Health Risk Assessment of Exposure to Emerging Contaminants

A special issue of Toxics (ISSN 2305-6304). This special issue belongs to the section "Human Toxicology and Epidemiology".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 192

Special Issue Editor


E-Mail Website
Guest Editor
School of Energy and Environmental Engineering, University Of Science & Technology Beijing, Beijing 100083, China
Interests: exposure assessment; health risk assessment; source apportionment; biomarkers; environmental health; isotopes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Typically, emerging contaminants are compounds that have recently been detected in the environment or whose impacts have only recently been recognized. Such contaminants have heightened public awareness, with growing concerns over pharmaceuticals, endocrine-disrupting compounds, and nanomaterials. Emerging contaminants are increasingly being recognized as a significant environmental and public health concern. Their persistence in the environment and tendency to bioaccumulate in the food chain means that long-term exposure could lead to adverse health effects, particularly as they accumulate in higher concentrations in the human body. However, the health impacts of many emerging contaminants remain poorly understood due to the lack of comprehensive toxicological data and health risk assessments, rendering their potential risks to human health largely unknown and a matter of public safety concern. This Special Issue aims to provide a holistic and predicted assessment of the exposure and health risks associated with emerging contaminants, emphasizing the need for effective risk management strategies. By analyzing exposure pathways and health outcomes, this Special Issue aims to contribute to the growing body of knowledge on environmental health and advocate for proactive measures to safeguard public health. This Special Issue welcomes research topics including, but not limited to, the following:

  1. The sources, distribution, and toxicity mechanisms of typical emerging contaminants;
  2. The pharmacokinetics of emerging contaminants in the body;
  3. Exposure assessment of the potential hazards of emerging contaminants on human health through various exposure pathways;
  4. Health risk assessment of emerging contaminants on human health;
  5. Exposure factors used in exposure and health risk assessments;
  6. Exposure scenarios and exposure modeling construction for health risk assessments;
  7. The relationships between external and internal exposure dose;
  8. Aggregative and cumulative exposure assessments;
  9. Biomonitoring for the exposure dose of emerging contaminants;
  10. The association between emerging contaminants’ exposure and detrimental health outcomes.

Dr. Suzhen Cao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • health risk assessment
  • emerging contaminants
  • microplastics
  • endocrine disruptors
  • persistent organic pollutant
  • antibiotics
  • exposure pathways
  • exposure scenarios
  • exposure factors
  • toxicity mechanisms
  • epidemiological research
  • toxicological studies
  • risk mitigation strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 4614 KiB  
Article
Determination of Multiple Fluorescent Brighteners in Human Plasma Using Captiva EMR-Lipid Clean-Up and LC-MS/MS Analysis
by Yubing Yan, Bowen Liang, Jiawen Yang, Qing Deng, Xiaoying Liang, Hui Chen, Bibai Du and Lixi Zeng
Toxics 2025, 13(5), 352; https://doi.org/10.3390/toxics13050352 - 28 Apr 2025
Abstract
Fluorescent brighteners (FBs) are a class of chemicals extensively used in industrial and consumer products. Their environmental occurrences and potential health risks have raised significant concerns. However, the lack of analytical methods for FBs in human samples has hindered the accurate assessment of [...] Read more.
Fluorescent brighteners (FBs) are a class of chemicals extensively used in industrial and consumer products. Their environmental occurrences and potential health risks have raised significant concerns. However, the lack of analytical methods for FBs in human samples has hindered the accurate assessment of internal exposure levels. Addressing this gap, this study developed and validated a novel method for the simultaneous determination of 13 FBs at trace levels in human plasma using solid-phase extraction combined with HPLC-MS/MS. The method employed EMR-Lipid SPE columns, which can selectively adsorb phospholipids for plasma sample pre-treatment. Detection was achieved through positive ion electrospray ionization (ESI) in multiple reaction monitoring (MRM) modes. The results showed that all 13 FBs exhibited good linearity within their respective ranges, with correlation coefficients (R2) greater than 0.992. The method quantitation limits (MQLs) of the FBs ranged from 0.012 to 0.348 ng/mL, and the spiked recovery rates ranged from 61% to 98%. The method was successfully applied to analyze 10 adult plasma samples, detecting 10 FBs with total concentrations ranging from 0.221 to 0.684 ng/mL. This study provides a reliable analytical method for determining FBs in human plasma, providing a basis for further research on human internal exposure to FBs and associated health risk assessments. Full article
(This article belongs to the Special Issue Health Risk Assessment of Exposure to Emerging Contaminants)
Show Figures

Figure 1

17 pages, 2954 KiB  
Article
Association Between Volatile Organic Compounds and Circadian Syndrome Among Pre- and Postmenopausal Women
by Xiaoya Sun, Zhenao Zhang, Jingyi Ren, Huanting Pei, Jie Liu, Bowen Yin, Chongyue Zhang, Rui Wen, Simeng Qiao, Ziyi Wang and Yuxia Ma
Toxics 2025, 13(5), 328; https://doi.org/10.3390/toxics13050328 - 23 Apr 2025
Viewed by 91
Abstract
Air pollution is closely associated with the development of multiple metabolic diseases. Circadian syndrome (CircS), as an extended concept of metabolic syndrome (MetS), has been proven to be a better predictor of metabolic diseases than MetS. However, the relationship between volatile organic compounds [...] Read more.
Air pollution is closely associated with the development of multiple metabolic diseases. Circadian syndrome (CircS), as an extended concept of metabolic syndrome (MetS), has been proven to be a better predictor of metabolic diseases than MetS. However, the relationship between volatile organic compounds (VOCs) and CircS in pre- and postmenopausal women remains unclear. This study used data from the National Health and Nutrition Examination Survey (NHANES) 2011–2020, including 520 premenopausal women and 531 postmenopausal women. Generalized linear model (GLM), restricted cubic spline (RCS) model, subgroup analyses, and weighted quantile sum (WQS) model were used to assess the relationship between VOCs and CircS. In addition, sensitivity analyses were performed to evaluate the robustness of the results. Our findings showed that seven VOC metabolites were positively associated with the risk of CircS in postmenopausal women. In premenopausal women, only two VOC metabolites were positively associated with the risk of CircS. The WQS analysis further confirmed that VOC mixtures selected by a least absolute shrinkage and selection operator (LASSO) were significantly associated with an increased risk of CircS in postmenopausal women, with HPMMA identified as the primary contributor to the combined effect. This association was not evident in premenopausal women. Meanwhile, in postmenopausal women, individual urinary VOC metabolites and VOC mixtures were observed to be positively associated with elevated glucose and short sleep. Our results highlighted that VOC exposure was strongly associated with the occurrence of CircS in postmenopausal women. Further research is needed to confirm this conclusion. Full article
(This article belongs to the Special Issue Health Risk Assessment of Exposure to Emerging Contaminants)
Show Figures

Graphical abstract

13 pages, 2451 KiB  
Article
Molecular Mechanism of Perfluorooctane Sulfonate-Induced Lung Injury Mediated by the Ras/Rap Signaling Pathway in Mice
by Jianhao Peng, Jinfei He, Chenglong Ma and Jiangdong Xue
Toxics 2025, 13(4), 320; https://doi.org/10.3390/toxics13040320 - 20 Apr 2025
Viewed by 126
Abstract
Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, has raised significant public health concerns because of its widespread environmental presence and potential toxicity. Epidemiological studies have linked PFOS exposure to respiratory diseases, but the underlying molecular mechanisms remain poorly understood. Male C57 BL/6J mice [...] Read more.
Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, has raised significant public health concerns because of its widespread environmental presence and potential toxicity. Epidemiological studies have linked PFOS exposure to respiratory diseases, but the underlying molecular mechanisms remain poorly understood. Male C57 BL/6J mice were divided into a control group receiving Milli-Q water, a low-dose PFOS group (0.2 mg/kg/day), and a high-dose PFOS group (1 mg/kg/day) administered via intranasal instillation for 28 days. Lung tissue transcriptome sequencing revealed significantly enriched differentially expressed genes in the Ras and Rap signaling pathways. Key genes including Rap1b, Kras, and BRaf as well as downstream genes, such as MAPK1 and MAP2K1, exhibited dose-dependent upregulation in the high-dose PFOS exposure group. Concurrently, the downstream effector proteins MEK, ERK, ICAM-1, and VEGFa were significantly elevated in bronchoalveolar lavage fluid (BALF). These alterations are mechanistically associated with increased oxidative stress, inflammatory cytokine release, and pulmonary tissue damage. The results indicated that PFOS-induced lung injury is likely predominantly mediated through the activation of the Rap1b- and Kras-dependent BRaf-MEK-ERK axis. These findings highlight the critical role of Ras/Rap signaling pathways in PFOS-associated respiratory toxicity and underscore the need to develop therapeutic interventions targeting these pathways to mitigate associated health risks. Full article
(This article belongs to the Special Issue Health Risk Assessment of Exposure to Emerging Contaminants)
Show Figures

Graphical abstract

Back to TopTop