Examination of DNA Methylation Patterns in Children Born Premature with Prenatal Tobacco Smoke Exposure
Abstract
1. Introduction
2. Methods
2.1. Study Participants
2.2. Buccal Swab Collection
2.3. Maternal and Child Assessments
2.4. DNA Core Protocol
2.5. RRBS Processing
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Differentially Methylated CpG Sites
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.; Niu, Q.; Liu, S.; Shao, W.; Huang, Y.; Xu, Y.; Li, Y.; Liu, J.; Wang, X.; Yang, H. The correlation between prenatal maternal active smoking and neurodevelopmental disorders in children: A systematic review and meta-analysis. BMC Public Health 2023, 23, 611. [Google Scholar] [CrossRef]
- Miyake, K.; Kushima, M.; Shinohara, R.; Horiuchi, S.; Otawa, S.; Akiyama, Y.; Ooka, T.; Kojima, R.; Yokomichi, H.; Yamagata, Z.; et al. Maternal smoking status before and during pregnancy and bronchial asthma at 3 years of age: A prospective cohort study. Sci. Rep. 2023, 13, 3234. [Google Scholar] [CrossRef]
- Raghuveer, G.; White, D.A.; Hayman, L.L.; Woo, J.G.; Villafane, J.; Celermajer, D.; Ward, K.D.; de Ferranti, S.D.; Zachariah, J.; American Heart Association Committee on Atherosclerosis, Hypertension, and Obesity in the Young of the Council. Cardiovascular Consequences of Childhood Secondhand Tobacco Smoke Exposure: Prevailing Evidence, Burden, and Racial and Socioeconomic Disparities: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e336–e359. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, C.T.; Spindel, E.R. Pulmonary Effects of Maternal Smoking on the Fetus and Child: Effects on Lung Development, Respiratory Morbidities, and Life Long Lung Health. Paediatr. Respir. Rev. 2017, 21, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.; Klingelhofer, D.; Oremek, G.M.; Quarcoo, D.; Groneberg, D.A. Influence of Second-Hand Smoke and Prenatal Tobacco Smoke Exposure on Biomarkers, Genetics and Physiological Processes in Children-An Overview in Research Insights of the Last Few Years. Int. J. Environ. Res. Public Health 2020, 17, 3212. [Google Scholar] [CrossRef]
- Jones, D.E.; Park, J.S.; Gamby, K.; Bigelow, T.M.; Mersha, T.B.; Folger, A.T. Mental health epigenetics: A primer with implications for counselors. Prof. Couns. 2021, 11, 102–121. [Google Scholar] [CrossRef]
- den Dekker, H.T.; Burrows, K.; Felix, J.F.; Salas, L.A.; Nedeljkovic, I.; Yao, J.; Rifas-Shiman, S.L.; Ruiz-Arenas, C.; Amin, N.; Bustamante, M.; et al. Newborn DNA-methylation, childhood lung function, and the risks of asthma and COPD across the life course. Eur. Respir. J. 2019, 53, 1801795. [Google Scholar] [CrossRef]
- Cosin-Tomas, M.; Cilleros-Portet, A.; Aguilar-Lacasana, S.; Fernandez-Jimenez, N.; Bustamante, M. Prenatal Maternal Smoke, DNA Methylation, and Multi-omics of Tissues and Child Health. Curr. Environ. Health Rep. 2022, 9, 502–512. [Google Scholar] [CrossRef]
- Joubert, B.R.; Felix, J.F.; Yousefi, P.; Bakulski, K.M.; Just, A.C.; Breton, C.; Reese, S.E.; Markunas, C.A.; Richmond, R.C.; Xu, C.J.; et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am. J. Hum. Genet. 2016, 98, 680–696. [Google Scholar] [CrossRef] [PubMed]
- Joubert, B.R.; Haberg, S.E.; Nilsen, R.M.; Wang, X.; Vollset, S.E.; Murphy, S.K.; Huang, Z.; Hoyo, C.; Midttun, O.; Cupul-Uicab, L.A.; et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ. Health Perspect. 2012, 120, 1425–1431. [Google Scholar] [CrossRef]
- Rogers, J.M. Smoking and pregnancy: Epigenetics and developmental origins of the metabolic syndrome. Birth Defects Res. 2019, 111, 1259–1269. [Google Scholar] [CrossRef]
- Green, B.B.; Marsit, C.J. Select Prenatal Environmental Exposures and Subsequent Alterations of Gene-Specific and Repetitive Element DNA Methylation in Fetal Tissues. Curr. Environ. Health Rep. 2015, 2, 126–136. [Google Scholar] [CrossRef]
- Fragou, D.; Pakkidi, E.; Aschner, M.; Samanidou, V.; Kovatsi, L. Smoking and DNA methylation: Correlation of methylation with smoking behavior and association with diseases and fetus development following prenatal exposure. Food Chem. Toxicol. 2019, 129, 312–327. [Google Scholar] [CrossRef]
- Breton, C.V.; Byun, H.M.; Wenten, M.; Pan, F.; Yang, A.; Gilliland, F.D. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am. J. Respir. Crit. Care Med. 2009, 180, 462–467. [Google Scholar] [CrossRef]
- Breton, C.V.; Siegmund, K.D.; Joubert, B.R.; Wang, X.; Qui, W.; Carey, V.; Nystad, W.; Haberg, S.E.; Ober, C.; Nicolae, D.; et al. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. PLoS ONE 2014, 9, e99716. [Google Scholar] [CrossRef]
- Suter, M.; Ma, J.; Harris, A.; Patterson, L.; Brown, K.A.; Shope, C.; Showalter, L.; Abramovici, A.; Aagaard-Tillery, K.M. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics 2011, 6, 1284–1294. [Google Scholar] [CrossRef]
- Suter, M.; Abramovici, A.; Showalter, L.; Hu, M.; Shope, C.D.; Varner, M.; Aagaard-Tillery, K. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metabolism 2010, 59, 1481–1490. [Google Scholar] [CrossRef]
- Bakulski, K.M.; Blostein, F.; London, S.J. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. Environ. Health Perspect. 2023, 131, 126001. [Google Scholar] [CrossRef]
- Sikdar, S.; Joehanes, R.; Joubert, B.R.; Xu, C.J.; Vives-Usano, M.; Rezwan, F.I.; Felix, J.F.; Ward, J.M.; Guan, W.; Richmond, R.C.; et al. Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics 2019, 11, 1487–1500. [Google Scholar] [CrossRef]
- Chatterjee, A.; Rodger, E.J.; Stockwell, P.A.; Le Mée, G.; Morison, I.M. Generating Multiple Base-Resolution DNA Methylomes Using Reduced Representation Bisulfite Sequencing. In Oral Biology Molecular Techniques and Applications; Seymour, G., Cullinan, M., Heng, N., Eds.; Humana Press: New York, NY, USA, 2017; Volume 1537, pp. 279–298. [Google Scholar] [CrossRef]
- Chatterjee, A.; Stockwell, P.A.; Horsfield, J.A.; Morison, I.M.; Nakagawa, S. Base-resolution DNA methylation landscape of zebrafish brain and liver. Genom. Data 2014, 2, 342–344. [Google Scholar] [CrossRef]
- Chatterjee, A.; Rodger, E.J.; Stockwell, P.A.; Weeks, R.J.; Morison, I.M. Technical considerations for reduced representation bisulfite sequencing with multiplexed libraries. J. Biomed. Biotechnol. 2012, 2012, 741542. [Google Scholar] [CrossRef]
- Wang, J.; Xia, Y.; Li, L.; Gong, D.; Yao, Y.; Luo, H.; Lu, H.; Yi, N.; Wu, H.; Zhang, X.; et al. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genom. 2013, 14, 11. [Google Scholar] [CrossRef]
- Campagna, M.P.; Xavier, A.; Lechner-Scott, J.; Maltby, V.; Scott, R.J.; Butzkueven, H.; Jokubaitis, V.G.; Lea, R.A. Epigenome-wide association studies: Current knowledge, strategies and recommendations. Clin. Epigenetics 2021, 13, 214. [Google Scholar] [CrossRef]
- Carmona, J.J.; Accomando, W.P., Jr.; Binder, A.M.; Hutchinson, J.N.; Pantano, L.; Izzi, B.; Just, A.C.; Lin, X.; Schwartz, J.; Vokonas, P.S.; et al. Empirical comparison of reduced representation bisulfite sequencing and Infinium BeadChip reproducibility and coverage of DNA methylation in humans. npj Genom. Med. 2017, 2, 13. [Google Scholar] [CrossRef]
- Nakabayashi, K.; Yamamura, M.; Haseagawa, K.; Hata, K. Reduced Representation Bisulfite Sequencing (RRBS). In Epigenomics Methods in Molecular Biology; Hatada, I., Horii, T., Eds.; Humana: New York, NY, USA, 2023; Volume 2577, pp. 39–51. [Google Scholar] [CrossRef]
- Illingworth, R.S.; Bird, A.P. CpG islands—‘A rough guide’. FEBS Lett. 2009, 583, 1713–1720. [Google Scholar] [CrossRef]
- Saxonov, S.; Berg, P.; Brutlag, D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA 2006, 103, 1412–1417. [Google Scholar] [CrossRef]
- Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef]
- Illingworth, R.S.; Gruenewald-Schneider, U.; Webb, S.; Kerr, A.R.; James, K.D.; Turner, D.J.; Smith, C.; Harrison, D.J.; Andrews, R.; Bird, A.P. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 2010, 6, e1001134. [Google Scholar] [CrossRef]
- Beckett, S.M.; Laughton, S.J.; Pozza, L.D.; McCowage, G.B.; Marshall, G.; Cohn, R.J.; Milne, E.; Ashton, L.J. Buccal swabs and treated cards: Methodological considerations for molecular epidemiologic studies examining pediatric populations. Am. J. Epidemiol. 2008, 167, 1260–1267. [Google Scholar] [CrossRef]
- Smith, A.K.; Kilaru, V.; Klengel, T.; Mercer, K.B.; Bradley, B.; Conneely, K.N.; Ressler, K.J.; Binder, E.B. DNA extracted from saliva for methylation studies of psychiatric traits: Evidence tissue specificity and relatedness to brain. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 36–44. [Google Scholar] [CrossRef]
- McEwen, L.M.; O’Donnell, K.J.; McGill, M.G.; Edgar, R.D.; Jones, M.J.; MacIsaac, J.L.; Lin, D.T.S.; Ramadori, K.; Morin, A.; Gladish, N.; et al. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc. Natl. Acad. Sci. USA 2020, 117, 23329–23335. [Google Scholar] [CrossRef]
- Lowe, R.; Gemma, C.; Beyan, H.; Hawa, M.I.; Bazeos, A.; Leslie, R.D.; Montpetit, A.; Rakyan, V.K.; Ramagopalan, S.V. Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies. Epigenetics 2013, 8, 445–454. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Salta, S.; López-López, R.; Henrique, R.; Suárez-Cunqueiro, M.M.; Jerónimo, C. DNA methylation markers for oral cancer detection in non- and minimally invasive samples: A systematic review. Clin. Epigenetics 2024, 16, 105. [Google Scholar] [CrossRef]
- Adeoye, J.; Alade, A.A.; Zhu, W.Y.; Wang, W.; Choi, S.W.; Thomson, P. Efficacy of hypermethylated DNA biomarkers in saliva and oral swabs for oral cancer diagnosis: Systematic review and meta-analysis. Oral Dis. 2022, 28, 541–558. [Google Scholar] [CrossRef]
- DNA Genotek. ORAcollect DxOCD-100/100A. Available online: https://www.dnagenotek.com/us/products/collection-human/oracollect-dx/OCD-100.html (accessed on 18 April 2025).
- Koni, A.C.; Scott, R.A.; Wang, G.; Bailey, M.E.; Peplies, J.; Bammann, K.; Pitsiladis, Y.P.; Consortium, I. DNA yield and quality of saliva samples and suitability for large-scale epidemiological studies in children. Int. J. Obes. 2011, 35 (Suppl. S1), S113–S118. [Google Scholar] [CrossRef]
- Lunatic UV/Vis Spectrophotometer. Available online: https://www.unchainedlabs.com/lunatic/ (accessed on 21 April 2025).
- A Quick Guide for DNA Methylation Profiling with NGS-based Methods. Available online: https://www.zymoresearch.com/pages/how-to-detect-dna-methylation (accessed on 30 April 2025).
- Akalin, A.; Kormaksson, M.; Li, S.; Garrett-Bakelman, F.E.; Figueroa, M.E.; Melnick, A.; Mason, C.E. methylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012, 13, R87. [Google Scholar] [CrossRef]
- Feng, H.; Wu, H. Differential methylation analysis for bisulfite sequencing using DSS. Quant. Biol. 2019, 7, 327–334. [Google Scholar] [CrossRef]
- Feng, H.; Conneely, K.N.; Wu, H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014, 42, e69. [Google Scholar] [CrossRef]
- Park, Y.; Wu, H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 2016, 32, 1446–1453. [Google Scholar] [CrossRef]
- Wu, H.; Xu, T.; Feng, H.; Chen, L.; Li, B.; Yao, B.; Qin, Z.; Jin, P.; Conneely, K.N. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 2015, 43, e141. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Wu, Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 2013, 14, 232–243. [Google Scholar] [CrossRef]
- Genome Browser. Available online: https://genome.ucsc.edu/ (accessed on 21 April 2025).
- Lowdon, R.F.; Jang, H.S.; Wang, T. Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends Genet. 2016, 32, 269–283. [Google Scholar] [CrossRef]
- GeneCards(R). The Human Gene Database. CALN1 Gene—Calneuron 1. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CALN1 (accessed on 8 July 2025).
- GeneCards(R). The Human Gene Database. TBL1XR1 Gene—TBL1X/Y Related 1. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=TBL1XR1 (accessed on 8 July 2025).
- OMIM®. Online Mendelian Inheritance in Man®. 609791. LEUCINE-RICH REPEAT- AND Ig DOMAIN-CONTAINING NOGO RECEPTOR-INTERACTING PROTEIN 1; LINGO1. Available online: https://www.omim.org/entry/609791?search=LINGO&highlight=lingo (accessed on 8 July 2025).
- Wu, Y.Q.; Lin, X.; Liu, C.M.; Jamrich, M.; Shaffer, L.G. Identification of a human brain-specific gene, calneuron 1, a new member of the calmodulin superfamily. Mol. Genet. Metab. 2001, 72, 343–350. [Google Scholar] [CrossRef]
- Roderick, H.L.; Cook, S.J. Ca2+ signalling checkpoints in cancer: Remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 2008, 8, 361–375. [Google Scholar] [CrossRef]
- Shapovalov, G.; Ritaine, A.; Skryma, R.; Prevarskaya, N. Role of TRP ion channels in cancer and tumorigenesis. Semin. Immunopathol. 2016, 38, 357–369. [Google Scholar] [CrossRef]
- Takagi, K.; Naruse, A.; Akita, K.; Muramatsu-Maekawa, Y.; Kawase, K.; Koie, T.; Horie, M.; Kikuchi, A. CALN1 hypomethylation as a biomarker for high-risk bladder cancer. BMC Urol. 2022, 22, 176. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Tian, Y.; Ding, Y.; Wang, X. Characterization of DNA hydroxymethylation profile in cervical cancer. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2706–2714. [Google Scholar] [CrossRef]
- Siedlinski, M.; Cho, M.H.; Bakke, P.; Gulsvik, A.; Lomas, D.A.; Anderson, W.; Kong, X.; Rennard, S.I.; Beaty, T.H.; Hokanson, J.E.; et al. Genome-wide association study of smoking behaviours in patients with COPD. Thorax 2011, 66, 894–902. [Google Scholar] [CrossRef]
- OMIM®. Online Mendelian Inheritance in Man®. 608628. TRANSDUCIN-BETA-LIKE 1 RECEPTOR 1; TBL1XR1. Available online: https://www.omim.org/entry/608628 (accessed on 8 July 2025).
- Arroyo Carrera, I.; Fernandez-Burriel, M.; Lapunzina, P.; Tenorio, J.A.; Garcia Navas, V.D.; Marquez Isidro, E. TBL1XR1 associated intellectual disability, a new missense variant with dysmorphic features plus autism: Expanding the phenotypic spectrum. Clin. Genet. 2021, 99, 812–817. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, H.; Jiang, J.; Ge, M.; Liang, X. TBL1XR1 as a potential therapeutic target that promotes epithelial-mesenchymal transition in lung squamous cell carcinoma. Exp. Ther. Med. 2019, 17, 91–98. [Google Scholar] [CrossRef]
- Heinen, C.A.; Jongejan, A.; Watson, P.J.; Redeker, B.; Boelen, A.; Boudzovitch-Surovtseva, O.; Forzano, F.; Hordijk, R.; Kelley, R.; Olney, A.H.; et al. A specific mutation in TBL1XR1 causes Pierpont syndrome. J. Med. Genet. 2016, 53, 330–337. [Google Scholar] [CrossRef]
- Nagy, A.; Molay, F.; Hargadon, S.; Brito Pires, C.; Grant, N.; De La Rosa Abreu, L.; Chen, J.Y.; D’Souza, P.; Macnamara, E.; Tifft, C.; et al. The spectrum of neurological presentation in individuals affected by TBL1XR1 gene defects. Orphanet J. Rare Dis. 2024, 19, 79. [Google Scholar] [CrossRef]
- Zhou, Z.D.; Sathiyamoorthy, S.; Tan, E.K. LINGO-1 and Neurodegeneration: Pathophysiologic Clues for Essential Tremor. Tremor Other Hyperkinet. Mov. 2012, 2, tre-02-51-249-1. [Google Scholar] [CrossRef]
- Llorens, F.; Gil, V.; Iraola, S.; Carim-Todd, L.; Marti, E.; Estivill, X.; Soriano, E.; del Rio, J.A.; Sumoy, L. Developmental analysis of Lingo-1/Lern1 protein expression in the mouse brain: Interaction of its intracellular domain with Myt1l. Dev. Neurobiol. 2008, 68, 521–541. [Google Scholar] [CrossRef]
- Ansar, M.; Riazuddin, S.; Sarwar, M.T.; Makrythanasis, P.; Paracha, S.A.; Iqbal, Z.; Khan, J.; Assir, M.Z.; Hussain, M.; Razzaq, A.; et al. Biallelic variants in LINGO1 are associated with autosomal recessive intellectual disability, microcephaly, speech and motor delay. Genet. Med. 2018, 20, 778–784. [Google Scholar] [CrossRef]
- Mahabee-Gittens, E.M.; Kline-Fath, B.M.; Harun, N.; Folger, A.T.; He, L.; Parikh, N.A. Prenatal tobacco smoke exposure and risk of brain abnormalities on magnetic resonance imaging at term in infants born very preterm. Am. J. Obstet. Gynecol. MFM 2023, 5, 100856. [Google Scholar] [CrossRef]
- Mahabee-Gittens, E.M.; Harun, N.; Glover, M.; Folger, A.T.; Parikh, N.A. Cincinnati Infant Neurodevelopment Early Prediction Study Investigators. Prenatal tobacco smoke exposure and risk for cognitive delays in infants born very premature. Sci. Rep. 2024, 14, 1397. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Wu, H.; Liu, S.; Wang, J.; Wu, B.; Huang, S.; Li, N.; Wang, J.; Zhang, X. Systematic assessment of reduced representation bisulfite sequencing to human blood samples: A promising method for large-sample-scale epigenomic studies. J. Biotechnol. 2012, 157, 1–6. [Google Scholar] [CrossRef]
- Attree, E.; Griffiths, B.; Panchal, K.; Xia, D.; Werling, D.; Banos, G.; Oikonomou, G.; Psifidi, A. Identification of DNA methylation markers for age and Bovine Respiratory Disease in dairy cattle: A pilot study based on Reduced Representation Bisulfite Sequencing. Commun. Biol. 2024, 7, 1251. [Google Scholar] [CrossRef]
- Karami, K.; Sabban, J.; Cerutti, C.; Devailly, G.; Foissac, S.; Gourichon, D.; Hubert, A.; Hubert, J.N.; Leroux, S.; Zerjal, T.; et al. Molecular responses of chicken embryos to maternal heat stress through DNA methylation and gene expression: A pilot study. Environ. Epigenet. 2025, 11, dvaf009. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Bernert, J.T.; Foulds, J.; Hecht, S.S.; Jacob, P.; Jarvis, M.J.; Joseph, A.; Oncken, C.; Piper, M.E. Biochemical Verification of Tobacco Use and Abstinence: 2019 Update. Nicotine Tob. Res. 2020, 22, 1086–1097. [Google Scholar] [CrossRef]
- Peacock, J.L.; Palys, T.J.; Halchenko, Y.; Sayarath, V.; Takigawa, C.A.; Murphy, S.E.; Peterson, L.A.; Baker, E.R.; Karagas, M.R. Assessing tobacco smoke exposure in pregnancy from self-report, urinary cotinine and NNAL: A validation study using the New Hampshire Birth Cohort Study. BMJ Open 2022, 12, e054535. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Saberi, S.; Ajaykumar, A.; Zhu, M.M.T.; Gadawski, I.; Sattha, B.; Maan, E.J.; Van Shalkwyk, J.; Elwood, C.; Pick, N.; et al. Robust tobacco smoking self-report in two cohorts: Pregnant women or men and women living with or without HIV. Sci. Rep. 2023, 13, 7711. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, T.E.; Liang, C.L.; Fisher, M.; Caron, N.J.; Fraser, W.D.; MIREC Study Group. Exposure to tobacco smoke and validation of smoking status during pregnancy in the MIREC study. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 461–469. [Google Scholar] [CrossRef] [PubMed]
Child Characteristics | Prenatal TSE n = 7 | No Prenatal TSE n = 9 |
---|---|---|
Child Sex—Female | 5 (71%) | 7 (78%) |
Child Race/Ethnicity White, non-Hispanic Black, non-Hispanic Mixed White and Black, non-Hispanic Unknown race | 2 (28.5%) 2 (29%) 1 (14%) 2 (29%) | 3 (33%) 5 (56%) 1(11%) 0 (0%) |
Gestational Age, weeks 22–28 weeks 29–32 weeks | 3 (43%) 4 (57%) | 4 (44%) 5 (56%) |
Birth weight Z-score, median (range) | −0.30 (−1.47, 0.69) | −0.49 (−1.8, 0.95) |
Small for gestational age | 1 (14.4%) | 2 (22.2%) |
Apgar score < 5 at 5 min | 2 (33.3%) | 1 (11.1%) |
Maternal Characteristics | ||
Maternal age >21 years old | 7 (100%) | 9 (100%) |
Household income * >$100,000 $40,000–$99,999 <$40,000 | 1 (16.7%) 1 (16.7%) 4 (66.7%) | 1 (12.5%) 1 (12.5%) 6 (75.0%) |
Education ** Tertiary education High school diploma or GED Less than HS or less than GED | 4 (80.0%) 1 (20.0%) 0 | 7 (77.8%) 0 2 (22.2%) |
Employment status Full-time Part-time Student Stay at home caregiver Unemployed/receives a pension | 0 0 0 2 (40.0%) 3 (60.0%) | 3 (33.3%) 0 2 (22.2%) 2 (22.2%) 3 (33.3%) |
Chromosome | CpG Position | Mapped Gene | Methylation Difference% | Location | p-Value | False Discovery Rate |
---|---|---|---|---|---|---|
7 | 72098981 | CALN1 | −38.2 | Intron | 4.87 × 10−9 | 0.000272 |
7 | 72099057 | CALN1 | −42.8 | Intron | 1.79 × 10−5 | 0.028501 |
15 | 77604573 | LINGO1 | 29.0 | Intron | 2.83 × 10−9 | 0.000192 |
3 | 177000000 | TBL1XR1 | −41.5 | Distal Intergenic | 8.11 × 10−6 | 0.019098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gittens, O.E.; Folger, A.T.; Zhang, X.; Ding, L.; Parikh, N.A.; Mahabee-Gittens, E.M. Examination of DNA Methylation Patterns in Children Born Premature with Prenatal Tobacco Smoke Exposure. Toxics 2025, 13, 789. https://doi.org/10.3390/toxics13090789
Gittens OE, Folger AT, Zhang X, Ding L, Parikh NA, Mahabee-Gittens EM. Examination of DNA Methylation Patterns in Children Born Premature with Prenatal Tobacco Smoke Exposure. Toxics. 2025; 13(9):789. https://doi.org/10.3390/toxics13090789
Chicago/Turabian StyleGittens, Olivia E., Alonzo T. Folger, Xue Zhang, Lili Ding, Nehal A. Parikh, and E. Melinda Mahabee-Gittens. 2025. "Examination of DNA Methylation Patterns in Children Born Premature with Prenatal Tobacco Smoke Exposure" Toxics 13, no. 9: 789. https://doi.org/10.3390/toxics13090789
APA StyleGittens, O. E., Folger, A. T., Zhang, X., Ding, L., Parikh, N. A., & Mahabee-Gittens, E. M. (2025). Examination of DNA Methylation Patterns in Children Born Premature with Prenatal Tobacco Smoke Exposure. Toxics, 13(9), 789. https://doi.org/10.3390/toxics13090789