Previous Issue
Volume 13, August
 
 

Toxics, Volume 13, Issue 9 (September 2025) – 65 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 1358 KB  
Article
Mono(2-ethylhexyl) Phthalate Disrupts Mitochondrial Function, Dynamics and Biogenesis in Human Trophoblast Cells at Human Exposure Range Concentrations
by Luis Daniel Martínez-Razo, Nadia Alejandra Rivero-Segura, Ericka Karol Pamela Almeida-Aguirre, Ismael Mancilla-Herrera, Ruth Rincón-Heredia, Alejandra Martínez-Ibarra and Marco Cerbón
Toxics 2025, 13(9), 770; https://doi.org/10.3390/toxics13090770 - 11 Sep 2025
Abstract
Mono(2-ethylhexyl) phthalate (MEHP), a bioactive metabolite of di(2-ethylhexyl) phthalate (DEHP), has been detected in the placenta and urine of pregnant women and is linked to adverse pregnancy outcomes. However, its effects on mitochondrial homeostasis in trophoblast cells remain incompletely understood. This study examined [...] Read more.
Mono(2-ethylhexyl) phthalate (MEHP), a bioactive metabolite of di(2-ethylhexyl) phthalate (DEHP), has been detected in the placenta and urine of pregnant women and is linked to adverse pregnancy outcomes. However, its effects on mitochondrial homeostasis in trophoblast cells remain incompletely understood. This study examined the impact of MEHP (0.5–200 µM) on mitochondrial function, dynamics, and biogenesis in human HTR-8/SVneo trophoblast cells. MEHP (≥5 µM) reduced MTT conversion without compromising membrane integrity, suggesting early metabolic or redox imbalance. A dose-dependent loss of mitochondrial membrane potential was observed, with increased reactive oxygen species (ROS) generation only at 200 µM. MEHP modulated the expression of mitochondrial dynamics genes, with a more pronounced mitofusin 1 (MFN1) induction at low doses and increased mitochondrial DNA content, suggesting a compensatory response to mild stress. Conversely, high doses more strongly induced fission and mitochondrial 1 (FIS1) expression, suggesting mitochondrial fragmentation. Both concentrations induced the expression of the mitochondrial biogenesis regulators peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and nuclear factor erythroid 2–related factor 2 (Nrf2), while sirtuin 1 (SIRT1) expression and activity declined progressively with dose. These results demonstrate that MEHP disrupts mitochondrial homeostasis in trophoblast cells at concentrations spanning the estimated human exposure range. The dose-dependent effects, from adaptive responses to overt dysfunction, may help explain the associations between MEHP exposure and placental pathology observed in epidemiological studies. Full article
(This article belongs to the Special Issue Toxicity of Phthalate Esters (PAEs))
Show Figures

Figure 1

33 pages, 845 KB  
Review
The Role of Danio rerio in Understanding Pollutant-Induced Gut Microbiome Dysbiosis in Aquatic Ecosystems
by Svetlana G. Frolova, Aleksey A. Vatlin, Iunona Pospelova, Nikita A. Mitkin, Gulnara A. Kulieva and Vsevolod V. Pavshintsev
Toxics 2025, 13(9), 769; https://doi.org/10.3390/toxics13090769 - 11 Sep 2025
Abstract
Freshwater pollution is a global issue that can impact aquatic organisms in multiple ways. One of the many detrimental consequences of freshwater pollution is the disruption of the intestinal microbiome in aquatic animals. This review addresses the impact of various chemical entities like [...] Read more.
Freshwater pollution is a global issue that can impact aquatic organisms in multiple ways. One of the many detrimental consequences of freshwater pollution is the disruption of the intestinal microbiome in aquatic animals. This review addresses the impact of various chemical entities like pesticides, heavy metals, antibiotics, dyes, and microplastic. Gut microbiota serves as a crucial regulator of metabolic processes across all organisms. Since numerous metabolic pathways are coordinated by microbial communities, even minor disruptions can lead to consequences ranging from mild to severe. The widespread use of chemicals in modern life has made them a primary focus of current gut microbiota research. Zebrafish (Danio rerio) can serve as a model organism to investigate gut microbiome responses to exposure to hazardous contaminants. In this review we include research studying pesticides (methomyl, λ-cyhalothrin, cyproconazole, dieldrin, penthiopyrad, acetochlor, metamifop, imidacloprid, difenoconazole, imazalil, cypermethrin), heavy metals (lead, cadmium, arsenic, chromium, copper, and various nanoparticles), antibiotics (oxytetracycline, florfenicol, doxycycline, trimethoprim, erythromycin, streptomycin, tetracycline, sulfamethoxazole, and clarithromycin), and microplastics (polystyrene, polyethylene, polyester, polypropylene). This review study provides a description of microbiome alterations due to single and combined short- and long-term exposure to the aforementioned contaminants in zebrafish and larvae microbiomes. Full article
Show Figures

Graphical abstract

36 pages, 1537 KB  
Review
Integrated Approaches of Arsenic Remediation from Wastewater: A Comprehensive Review of Microbial, Bio-Based, and Advanced Technologies
by Aminur Rahman
Toxics 2025, 13(9), 768; https://doi.org/10.3390/toxics13090768 - 10 Sep 2025
Abstract
Arsenic-containing wastewater and soil systems are a serious hazard to public health and the environment, particularly in areas where agriculture and drinking water depend on groundwater. Therefore, the removal of arsenic contamination from soil, water, and the environment is of great importance for [...] Read more.
Arsenic-containing wastewater and soil systems are a serious hazard to public health and the environment, particularly in areas where agriculture and drinking water depend on groundwater. Therefore, the removal of arsenic contamination from soil, water, and the environment is of great importance for human welfare. Most of the conventional methods are inefficient and have very high operational costs, especially for metals at low concentrations or in large solution volumes. This review delivers a comprehensive approach to arsenic remediation, including microbiological processes, phytoremediation, biochar technologies, bio-based adsorbents, and nanomaterial-assisted techniques. All of these methods are thoroughly examined in terms of removal competence, their mechanisms, environmental impact, cost-effectiveness, and scalability. Phytoremediation and microbial remediation techniques are self-regenerating and eco-friendly, whereas fruit-waste-derived materials and biochar provide abundant adsorbents, and are therefore low-cost. On the other hand, nanotechnology-based approaches show remarkable effectiveness but raise concerns regarding economic feasibility and environmental safety. Additionally, this review represents a comparative analysis and discusses synergistic and hybrid systems that combine multiple technologies for enhancing the remediation performance. Future research directions are emphasized along with challenges such as material stability, regeneration, and policy integration. This review aims to guide decision-makers, research scholars, and industry stakeholders toward affordable, sustainable, and high-performance arsenic remediation techniques for practical use. Full article
Show Figures

Graphical abstract

15 pages, 10310 KB  
Article
ITF6475, a New Histone Deacetylase 6 Inhibitor, Prevents Painful Neuropathy Induced by Paclitaxel
by Guido Cavaletti, Annalisa Canta, Alessia Chiorazzi, Eleonora Pozzi, Valentina Carozzi, Cristina Meregalli, Paola Alberti, Paola Marmiroli, Arianna Scuteri, Luca Crippa, Silvia Fermi, Ibtihal Segmani, Barbara Vergani, Christian Steinkühler and Simonetta Andrea Licandro
Toxics 2025, 13(9), 767; https://doi.org/10.3390/toxics13090767 - 10 Sep 2025
Abstract
Chemotherapy-induced peripheral neuropathy remains a significant side effect of cancer treatment, often requiring dose reductions or even discontinuation of therapy. Paclitaxel (PTX), a widely used chemotherapeutic agent for solid tumors, is particularly neurotoxic, and no effective treatment exists for paclitaxel-induced peripheral neuropathy (PIPN). [...] Read more.
Chemotherapy-induced peripheral neuropathy remains a significant side effect of cancer treatment, often requiring dose reductions or even discontinuation of therapy. Paclitaxel (PTX), a widely used chemotherapeutic agent for solid tumors, is particularly neurotoxic, and no effective treatment exists for paclitaxel-induced peripheral neuropathy (PIPN). Histone deacetylases (HDACs) are enzymes that remove acetyl groups from histone and non-histone proteins, including transcription factors and cytoskeletal components. This study evaluates the HDAC6 inhibitor ITF6475 for its potential to prevent PIPN and compares its effects with ricolinostat, a well-established HDAC6 inhibitor previously studied in cisplatin-induced neuropathy models. Female C57BL/6 mice received PTX vehicle (VEH) or PTX (70 mg/kg intravenously, once per week for four weeks), and the remaining four groups received PTX with co-treatment of either ricolinostat (50 mg/kg orally, daily) or ITF6475 (1, 6, or 12.5 mg/kg orally, daily). Neurophysiological assessments at the end of treatment showed a significant reduction in caudal sensory nerve action potential amplitude across all PTX-treated groups compared to the VEH group. At the same time, PTX treatment led to the development of mechanical allodynia. However, co-treatment with the HDAC6 inhibitor prevented significant differences compared to the VEH group. PTX-induced reduction in intraepidermal nerve fiber density was significantly prevented in the PTX + ITF6475 (1 mg/kg) group, and PTX-induced increase in neurofilament light levels was reduced in all ITF6475 co-treated groups. These findings support the potential of ITF6475 in preventing small fiber damage in a severe, chronic PIPN model. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

16 pages, 5953 KB  
Article
Proteomics Reveals Mechanisms of Metabolic Dysregulation in Soman Neurotoxicity
by Xing-Xing Zong, Qian Jin, Tong Shi, Ruihua Zhang, Jingjing Shi, Chen Wang and Liqin Li
Toxics 2025, 13(9), 766; https://doi.org/10.3390/toxics13090766 - 10 Sep 2025
Abstract
Soman, an organophosphorus nerve agent, induces neurotoxicity primarily by inhibiting acetylcholinesterase, triggering a series of pathological events including cholinergic crisis, seizures, calcium overload, oxidative stress, mitochondrial dysfunction, and neuronal death. Nevertheless, the mechanisms underlying metabolic dysregulation—especially after repeated exposure—remain poorly characterized. To address [...] Read more.
Soman, an organophosphorus nerve agent, induces neurotoxicity primarily by inhibiting acetylcholinesterase, triggering a series of pathological events including cholinergic crisis, seizures, calcium overload, oxidative stress, mitochondrial dysfunction, and neuronal death. Nevertheless, the mechanisms underlying metabolic dysregulation—especially after repeated exposure—remain poorly characterized. To address this, we used SWATH-based proteomics to analyze changes in the hippocampal proteome following a repeated soman exposure regimen in a model of hippocampal injury. We identified 38 differentially expressed proteins, predominantly enriched in metabolic pathways. KEGG annotation indicated that these were mainly involved in carbohydrate, amino acid, and lipid metabolism, with specific roles in calcium signaling, tryptophan and tyrosine metabolism, alanine, aspartate and glutamate metabolism, and glyoxylate and dicarboxylate metabolism. Overall, our results demonstrate significant disruption of key metabolic pathways, particularly affecting carbohydrate and amino acid metabolism. We suggest that soman-induced hippocampal damage arises not only from acute calcium overload but also from persistent metabolic dysregulation that impairs energy production and biosynthetic processes. All of our preliminary results shed light on the nature of the biological process and target in the metabolism and provide basic research for the treatment, diagnosis, and prevention of nerve-agent-induced brain damage. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Figure 1

18 pages, 4334 KB  
Article
Transcriptome Analyses of Procambarus clarkii (Girard, 1852) Under Individual Exposures to CuSO4, Pendimethalin, and Glyphosate
by Yao Zheng, Jiajia Li, Zhuping Liu, Ning Wang and Gangchun Xu
Toxics 2025, 13(9), 765; https://doi.org/10.3390/toxics13090765 - 9 Sep 2025
Abstract
Pesticide usage in the integrated rice–crayfish system has aroused lots of attention all over the world. Especially in China, fish farmers often use copper sulfate and pendimethalin to remove moss from aquaculture water and glyphosate to remove weeds in and around crayfish–crab mixed [...] Read more.
Pesticide usage in the integrated rice–crayfish system has aroused lots of attention all over the world. Especially in China, fish farmers often use copper sulfate and pendimethalin to remove moss from aquaculture water and glyphosate to remove weeds in and around crayfish–crab mixed culture ponds. To explore the stress response mechanism of CuSO4, pendimethalin, and glyphosate to the hepatopancreas of Procambarus clarkii (Girard, 1852), seven treatment groups including control, CuSO4 (1 and 2 mg·L−1), pendimethalin (PND, 5 and 10 μg·L−1), and glyphosate (5 and 10 μg·L−1) experimental groups were set up; the transcriptome responses were detected at 4, 8, and 12 days, respectively. The irregular structure and vacuoles were shown in the hepatopancreas for 2 mg·L−1 CuSO4 and 10 μg·L−1 glyphosate exposures at 12 d, while narrowed hepatic sinusoids were revealed after 10 μg·L−1 pendimethalin exposure. The pathways of ribosome, lysosome, and peroxisome were significantly enriched for differential expression genes (DEGs); in addition, tyrosine metabolism, starch, and sucrose metabolism were enriched under the stress of the three inputs. Genes in related pathways such as glycerophospholipid metabolism, oxidative phosphorylation, and glycerolipid metabolism also changed, and the expression of genes associated with oxidative phosphorylation changed significantly under the stress of the three inputs. Oxidative stress, neurotoxicity, metabolism, and energy supply have been significantly affected by the above herbicide exposure. High concentrations and/or long-term duration exposure may result in metabolic disorders rather than eliminate toxicity through adaptability responses. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

28 pages, 2086 KB  
Article
Integrating Experimental Toxicology and Machine Learning to Model Levonorgestrel-Induced Oxidative Damage in Zebrafish
by İlknur Meriç Turgut, Melek Yapıcı and Dilara Gerdan Koc
Toxics 2025, 13(9), 764; https://doi.org/10.3390/toxics13090764 - 9 Sep 2025
Abstract
Levonorgestrel (LNG), a synthetic progestin widely used in pharmaceuticals, is increasingly recognized as an emerging aquatic contaminant capable of exerting adverse biological effects beyond endocrine disruption. Acting in a xenobiotic-like manner, LNG may perturb redox homeostasis and induce oxidative stress in non-target species. [...] Read more.
Levonorgestrel (LNG), a synthetic progestin widely used in pharmaceuticals, is increasingly recognized as an emerging aquatic contaminant capable of exerting adverse biological effects beyond endocrine disruption. Acting in a xenobiotic-like manner, LNG may perturb redox homeostasis and induce oxidative stress in non-target species. To elucidate these mechanisms, this study integrates experimental toxicology with supervised machine learning to characterize tissue-specific and dose–timerelated oxidative responses in adult Zebrafish (Danio rerio). Fish were exposed to two environmentally relevant concentrations of LNG (0.312 µg/L; LNG-L and 6.24 µg/L; LNG-H) and a solvent control (LNG-C) for 24, 48, and 96 h in triplicate static bioassays. Redox biomarkers—superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA)—were quantified in liver and muscle tissues. LNG-H exposure elicited a time-dependent increase in SOD activity, variable CAT responses, and a marked elevation in hepatic GPx, with sustained MDA levels indicating persistent lipid peroxidation. Five classification algorithms (Logistic Regression, Multilayer Perceptron, Gradient-Boosted Trees, Decision Tree and Random Forest) were trained to discriminate exposure outcomes based on biomarker profiles; GBT yielded the highest performance (96.17% accuracy), identifying hepatic GPx as the most informative feature (AUC = 0.922). Regression modeling via Extreme Gradient Boosting (XGBoost) further corroborated the dose- and time-dependent predictability of GPx responses (R2 = 0.922, MAE = 0.019). These findings underscore hepatic GPx as a sentinel biomarker of LNG-induced oxidative stress and demonstrate the predictive utility of machine-learning-enhanced toxicological frameworks in detecting and modeling sublethal contaminant effects with high temporal resolution in aquatic systems. Full article
(This article belongs to the Special Issue Computational Toxicology: Exposure and Assessment)
Show Figures

Graphical abstract

26 pages, 3368 KB  
Article
Effects of Gossypol Exposure on Ovarian Reserve Function: Comprehensive Risk Assessment Based on TRAEC Strategy
by Xiaoyan Sun, Jia Ying, Xuan Ma, Yunong Zhong, Ran Huo and Qingxia Meng
Toxics 2025, 13(9), 763; https://doi.org/10.3390/toxics13090763 - 9 Sep 2025
Abstract
This study evaluated the reproductive toxicity and reversibility of gossypol exposure in female Institute of Cancer Research (ICR) mice using the Targeted Risk Assessment of Environmental Chemicals (TRAEC) framework. Mice treated with gossypol (20 mg/kg/day, 30 days) showed reduced body weight (35.90 ± [...] Read more.
This study evaluated the reproductive toxicity and reversibility of gossypol exposure in female Institute of Cancer Research (ICR) mice using the Targeted Risk Assessment of Environmental Chemicals (TRAEC) framework. Mice treated with gossypol (20 mg/kg/day, 30 days) showed reduced body weight (35.90 ± 3.19 g vs. 30.26 ± 0.91 g, p < 0.001), depletion of primordial follicles (46.2 ± 4.8 vs. 27.5 ± 3.6, p < 0.01), and impaired oocyte maturation, with polar body extrusion decreasing from 65.9% to 22.6% at 60 μM (p < 0.0001). In the human granulosa-like tumor cell line (KGN), apoptosis increased to 91.1% at 20 μg/mL compared with 11.46% in controls (p < 0.0001). Proteomic profiling identified 151 differentially expressed proteins, enriched in steroidogenesis, immune regulation, and mitochondrial metabolism. After one-month withdrawal, partial morphological recovery was observed, but endocrine function remained impaired. The TRAEC risk score of 4.68 classified gossypol as a moderate reproductive toxicant. These findings indicate that gossypol damages ovarian reserve and oocyte competence, with only partial reversibility, highlighting the need for caution in its clinical use. Full article
Show Figures

Graphical abstract

18 pages, 3365 KB  
Article
Assessing Multiple Risks in Regulating Reservoirs: Perspectives on Heavy Metal Contamination
by Hui Zhou, Zhiping Li, Anming Wang, Jiawei Zhu, Zongyuan Han, Yalin Zhang and Dongdong Chen
Toxics 2025, 13(9), 762; https://doi.org/10.3390/toxics13090762 - 8 Sep 2025
Abstract
As the terminal reservoir of the South-to-North Water Diversion’s Eastern Route, Dongping Lake is critical for safeguarding the northern water supply. Analysis of 33 water–sediment sites revealed the following. (1) Waterborne heavy metals (HMs) below WHO limits, confirming the good water quality. (2) [...] Read more.
As the terminal reservoir of the South-to-North Water Diversion’s Eastern Route, Dongping Lake is critical for safeguarding the northern water supply. Analysis of 33 water–sediment sites revealed the following. (1) Waterborne heavy metals (HMs) below WHO limits, confirming the good water quality. (2) Sediment HM enrichment exceeding background levels, with Cd posing high ecological risk (mean Er = 135), and moderate overall pollution. (3) Speciation showed V, Cr, Co, Ni, Cu, Zn, and Pb predominantly in residual fractions, while Cd exhibited high bioavailability and Pb was in reducible state. Ecological risk assessment indicated that V and Cr tend not to cause environmental pollution; Co, Ni, Cu, Zn, and Pb only cause slight pollution; and Cd causes serious point-source pollution. The carcinogenic risk of surface sediments to children is not negligible. (4) Source apportionment identified industrial emissions as the primary HM contributors, with Cd deriving from agricultural runoff (phosphate fertilizers) and industrial discharges. This study offers valuable baseline information for water quality management in mega-water-transfer projects, directly supporting the Jiaodong Main Line and Yellow River Crossing operations. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

21 pages, 1135 KB  
Article
Measuring Environmental Chemical Burden with Wristbands: Implications for Kidney Health Among Women in Rural Guatemala
by Jaime Butler-Dawson, Grant Erlandson, Diana Jaramillo, Karely Villarreal Hernandez, Laura Calvimontes, Lyndsay Krisher, Miranda Dally, Stephen Brindley, Daniel Pilloni, Alex Cruz, Alison K. Bauer, Richard J. Johnson, Lee S. Newman, Joshua Schaeffer, John L. Adgate, Kim A. Anderson and Katherine A. James
Toxics 2025, 13(9), 761; https://doi.org/10.3390/toxics13090761 - 8 Sep 2025
Abstract
Chronic kidney disease of unknown origin (CKDu) is a public health concern, particularly in agricultural communities, with multiple environmental exposures hypothesized as potential contributors. This study employed a targeted exposure assessment using personal silicone wristbands to characterize chemical exposures among women living and [...] Read more.
Chronic kidney disease of unknown origin (CKDu) is a public health concern, particularly in agricultural communities, with multiple environmental exposures hypothesized as potential contributors. This study employed a targeted exposure assessment using personal silicone wristbands to characterize chemical exposures among women living and working in CKDu-affected regions of Guatemala. Participants wore wristbands for seven days, passively sampling air and dermal exposures. Overall, 45 wristbands were collected from 37 female participants (19 sugarcane workers and 18 community members). Of the 1530 chemicals measured using a single semi-quantitative method, 103 were detected, with an average of 27 chemicals per wristband (range: 16–40). Polycyclic aromatic hydrocarbon (PAH) levels were higher in community members’ wristbands, whereas workers exhibited higher exposure to pesticides (i.e., pendimethalin and fipronil). Workers had worse kidney function compared to community members, with almost half of the workers having an estimated glomerular filtration rate, eGFR, <90 mL/min/1.73 m2. Correlations were observed between kidney function markers and specific chemicals, with the strongest correlation between albumin-to-creatinine ratio and pyrene levels (ρ = 0.57, p < 0.01) among workers. Women in agricultural regions of Guatemala experience widespread exposure to diverse environmental chemicals, some of which may contribute to kidney function decline. Full article
Show Figures

Figure 1

17 pages, 2607 KB  
Article
Migration Behavior of Technetium-99 in Granite, Clay Rock, and Shale: Insights into Anionic Exclusion Effects
by Yunfeng Shi, Song Yang, Wenjie Chen, Aiming Zhang, Zhou Li, Longjiang Wang and Bing Lian
Toxics 2025, 13(9), 760; https://doi.org/10.3390/toxics13090760 - 7 Sep 2025
Viewed by 489
Abstract
One of the key tasks in the geological disposal of radioactive waste is to investigate the blocking ability of different host rocks on nuclide migration in the disposal site. This study conducted experimental and numerical methods to the adsorption, diffusion, and advection–dispersion behavior [...] Read more.
One of the key tasks in the geological disposal of radioactive waste is to investigate the blocking ability of different host rocks on nuclide migration in the disposal site. This study conducted experimental and numerical methods to the adsorption, diffusion, and advection–dispersion behavior of 99Tc in three types of rocks: granite, clay rock, and mudstone shale, with a focus on the influence of anion exclusion during migration. The research results found that the three types of rocks have no significant adsorption effect on 99Tc, and the anion exclusion during diffusion and advection–dispersion processes can block small “channels”, causing some nuclide migration to lag, and accelerate the nuclide migration rate in larger “channels”. In addition, parameters characterizing the size of anion exclusion in different migration behaviors, such as effective diffusion coefficient (De) and immobile liquid region porosity (θim), were fitted and obtained. Full article
(This article belongs to the Special Issue Environmental Transport and Transformation of Pollutants)
Show Figures

Graphical abstract

18 pages, 2238 KB  
Article
Discovery of Novel N-[(dimethylamino)methylene]thiourea (TUFA)-Functionalized Lignin for Efficient Cr(VI) Removal from Wastewater
by Haixin Wang, Tao Shen, Yiming Wang, Zongxiang Lv, Yu Liu, Juan Wu, Tai Li, Shui Wang and Yanguo Shang
Toxics 2025, 13(9), 759; https://doi.org/10.3390/toxics13090759 - 7 Sep 2025
Viewed by 208
Abstract
This study developed a novel adsorbent for Cr (VI) removal from wastewater by grafting N-[(dimethylamino)methylene]thiourea (TUFA) onto lignin. The resulting TUFA-functionalized lignin adsorbent AL was comprehensively characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and X-ray [...] Read more.
This study developed a novel adsorbent for Cr (VI) removal from wastewater by grafting N-[(dimethylamino)methylene]thiourea (TUFA) onto lignin. The resulting TUFA-functionalized lignin adsorbent AL was comprehensively characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS). Batch adsorption experiments systematically evaluated the influence of solution pH, contact time, temperature, initial Cr (VI) concentration, and adsorbent dosage. AL exhibited high adsorption capacity (593.9 mg g−1 at 40 °C), attributed to its abundant nitrogen and sulfur-containing functional groups. Kinetic analysis revealed that the adsorption process followed pseudo-second-order kinetics. Equilibrium isotherm data were best described by the Langmuir model, indicating predominant monolayer chemisorption. Thermodynamic parameters demonstrated that Cr (VI) adsorption onto AL is spontaneous, endothermic, and entropy-driven. The adsorption mechanism involves membrane diffusion and intra-particle diffusion processes. This work successfully synthesized a stable, effective, and low-cost adsorbent (AL) using an amine agent incorporating both nitrogen and sulfur functional groups, offering a promising approach for treating Cr (VI)-contaminated wastewater. Full article
Show Figures

Graphical abstract

13 pages, 710 KB  
Article
Implications of Nutrient Fate and Transport Following Nanopesticide Applications in Agricultural Field Plots in Central Kentucky
by William Rud, Manuel D. Montaño, Daniel N. Miller, Wayne Sanderson, Carmen Agouridis, Brianna F. Benner and Tiffany L. Messer
Toxics 2025, 13(9), 758; https://doi.org/10.3390/toxics13090758 - 6 Sep 2025
Viewed by 133
Abstract
The potential benefits of nanopesticide use over standard pesticides include more precise application at reduced application rates, lower premature degradation, and decreased direct impacts to target organisms. However, field scale investigations of the fate and transport of common nanopesticides such as copper (II) [...] Read more.
The potential benefits of nanopesticide use over standard pesticides include more precise application at reduced application rates, lower premature degradation, and decreased direct impacts to target organisms. However, field scale investigations of the fate and transport of common nanopesticides such as copper (II) hydroxide and imidacloprid combinations, remain limited. A field study evaluating nano-scale copper (II) hydroxide (Cu), standard imidacloprid (I), nanoimidicloprid (NI), and nano-scale copper (II) hydroxide and imidacloprid (CuNI) compared to control (C) plots was conducted using thirty 14.6 m2 field plots to determine the impacts of nanopesticide applications on nutrient cycling and quantify the persistence of copper (II) hydroxide in soil and surface runoff during the growing season. Soil samples were taken at the beginning and end of the growing season, while water quality runoff samples were collected following eleven rainfall events. Ammonium concentrations in runoff decreased in CuNI plots by 1.74 mg N/L, while total nitrogen concentrations in runoff increased by 1.29 mg N/L in Cu plots compared to CuNI plots. Runoff orthophosphate concentrations decreased in CuNI treatments compared to all other pesticide treatments by 1.37, 1.32, and 1.30 mg P/L in Cu, I, and NI plots, respectively. Significant increases in soil copper concentrations were also observed in all plots receiving Cu. These findings emphasize the potential biogeochemical implications of using these nanopesticides on nutrient cycling in agroecosystems. Full article
(This article belongs to the Special Issue Pesticide Risk Assessment, Emerging and Re-Emerging Problems)
Show Figures

Graphical abstract

17 pages, 3795 KB  
Article
Smoking Topography, Nicotine Kinetics, and Subjective Smoking Experience of Mentholated and Non-Mentholated Heated Tobacco Products in Occasional Smokers
by Benedikt Rieder, Yvonne Stoll, Christin Falarowski, Marcus Gertzen, Gabriel Kise, Gabriele Koller, Sarah Koch, Peter Laux, Andreas Luch, Anna Rahofer, Tobias Rüther, Nadja Mallock-Ohnesorg, Dennis Nowak, Thomas Schulz, Magdalena Elzbieta Zaslona, Ariel Turcios, Andrea Rabenstein and Elke Pieper
Toxics 2025, 13(9), 757; https://doi.org/10.3390/toxics13090757 - 6 Sep 2025
Viewed by 209
Abstract
Background: Heated tobacco products (HTPs) are marketed as reduced-harm alternatives to conventional cigarettes (CCs) and are increasingly used by young adults and occasional smokers. However, their acute nicotine delivery and user experience remain insufficiently studied in occasional smokers without established cigarette or nicotine [...] Read more.
Background: Heated tobacco products (HTPs) are marketed as reduced-harm alternatives to conventional cigarettes (CCs) and are increasingly used by young adults and occasional smokers. However, their acute nicotine delivery and user experience remain insufficiently studied in occasional smokers without established cigarette or nicotine dependence. Additives such as menthol—known to reduce sensory irritation and facilitate inhalation—may further influence initiation and product appeal, particularly in naïve users. Methods: In a crossover study with three separate study days, n = 15 occasional smokers without established cigarette or nicotine dependence consumed a mentholated HTP (mHTP), a non-mentholated HTP (nmHTP), and a conventional cigarette (CC) under ad libitum conditions during a 30 min observation. We measured plasma nicotine concentrations, smoking topography, cardiovascular parameters, and subjective effects (mCEQ). Results: Nicotine pharmacokinetics (Cmax, AUC) were comparable across products (Cmax 7.8–8.5 ng/mL; AUC 2.3–2.8 ng·min/mL [geometric means]; no significant differences), even though participants had no prior experience with HTPs. Compared to CCs, HTPs were associated with longer puff durations (2.09 s mHTP/2.00 s nmHTP vs. 1.78 s CC), higher puff volumes (mean: 68.06/68.16 vs. 43.76 mL; total: 949.80/897.73 vs. 522.41 mL), and greater flow rates (mean 37.49/38.25 vs. 27.68 mL/s; peak 63.24/63.69 vs. 44.38 mL/s). Subjective effects did not differ significantly between products (mCEQ subscale examples: satisfaction 3.00–3.33/7; reward 2.81–3.31/7; craving reduction 5.07–5.60/7). Cardiovascular parameters such as heart rate or systolic blood pressure showed with no between-product differences (HR p = 0.518; SBP p = 0.109) and no differences in their change over time between products (HR p = 0.807; SBP p = 0.734). No differences were observed between mHTP and nmHTP. Conclusion: HTPs can deliver nicotine and evoke user experiences similar to CCs, even in non-dependent users. The more intensive inhalation behavior observed with HTPs may reflect compensatory use and merits further investigation. Although no menthol-specific effects were observed, methodological constraints may have limited their detectability. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

19 pages, 1169 KB  
Review
Polyethylene Microplastics and Human Cells: A Critical Review
by Sharin Valdivia, Camila Riquelme, María Constanza Carrasco, Paulina Weisser, Carolina Añazco, Andrés Alarcón and Sebastián Alarcón
Toxics 2025, 13(9), 756; https://doi.org/10.3390/toxics13090756 - 5 Sep 2025
Viewed by 315
Abstract
The widespread production and poor management of plastic waste have led to the pervasive presence of microplastics (MPs) in environmental and biological systems. Among various polymers, polyethylene (PE) is the most widely produced plastic globally, primarily due to its use in single-use packaging. [...] Read more.
The widespread production and poor management of plastic waste have led to the pervasive presence of microplastics (MPs) in environmental and biological systems. Among various polymers, polyethylene (PE) is the most widely produced plastic globally, primarily due to its use in single-use packaging. Its persistence in ecosystems and resistance to degradation processes result in the continuous formation of PE-derived MPs. These particles have been detected in human biological matrices, including blood, lungs, placenta, and even the brain, raising increasing concerns about their bioavailability and potential health effects. Once internalized, PE MPs can interact with cellular membranes, induce oxidative stress, inflammation, and apoptosis, and interfere with epigenetic regulatory pathways. In vitro studies on epithelial, immune, and neuronal cells reveal concentration-dependent cytotoxicity, mitochondrial dysfunction, membrane disruption, and activation of pro-inflammatory cytokines. Moreover, recent findings suggest that PE MPs can induce epithelial-to-mesenchymal transition (EMT), senescence, and epigenetic dysregulation, including altered expression of miRNAs and DNA methyltransferases. These cellular changes highlight the potential role of MPs in disease development, especially in cardiovascular, metabolic, and possibly cancer-related conditions. Despite growing evidence, no standardized method currently exists for quantifying MPs in human samples, complicating comparisons across studies. Further, MPs can carry harmful additives and environmental contaminants such as bisphenols, phthalates, dioxins, and heavy metals, which enhance their toxicity. Global estimates indicate that humans ingest and inhale tens of thousands of MPs particles each year, yet long-term human research remains limited. Given these findings, it is crucial to expand research on PE MP toxicodynamics and to establish regulatory policies to reduce their release. Promoting alternative biodegradable materials and improved waste management practices will be vital in decreasing human exposure to MPs and minimizing potential health risks. Full article
Show Figures

Graphical abstract

16 pages, 2240 KB  
Article
Foliar Transpiration Inhibitor Reduces Cd Accumulation in Rice Grain: The Potential Effect of the Endophytic Bacterial Community
by Ge Lei, Huijuan Song, Ziwen Gan, Yunchou Yang and Anwei Chen
Toxics 2025, 13(9), 755; https://doi.org/10.3390/toxics13090755 - 5 Sep 2025
Viewed by 217
Abstract
Excess Cd in soils can be accumulated in rice, presenting a serious human health risk. The effect of foliar transpiration inhibitors (TIs) on the Cd content and the endophytic bacterial community in rice plants was unclear. We evaluated the key part of the [...] Read more.
Excess Cd in soils can be accumulated in rice, presenting a serious human health risk. The effect of foliar transpiration inhibitors (TIs) on the Cd content and the endophytic bacterial community in rice plants was unclear. We evaluated the key part of the rice plant to control the Cd translocation and the profile of the endophytic bacterium structure after spraying with foliar reagents; some possible typical endophytes were induced by the TIs to inhibit the Cd translocation in the rice plant. The rice plants in three sites with different available Cd content were sprayed with foliar TIs. We assessed the Cd, N, P, K and water-soluble saccharide (WSS) in different parts of the rice plant and the endophytic bacteria community in the stem. Foliar application of TIs reduced Cd translocation factor (TFCd) by ~20% from the root to the grain compared with that of CK. The TI can increase the adsorptive site concentration of stem nodes from 5.10 to 6.83 mmol/g. The diversity of the endophytic bacteria community was enhanced after application of TI, and the Shannon index increased from 3.29 to 3.92. The endophytic bacterial community induced by TI showed higher potentiality on the biofilm and stress-tolerant and metal-transport functions than that of CK, respectively. The relative abundances of Burkholderiaceae and Bacterium_g_Anaeromyxobacter were significantly negatively correlated (p < 0.05), with TFCd and positively correlated (p < 0.05), with water-solution saccharide content, simultaneously. The TI enhanced the endophytic diversity and amount. A high abundance of special endophytic bacteria induced by TI might decrease the TFCd. Full article
Show Figures

Figure 1

22 pages, 3273 KB  
Article
Development of an Automobile Indoor Air Quality Grading Based on Acute and Chronic Risk Assessment
by Ji-Yun Jung, Young-Hyun Kim, Eun-Ju Lim, Young-Jun Byun, Min-Kwang Kim, Hyun-Woo Lee, Cha-Ryung Kim, In-Ji Park, Ho-Hyun Kim and Cheol-Min Lee
Toxics 2025, 13(9), 754; https://doi.org/10.3390/toxics13090754 - 4 Sep 2025
Viewed by 251
Abstract
This study aimed to quantitatively evaluate the potential health effects of exposure to major air pollutants inside newly manufactured automobiles and to develop a grading system for automobile indoor air quality based on this assessment. To achieve this, the concentrations of 28 air [...] Read more.
This study aimed to quantitatively evaluate the potential health effects of exposure to major air pollutants inside newly manufactured automobiles and to develop a grading system for automobile indoor air quality based on this assessment. To achieve this, the concentrations of 28 air pollutants were measured in five different automobile models. Among these, 18 substances were selected for health risk assessment based on the availability of acute and chronic toxicity data and the requirement that each substance had been detected at least once under one or more of the automobile test modes (AM, PM, and DM). Acute hazard quotients (HQacute), chronic non-carcinogenic hazard quotients (HQ), and excess lifetime cancer risks (ECR) were subsequently calculated. The results of acute and chronic health risk assessments showed significant variation depending on the automobile test mode, and some automobiles exceeded health-based reference values for certain pollutants. Based on these findings, this study developed a 10-level grading system for automobile indoor air quality by comprehensively integrating pollutant-specific health risk levels and exceedances of the recommended limits outlined in Ministry of Land, Infrastructure, and Transport’s “Indoor Air Quality Guidelines for Newly Manufactured Automobiles.” The grading scale ranges from Grade 1 (Excellent) to Grade 10 (Hazardous), reflecting both acute and chronic health risks as well as legal standards, thereby improving upon conventional concentration-based management approaches. The proposed grading system enables a quantitative interpretation of automobile indoor air quality from a health-based perspective and is expected to be applicable in various fields, including automobile manufacturers’ air quality control, consumer information disclosure, and policy development. Full article
(This article belongs to the Section Air Pollution and Health)
20 pages, 1002 KB  
Review
Toxicology of Airborne Inorganic Arsenic: Oxidative Stress, Molecular Mechanisms, and Organ-Specific Pathologies
by Qingyang Liu
Toxics 2025, 13(9), 753; https://doi.org/10.3390/toxics13090753 - 4 Sep 2025
Viewed by 356
Abstract
Arsenic, a naturally occurring metalloid, poses a significant global public health threat due to widespread environmental contamination. Despite its well-documented carcinogenicity, critical gaps remain in understanding the health impacts of chronic low-level airborne exposure and the multi-modal mechanisms driving inorganic arsenic toxicity. This [...] Read more.
Arsenic, a naturally occurring metalloid, poses a significant global public health threat due to widespread environmental contamination. Despite its well-documented carcinogenicity, critical gaps remain in understanding the health impacts of chronic low-level airborne exposure and the multi-modal mechanisms driving inorganic arsenic toxicity. This narrative review synthesizes recent molecular research and population health data to explain how airborne inorganic arsenic causes harm through multiple biological pathways. Key novel insights include (1) a comprehensive analysis of inorganic arsenic-induced oxidative stress and epigenetic dysregulation, revealing transgenerational effects via germline epigenetic markers; (2) a critical evaluation of the linear no-threshold (LNT) model, demonstrating its overestimation of low-dose risks by 2–3× compared to threshold-based evidence; and (3) descriptions of mechanistic links between inorganic arsenic speciation, organ-specific pathologies (e.g., neurodevelopmental impairments, cardiovascular diseases), and pollution mitigation strategies. This study connects molecular mechanisms with public health strategies to improve arsenic risk assessment. It focuses on how inorganic arsenic alters gene regulation (epigenetics) and combines exposure from multiple sources, while also clarifying uncertainties about low-dose effects and refining safety standards. Full article
(This article belongs to the Special Issue Heavy Breathing: Unveiling the Impact of Heavy Metals on Lung Health)
Show Figures

Figure 1

21 pages, 4824 KB  
Article
Exposure to Kalach, a Glyphosate-Based Herbicide, During Pregnancy and Lactation Induces Hypothyroidism and Bone Disorders in Rat Offspring
by Latifa Hamdaoui, Hafedh El Feki, Marwa Ben Amor, Hassane Oudadesse, Mohamed Atwan, Ahmed Mohajja Alshammari, Faten Brahmi, Hmed Ben-Nasr, Riadh Badraoui and Tarek Rebai
Toxics 2025, 13(9), 752; https://doi.org/10.3390/toxics13090752 - 4 Sep 2025
Viewed by 310
Abstract
Kalach (KL) is a glyphosate (G)-based herbicide extensively used in agricultural and urban areas in Tunisia. It has been reported that G crosses the placenta in pregnant rats, potentially disrupting organ function in offspring. The present study examined the effects of prenatal and [...] Read more.
Kalach (KL) is a glyphosate (G)-based herbicide extensively used in agricultural and urban areas in Tunisia. It has been reported that G crosses the placenta in pregnant rats, potentially disrupting organ function in offspring. The present study examined the effects of prenatal and lactational exposure to KL on thyroid function, bone integrity, and phosphocalcic homeostasis in rat offspring. Pregnant rats were divided into two groups, group A (control group) and group B, exposed to KL (each mother rat received 0.07 mL of KL diluted in 1 mL of water by gavage). On postnatal day 14, plasma samples were analyzed for thyroid hormones, calcium, and phosphorus. Histology and immunohistochemical study of bone and thyroid, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy assessed alterations. Additionally, we complemented the in vivo study with an in silico study. We found that KL induced hypothyroidism, necrosis in thyroid tissue, and phosphocalcic imbalance, leading to skeletal abnormalities. Structural and mineralization defects in bone were confirmed by FTIR and XRD analysis. The in silico study revealed that G bids to growth hormone receptors and thyroglobulin with good affinity, corroborating the in vivo findings. In conclusion, KL may interfere with bone tissue, growth hormone receptors, and thyroglobulin, impair hypothyroidism, and function as an endocrine disruptor exposure. Consequently, KL induces disorganization of the femoral growth plate. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Figure 1

22 pages, 8536 KB  
Article
Evaluation of the Effects of High Uric Acid on Glucolipid Metabolism, Renal Injury and the Gut Microbiota in Diabetic Male Hamsters with Dyslipidemia
by Liang He, Miao Miao, Qingxiangzi Li, Jufen Cheng and Rui Li
Toxics 2025, 13(9), 751; https://doi.org/10.3390/toxics13090751 - 4 Sep 2025
Viewed by 333
Abstract
The prevalence of hyperuricemia with elevated serum uric acid is increasing worldwide. However, the effects of high uric acid on diabetic patients with dyslipidemia and the mechanisms underlying these effects remain unexplored. This study aimed to develop a novel diabetic model of hyperuricemia [...] Read more.
The prevalence of hyperuricemia with elevated serum uric acid is increasing worldwide. However, the effects of high uric acid on diabetic patients with dyslipidemia and the mechanisms underlying these effects remain unexplored. This study aimed to develop a novel diabetic model of hyperuricemia and dyslipidemia in male hamsters to evaluate the effects of high uric acid on glucolipid metabolism, renal injury and the gut microbiota. Twelve healthy hamsters were randomly divided into two groups and fed with a normal diet and high-fat/cholesterol diet (HFCD), respectively. Twenty-four diabetic hamsters were randomly divided into four groups receiving a normal diet; HFCD; potassium oxonate (PO) treatment (intragastric PO at doses of 350 mg/kg and adenine at doses of 150 mg/kg with 5% fructose water); and PO treatment with HFCD, respectively. After 4 weeks, all animals were dissected for determining serum biochemical indicators, tissue antioxidant parameters, renal pathological changes, target gene expressions, fecal short-chain fatty acids content, and the gut microbiota composition. The results showed that a hamster model with hyperuricemia and dyslipidemia was successively established by the combination of PO treatment and HFCD, in which serum uric acid, glucose, triglyceride and total cholesterol levels reached 499.5 ± 61.96 μmol/L, 16.88 ± 2.81 mmol/L, 119.88 ± 27.14 mmol/L and 72.92 ± 16.62 mmol/L, respectively. PO treatment and HFCD had synergistic effects on increasing uric acid, urea nitrogen, creatinine levels, liver xanthine oxidase activity, plasminogen activator inhibitor-1 and transforming growth factor-β expressions, and the relative abundance of Lleibacterium (p < 0.05); in addition, they caused glomerular mesangial cells and matrix proliferation, protein casts and urate deposition. High uric acid was closely related to decreased antioxidant capacity; decreased renal vascular endothelial growth factor expression; increased acetic acid content; decreased butyric, propanoic, and isobutyric acid levels; decreased Firmicutes to Bacteroidetes ratios (p < 0.05); and altered epithelial integrity and structure of the gut microbiota in diabetic hamsters. The findings indicate that high uric acid affects the glucolipid metabolism, accelerates renal damage, and disrupts the balance of intestinal flora in diabetic animals, which provides a scientific basis for metabolic syndrome prevention and control in diabetes. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

15 pages, 4674 KB  
Article
Structural and Kinetic Properties of Liver Rhodanese from Coptodon zillii: Implications for Cyanide Detoxification in Gold Mining-Impacted Aquatic Ecosystems
by Oluwaseun E. Agboola, Zainab A. Ayinla, Babamotemi O. Itakorode, Priscilla O. Akinsanya, Raphael E. Okonji, Othuke B. Odeghe, Samuel S. Agboola, Olaiya E. Oluranti, Folake O. Olojo and Babatunji E. Oyinloye
Toxics 2025, 13(9), 750; https://doi.org/10.3390/toxics13090750 - 3 Sep 2025
Viewed by 316
Abstract
The global gold extraction industry has been reported to use cyanide-based recovery processes, which pose environmental effects on water resources. The study examined Coptodon zillii liver rhodanese from a gold mining-impacted reservoir with a specific focus on the enzyme’s critical function in cyanide [...] Read more.
The global gold extraction industry has been reported to use cyanide-based recovery processes, which pose environmental effects on water resources. The study examined Coptodon zillii liver rhodanese from a gold mining-impacted reservoir with a specific focus on the enzyme’s critical function in cyanide detoxification. Rhodanese was purified using successive chromatographic techniques with 5.4 U/mg specific activity and 3.1-fold purification. The molecular weight of the native enzyme was 36 kDa, and the subunits were 17 kDa, indicative of a dimeric structure. Optimal enzymatic activity was recorded at pH 8.0 and 50 °C. The effect of metal ions was significantly varied: the activity was inhibited by BaCl2, CaCl2, NaCl, and MgCl2, and KCl enhanced performance. The kinetic determinations showed Michaelis-Menten kinetics with a Km of 20.0 mM for sodium thiosulfate and 25.0 mM for potassium cyanide. The enzyme’s minimal activity was identified toward 2-mercaptoethanol, ammonium persulfate, and ammonium sulfate, but with evidence of preference for thiosulfate utilization under the substrate specificity tests. The major interactions between the enzyme and the substrate were revealed by the molecular docking experiments. These showed Glu159, Gln161, and Arg173 formed important hydrogen bonds with thiosulfate, while Arg156 and Val172 were also involved. Other substrates are bound to Gln121 and Trp139 residues with much lower binding energy than thiosulfate. The findings increase our understanding of biochemical adaptation process knowledge in anthropogenically stressed environments, showing strategies of ecological resilience. The characterized enzymatic features showed potent cyanide detoxification potential, and the possible applications are in bioremediation strategies for mining-impacted aquatic ecosystems. Full article
Show Figures

Graphical abstract

16 pages, 428 KB  
Article
Associations Between Prenatal Phthalate Exposure and Atopic Symptoms in Childhood: Effect Modification by Child Sex
by Khushbu Dharmendra Bhatt, Shachi Mistry, Héctor Lamadrid-Figueroa, Marcela Tamayo-Ortiz, Adriana Mercado-Garcia, Jamil M. Lane, Martha M. Téllez-Rojo, Robert O. Wright, Rosalind J. Wright, Guadalupe Estrada-Gutierrez, Kecia N. Carroll, Cecilia S. Alcala and Maria José Rosa
Toxics 2025, 13(9), 749; https://doi.org/10.3390/toxics13090749 - 3 Sep 2025
Viewed by 366
Abstract
Background: The global rise in atopic diseases, like atopic dermatitis and allergic rhinitis, may be linked to prenatal exposure to endocrine-disrupting chemicals like phthalates, with potential sex-specific effects. Methods: We analyzed 558 mother–child pairs from the PROGRESS birth cohort in Mexico City. Maternal [...] Read more.
Background: The global rise in atopic diseases, like atopic dermatitis and allergic rhinitis, may be linked to prenatal exposure to endocrine-disrupting chemicals like phthalates, with potential sex-specific effects. Methods: We analyzed 558 mother–child pairs from the PROGRESS birth cohort in Mexico City. Maternal urinary phthalate metabolites were measured during the 2nd and 3rd trimesters. Atopic dermatitis and allergic rhinitis symptoms were assessed at ages 4–6 and 6–8 years using the International Study of Asthma and Allergies in Childhood survey. Weighted Quantile Sum Regression (WQS) was used to assess sex-specific mixture associations. Individual sex-specific phthalate associations were examined using modified Poisson models with inclusion of product terms and stratification. Models were adjusted for maternal age, education, parity, pre-pregnancy body mass index, and prenatal tobacco exposure. Results: We found that child sex modified associations between the 2nd trimester phthalate mixture and current atopic dermatitis symptoms at both 4–6 years (WQS*sex OR: 1.23, 95% CI: 1.00–1.60) and 6–8 years (WQS*sex OR: 1.46, 95% CI: 1.01–2.10). Among males, higher phthalate concentrations were positively associated with symptoms at both ages (OR: 1.10, 95% CI: 0.92, 1.32; OR: 1.16, 95% CI: 0.92, 1.46), while associations were negative in females (OR: 0.87, 95% CI: 0.73, 1.04; OR: 0.79, 95% CI: 0.62, 1.02). No sex-specific associations were found for 3rd trimester exposures. Individual metabolite analyses also showed effect modification by sex for 2nd trimester exposures. Conclusions: Prenatal exposure to phthalates is associated with atopic dermatitis symptoms in childhood in a sex-specific manner. Full article
(This article belongs to the Special Issue Prenatal Chemical Exposure and Child Health Outcomes)
Show Figures

Graphical abstract

14 pages, 1635 KB  
Article
Toxic Effects of Waterborne Nitrite on LC50, Hematological Parameters, and Plasma Biochemistry in Starry Flounder (Platichthys stellatus)
by Bijae Gong, Hyeong Su Kim, Cheol Young Choi, Sung-Pyo Hur and Jun-Hwan Kim
Toxics 2025, 13(9), 748; https://doi.org/10.3390/toxics13090748 - 2 Sep 2025
Viewed by 405
Abstract
Nitrite is a common environmental pollutant in aquaculture systems, where high levels can severely impair fish physiology and survival. This study aimed to evaluate the acute toxicity of waterborne nitrite in starry flounder (Platichthys stellatus). Fish (mean weight 145.69 ± 16.06 [...] Read more.
Nitrite is a common environmental pollutant in aquaculture systems, where high levels can severely impair fish physiology and survival. This study aimed to evaluate the acute toxicity of waterborne nitrite in starry flounder (Platichthys stellatus). Fish (mean weight 145.69 ± 16.06 g, mean total length 22.78 ± 0.70 cm) were exposed to nitrite concentrations of 0, 25, 50, 100, 200, 400, and 800 mg NO2/L for 96 h. The lethal concentration 50 (LC50) of nitrite for P. stellatus was determined to be 574.47 mg NO2/L. Hematological parameters such as red blood cell counts (RBCs), hemoglobin (Hb), and hematocrit (Hct) were significantly decreased by nitrite exposure. Plasma components including calcium (Ca2+), glucose, cholesterol, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were significantly changed by nitrite exposure. The results of this study suggest that acute exposure to waterborne nitrite (>200 mg NO2/L) adversely affects survival rates, hematological parameters, and plasma components in P. stellatus. These findings provide important baseline data for nitrite toxicity assessment in P. stellatus. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

38 pages, 1104 KB  
Review
Polycyclic Aromatic Hydrocarbons in Marine Environments Affect Fish Reproduction—A Critical Review
by Roberta Pozzan, Aliciane de Almeida Roque, Hissashi Iwamoto, Fernando de Campos Guerreiro, Ana Paula da Silva, Dámaso Angel Rubio-Vargas, Micheli de Marchi, Felipe de Oliveira, Walter José Martínez-Burgos, Maritana Mela Prodocimo and Ciro Alberto de Oliveira Ribeiro
Toxics 2025, 13(9), 747; https://doi.org/10.3390/toxics13090747 - 1 Sep 2025
Viewed by 402
Abstract
The biodiversity of marine and coastal ecosystems is constantly threatened by pollutants from a diversity of human activities. The polycyclic aromatic hydrocarbons (PAHs) are a class of pollutants widely released and deposited in these environments, leading to several impacts on the community of [...] Read more.
The biodiversity of marine and coastal ecosystems is constantly threatened by pollutants from a diversity of human activities. The polycyclic aromatic hydrocarbons (PAHs) are a class of pollutants widely released and deposited in these environments, leading to several impacts on the community of organisms that integrate these ecosystems. As lipophilic compounds, PAHs become bioavailable to organisms and can enter the trophic chain, leading to physiological changes and affecting different levels of biological organization. Several studies demonstrate that PAHs act as endocrine disruptors in marine fish, interfering with endocrine signaling through hormonal disturbances and, consequently, causing inhibition or overexpression of genes, enzymes, and proteins that are essential for reproduction success. These changes, in turn, can lead to population decline and cause immeasurable ecosystem damage. This review synthesizes studies published mainly between 2015 and 2025, aiming to critically present research that identifies different endocrine-reproductive changes in marine fish species exposed to PAHs in contaminated sites, highlighting the involved cellular mechanisms. Finally, we provide a survey of patents developed to identify PAHs in aquatic environments and how these techniques can be used in marine biomonitoring to evaluate water quality and the risk of exposure to biota and human populations. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

16 pages, 7527 KB  
Article
Heavy Metal Enrichment in Ferromanganese Nodules and Soil Ecological Risk Assessment in the Karst Area with High Geological Background
by Xiangru Zhang, Yifang Su, Haoyi Wang, Shuang Lü, Jinru Su, Guanyu Wei and Haini Huang
Toxics 2025, 13(9), 746; https://doi.org/10.3390/toxics13090746 - 31 Aug 2025
Viewed by 399
Abstract
Ferromanganese nodules exhibit strong capacity for heavy metal immobilization and are thus a crucial contributor to the high geological background in karst areas. Heavy metals sequestered within ferromanganese nodules display low bioavailability, which leads to an overestimation of ecological risk in areas with [...] Read more.
Ferromanganese nodules exhibit strong capacity for heavy metal immobilization and are thus a crucial contributor to the high geological background in karst areas. Heavy metals sequestered within ferromanganese nodules display low bioavailability, which leads to an overestimation of ecological risk in areas with high geological backgrounds. However, limited attention is given to the enrichment process of heavy metals and the overestimated ecological risk of ferromanganese nodules in karst areas. Here, the surface soils and ferromanganese nodules are collected from a region dominated by carbonate and clastic rocks to investigate the enrichment of heavy metals (Cr, Ni, Cu, Zn, As, Cd, Pb, and Hg), the influence of parent rock, and their ecological implications in Northeastern Guangxi. Results show the following findings: (1) Heavy metals are enriched in ferromanganese nodules, with Cr and As correlating with Fe, and Cd and Pb correlating with Mn. (2) The spatial distribution of each element closely matches parent rock lithology, and high heavy-metal concentrations of both soils and ferromanganese nodules occur in carbonate areas. (3) The proportion of contaminated samples generally decreases after excluding the contribution of ferromanganese nodules, leading to a decline in risk level in carbonate areas, while clastic areas exhibit minimal change. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

32 pages, 46726 KB  
Article
Potentially Toxic Elements and Natural Radioactivity in Nasser Lake Sediments: Environmental Risks in a Key Egyptian Freshwater Lake
by Esraa S. El-Shlemy, Ahmed Gad, Mohammed G. El Feky, Abdel-Moneim A. Mahmoud, Omnia El-Sayed and Neveen S. Abed
Toxics 2025, 13(9), 745; https://doi.org/10.3390/toxics13090745 - 31 Aug 2025
Viewed by 581
Abstract
A necessary evaluation of freshwater ecosystem pollution levels and radiation risks remains crucial for maintaining environmental health, especially within economically developing areas. This study presents a comprehensive evaluation of the mineralogical, geochemical, and radiological characteristics of sediments in Nasser Lake, Egypt, to determine [...] Read more.
A necessary evaluation of freshwater ecosystem pollution levels and radiation risks remains crucial for maintaining environmental health, especially within economically developing areas. This study presents a comprehensive evaluation of the mineralogical, geochemical, and radiological characteristics of sediments in Nasser Lake, Egypt, to determine potential ecological and health risks. Forty sediment samples were collected from multiple locations, including both surface and bottom sediments, for analysis of textural attributes, mineral composition, potentially toxic elements, and natural radionuclides (238U, 232Th, and 40K). Results revealed sand-dominated sediments with low organic matter content. The heavy mineral assemblages derived from Nile River inputs, wind-deposited materials, and eroded igneous and metamorphic rocks. Geochemical analysis showed that arsenic, cadmium, chromium, and lead concentrations exceeded upper continental crust background values, with enrichment factors and geo-accumulation indices indicating significant anthropogenic contributions. The pollution indices revealed heavy contamination levels and extreme ecological risks, which were primarily driven by arsenic and cadmium concentrations. Radiological assessments detected activity concentrations of 238U, 232Th, and 40K below the world average, with hazard indices indicating minimal radiological risk except where localized hotspots were present. The study emphasizes the need for targeted monitoring and sustainable management practices to mitigate pollution and preserve the crucial freshwater environment of Nasser Lake. Full article
Show Figures

Figure 1

20 pages, 2277 KB  
Article
Investigation on the Concentration, Sources, and Photochemical Roles of Volatile Phenols in the Atmosphere in the North China Plain
by Ziyan Chen, Kaitao Chen, Min Cai and Xingru Li
Toxics 2025, 13(9), 744; https://doi.org/10.3390/toxics13090744 - 31 Aug 2025
Viewed by 380
Abstract
Volatile phenols in the atmosphere are important precursors of ozone and secondary organic aerosols (SOAs). Despite their importance, the lack of effective observation and analysis methods has led to less attention paid to them, leading to gaps in our understanding of their behavior [...] Read more.
Volatile phenols in the atmosphere are important precursors of ozone and secondary organic aerosols (SOAs). Despite their importance, the lack of effective observation and analysis methods has led to less attention paid to them, leading to gaps in our understanding of their behavior and effects on atmospheric chemistry. This study aimed to evaluate the concentration levels, sources, and environmental impacts of volatile phenols in ambient air, focusing on the urban area of Beijing and the suburban district of Heze in the North China Plain during winter. Samples were collected using an XAD-7 column and analyzed by high-performance liquid chromatography with ultraviolet detection (UPLC-UV). Results indicated that a higher concentration of 11 detected phenols was found in Beijing than that in Heze, with the average concentration of 23.60 ± 8.99 ppbv and 18.38 ± 2.34 ppbv. Phenol and cresol with strong photochemical activity were the predominant species, accounting for about 52% (Heze) and 66% (Beijing) of the total phenols, which indicates that more attention should be paid to volatile phenols in urban areas. Higher levels of LOH in Beijing (36.86 s−1) and Heze (22.06 s−1) compared to other studies about PAMS and carbonyls indicated that these volatile phenols play an undeniable role in atmospheric oxidation reactions. Positive Matrix Factorization (PMF) identified major sources as pesticide usage (15.6%), organic chemicals (31.9%), and combustion or secondary conversion (52.5%). These findings underscore the multifaceted impact of phenols, influencing both gaseous pollutant concentrations and particulate matter formation, with potential implications for environmental and public health. Full article
(This article belongs to the Special Issue Analysis of the Sources and Components of Aerosols in Air Pollution)
Show Figures

Graphical abstract

13 pages, 571 KB  
Review
Trace Elements in Post-Mortem Tissues: A Review of Current Evidence and Forensic Challenges
by Claudia Trignano, Angela Sabalic, Andrea Pisano, Davide Tutedde, Pablo Hernández-Camarero, Raffaele La Russa, Macarena Perán and Roberto Madeddu
Toxics 2025, 13(9), 743; https://doi.org/10.3390/toxics13090743 - 31 Aug 2025
Viewed by 428
Abstract
Background: Trace elements and heavy metals can provide valuable forensic information for individual identification, lifestyle reconstruction, and association with the scene or time of death and may also assist in linking objects to criminal activities. However, the lack of standardized guidelines and post-mortem [...] Read more.
Background: Trace elements and heavy metals can provide valuable forensic information for individual identification, lifestyle reconstruction, and association with the scene or time of death and may also assist in linking objects to criminal activities. However, the lack of standardized guidelines and post-mortem reference values represents a significant limitation in forensic investigations. Methods: This review was conducted in accordance with the PRISMA statement. We performed a comprehensive literature study over the last ten years focusing on the analysis of trace elements and heavy metals in post-mortem tissues. Results: The search results from the databases yielded 247 records. The screening, according to PRISMA criteria, allowed us to select and include 19 articles. The results showed the need for standardized guidelines and reference values. Although post-mortem trace element analysis shows high potential for forensic applications, substantial methodological heterogeneity persists. Some studies have proposed preliminary reference values for cadmium (Cd) in kidneys and mercury (Hg) in hair but validated post-mortem reference ranges remain largely unavailable. Conclusions: The current literature demonstrates the forensic potential of trace element and heavy metals analysis including Cd, Hg, lead (Pb), Manganese (Mn), Aluminum (Al), Copper (Cu), Zinc (Zn), Iron (Fe), Thallium (Tl), Polonium (210Po) but also underlines the urgent need for standardized protocols and validated post-mortem reference values to improve interpretability and reliability in forensic contexts. Full article
(This article belongs to the Special Issue Forensic and Post-Mortem Toxicology)
Show Figures

Figure 1

17 pages, 508 KB  
Article
Levoglucosan and Its Isomers as Markers and Biomarkers of Exposure to Wood Burning
by Boglárka S. Balogh, Zsófia Csákó, Zoltán Nyiri, Máté Szabados, Réka Kakucs, Norbert Erdélyi and Tamás Szigeti
Toxics 2025, 13(9), 742; https://doi.org/10.3390/toxics13090742 - 31 Aug 2025
Viewed by 368
Abstract
Levoglucosan and its isomers, mannosan and galactosan, are widely used atmospheric tracers of biomass combustion, and levoglucosan has been previously proposed as a potential biomarker of wood smoke exposure. This study evaluated their applicability under real-world conditions. During 14-day monitoring campaigns in both [...] Read more.
Levoglucosan and its isomers, mannosan and galactosan, are widely used atmospheric tracers of biomass combustion, and levoglucosan has been previously proposed as a potential biomarker of wood smoke exposure. This study evaluated their applicability under real-world conditions. During 14-day monitoring campaigns in both heating and non-heating seasons, daily PM2.5 and paired urine samples were collected from adults and children in two Hungarian settlements with different heating practices. Monosaccharide anhydrides in PM2.5 and urine were quantified by gas chromatography–mass spectrometry, while demographic, dietary, and lifestyle data were obtained via questionnaires. Ambient concentrations were substantially higher during the heating season and at the rural site, confirming the significant contribution of residential wood burning to air pollution. While urinary levoglucosan was quantifiable in >90% of samples, its isomers were often below the limit of quantification. Urinary levoglucosan concentrations did not exhibit consistent seasonal or spatial patterns and were not associated with ambient levels. Instead, an unexplained background more likely influenced by certain demographic, dietary, and behavioral factors than by environmental exposure appeared to drive urinary levels. These findings suggest that urinary levoglucosan is not a suitable biomarker for assessing residential wood smoke exposure, with similar conclusions drawn for mannosan and galactosan. Full article
Show Figures

Graphical abstract

14 pages, 2333 KB  
Essay
Distribution and Enrichment Regularity of Trace Elements in Meitan Cuiya Tea and Soil
by Jia Wei, Haiyun Zhou, Qiao Liu, Lin Bai, Minjie Han, Gendi Liu, Shuyan Pei, Fumei Zhang, Xiaojing Tian and Guoheng Zhang
Toxics 2025, 13(9), 741; https://doi.org/10.3390/toxics13090741 - 31 Aug 2025
Viewed by 377
Abstract
Purpose: This study aimed to investigate the migration and distribution characteristics of trace elements in the soil–tea system in the Cuiya tea area of Meitan County, Guizhou Province. Methods: The contents of trace elements (Cd, Fe, La, Mg, Mn, Ni, Se, Pr, Sm, [...] Read more.
Purpose: This study aimed to investigate the migration and distribution characteristics of trace elements in the soil–tea system in the Cuiya tea area of Meitan County, Guizhou Province. Methods: The contents of trace elements (Cd, Fe, La, Mg, Mn, Ni, Se, Pr, Sm, Zn) in tea and soil samples were determined by inductively coupled plasma emission spectrometry (ICP-OES). Results: The average contents of heavy metals in soil and tea from Meitan County were below the Chinese national standards, while also meeting the criteria for selenium enrichment. Within the soil–tea system, Mn in tea leaves exhibited a significant negative correlation with soil Mn, while Cd showed a significant positive correlation with soil Cd. This pattern was consistent across both the topsoil and subsoil. The tea plants exhibited a high enrichment capacity for Mn, Mg, and Zn, but a low capacity for Sm, Fe, and Cd. Among the studied areas, the enrichment effect was most pronounced in SL, XH, and MJ towns. Conclusions: Significant spatial variations were observed in the concentrations of trace elements in both tea and soil across the Meitan tea area. This study provides a scientific basis for understanding the enrichment and migration of trace elements within the soil–tea system of Meitan County, Guizhou, and for tracing the geographical origin of its tea. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop