru and ogiri) and their respective raw seeds (locust bean and melon) were found contaminated with potentially pathogenic species such as Alcaligenes faecalis, Bacillus anthracis, Proteus mirabilis and Staphylococcus sciuri subsp. sciuri occurred in the samples. | [49] | |
Consumption of fermented raw pork sausage was associated with infection Salmonella enterica serovar Bovismorbificans. | [50] | |
Mycotoxin | Dietary sources of Ochratoxin A including fermented foods. | [44] |
Fermentation influences contamination of cocoa beans by Ochratoxin A. | [51] | |
Biogenic amines | Bioproduction of putrescine, histamine, tyramine and cadaverine in wine is a bacterial strain-dependent character. | [52] |
Bioproduction of tyramine in cheese up to considerable levels (e.g., 2010 mg/kg in Egyptian blue cheese). | [53] | |
In fermented sausages, biogenic amines are mainly produced by fermentative microbial population. | [45] | |
Ethyl carbamate | Ethyl carbamate produced by selected yeasts and lactic acid bacteria in red wine. | [54] |
Safety Issue | Strain | Reference |
---|---|---|
MIC 1 | Aspergillus sp. | [55] |
MIC | Cephalosporium sp. | [56] |
BA 2 | Enterococcus durans | [57] |
BA | Enterococcus faecalis | [57] |
BA | Enterococcus faecium | [58] |
MIC | Fusarium sp. | [55] |
BA | Issatchenkia terricola | [59] |
BA | Lactobacillus buchneri | [60] |
BA | Lactobacillus brevis | [60] |
BA | Lactobacillus curvatus | [61] |
BA | Lactobacillus hilgardii | [60] |
EC 3 | Lactobacillus hilgardii | [62] |
BA | Lactobacillus mali | [60] |
BA | Lactobacillus plantarum | [63] |
BA | Lactobacillus reuteri | [61] |
BA | Leuconostoc mesenteroides | [60] |
BA | Metschnikowia pulcherrima | [59] |
BA | Micrococcus spp. | [61] |
BA | Oenococcus oeni | [60] |
MIC | Penicillium sp. | [55] |
BA | Pichia manshurica | [59] |
BA | Staphylococcus carnosus | [61] |
Definition | Reference | |
---|---|---|
Starter cultures | “Starter cultures” are preparations of live microorganisms or their resting forms, whose metabolic activity has desired effects in the fermentation substrate, the food. The preparations may contain unavoidable residues from the culture substrate and additives that support the vitality and technological functionality of the microorganisms (such as antifreeze or antioxidant compounds). | [70] |
Microbial food cultures | “Microbial food cultures” (MFC) are live bacteria, yeasts or molds used in food production. MFC preparations are formulations, consisting of one or more microbial species and/or strains, including media components carried over from the fermentation and components which are necessary for their survival, storage, standardization, and to facilitate their application in the food production process. | [65] |
Commercial starter cultures | “Commercial starter cultures” are standardized inoculum to be used for the production of fermented foods. Starter cultures are produced by specialized manufactures. Rigorous quality assurance and quality control are conducted to ensure performance, composition, and safety of the culture. | [71] |
Matrix | Evidences | Reference |
---|---|---|
Table olives | Selected lactobacilli and yeast showed a fast acidification of brine. Olives inoculated with lactobacilli and yeast showed the lowest biodiversity and the highest appreciation for both texture profile analysis and sensory evaluation | [72] |
Inoculation of brine medium with lactic acid bacteria starters significantly influenced aroma profiles | [76] | |
Autochthonous starter produced same sensory quality as natural traditional table olives in a shorter time | [77] | |
Fermented leek kimchi. | Leeks fermented with Weissella confusa LK4 showed the highest radical scavenging effects and reducing ability. Total flavonoid and poly-phenolic contents changed during fermentation and showed correlation with anti-oxidant effects | [78] |
Soybean fermented product | A reduction of biogenic amines and aflatoxins has been reported in Doenjang samples fermented with various Meju as starter cultures | [73] |
Dry-cured foal sausage | The inclusion of starter cultures contributes to improve the hygienic quality (stronger acidification and reduced count of Enterobacteriaceae) of foal sausages without significant effect on lipolysis, texture and appearance | [79] |
Chinese fermented dry sausages | Nitrite content of all inoculated sausages declined rapidly during ripening compared to non-inoculated | [74] |
Fermented sausage | Selected starter cultures improve quality, safety and sensorial properties of Dacia sausage, a traditional Romanian dry-sausage variety | [80] |
Evidences indicated that the selected Lactobacillus plantarum strain had a strong effect on inhibiting the production of biogenic amines | [81] | |
Starter cultures minimize the formation of biogenic amines during the process of Nham fermentation | [82] | |
Thai fermented shrimp (Kung-Som) | Starter culture enhance GABA content, improved microbiological safety (dominated the total microflora) as well as reduced fermentation time | [75] |
Wine | In cellars where biogenic amines are usually high, repeated experiments showed that in inoculated wines, biogenic amine concentrations were very low, while uninoculated control wines contained all the usual amines | [83] |
The use of a selected malolactic starter resulted in reductions in biogenic amines concentrations in wine produced by started malolactic fermentation compared with wine produced by spontaneous malolactic fermentation | [84] |
Major Groups Global Fermented Foods | Product Name | Country | Reference |
---|---|---|---|
(a) Fermented cereals | Ogi | Nigeria | [104] |
(b) Fermented vegetables and bamboo shoots | Soidon | India | [105] |
(c) Fermented legumes | Kedong sufu | China | [106] |
(d) Fermented roots/tubers | Gari | Kenya | [107] |
(e) Fermented milk products | Suero Costeño | Colombia | [108] |
(f) Fermented and preserved meat products | Salchichón | Spain | [109] |
(g) Fermented, dried and smoked fish products | Jeotgal | Korea | [110] |
(h) Miscellaneous fermented products | Vinegar | Italy | [111] |
(i) Alcoholic beverages | Malvar Wine | Philippines. | [112] |
Fermented Foods/Beverages | Autochthonous Variety/Typical Product | Studied Microorganisms | Main Potential Impact on Food Quality | References |
---|---|---|---|---|
Bread | Sourdough for Altamura bread (bread) | Lactic acid bacteria | Sensory quality | [113] |
Cheese | Canestrato Pugliese (cheese) | Lactobacilli and lactococci | Sensory quality | [114] |
Cheese | Mozzarella cheese (cheese) | Lactobacilli, lactococci, streptococci and enterococci | Sensory quality | [115] |
Cheese | Mozzarella cheese (cheese) | Lactobacillus plantarum, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, Enterococcus faecalis, Enterococcus durans | Sensory quality | [116] |
Table olives | Bella di Cerignola (Olives) | Yeasts | Sensory quality | [117] |
Bread | Sourdough for Altamura bread (bread) | Yeasts | Functional quality | [118] |
Table olives | Bella di Cerignola (Olives) | Lactic acid bacteria | Functional quality | [119] |
Wine | Different yeast species | Hygienic quality | [59] | |
Cheese | Fior di Latte (cheese) | Lactic acid bacteria | Sensory quality | [120] |
Table olives | Cellina di Nardò and Leccino (olives) | Yeasts and lactic acid bacteria | Sensory quality | [121] |
Wine | Uva di Troia (grape) | Oenococcus oeni, Saccharomyces cerevisiae | Sensory quality | [122] |
Wine | Negroamaro (grape) | Hanseniaspora uvarum, Saccharomyces cerevisiae | Sensory quality | [123] |
Wine | Uva di Troia (grape) | Oenococcus oeni, Lactobacillus plantarum | Sensory quality | [124,125,126] |
Wine | Uva di Troia (grape) | Non-Saccharomyces yeasts | Sensory quality | [127] |
Wine | Negroamaro (grape) | Yeasts and lactic acid bacteria | Sensory quality | [128] |
Wine | Uva di Troia (grape) | Yeasts | Sensory quality | [129] |
Wine | Different autochthonous grape varieties | Brettanomyces bruxellensis | Sensory quality | [130,131] |
Wine | Uva di Troia (grape) | Lactobacillus plantarum | Sensory quality | [132] |
Wine | Uva di Troia (grape) | Saccharomyces cerevisiae | Hygienic quality | [133] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous Food Fermentations and Potential Risks for Human Health. Fermentation 2017, 3, 49. https://doi.org/10.3390/fermentation3040049
Capozzi V, Fragasso M, Romaniello R, Berbegal C, Russo P, Spano G. Spontaneous Food Fermentations and Potential Risks for Human Health. Fermentation. 2017; 3(4):49. https://doi.org/10.3390/fermentation3040049
Chicago/Turabian StyleCapozzi, Vittorio, Mariagiovanna Fragasso, Rossana Romaniello, Carmen Berbegal, Pasquale Russo, and Giuseppe Spano. 2017. "Spontaneous Food Fermentations and Potential Risks for Human Health" Fermentation 3, no. 4: 49. https://doi.org/10.3390/fermentation3040049
APA StyleCapozzi, V., Fragasso, M., Romaniello, R., Berbegal, C., Russo, P., & Spano, G. (2017). Spontaneous Food Fermentations and Potential Risks for Human Health. Fermentation, 3(4), 49. https://doi.org/10.3390/fermentation3040049