Nationwide Monitoring and Risk Assessment of Pesticide Residues in Fishery Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Chemicals
2.3. Sample Selection and Collection
2.3.1. Background of Sample Selection
2.3.2. Sample Collection
2.4. Analysis
2.5. Method Validation
2.6. Risk Assessment
3. Results and Discussion
3.1. Method Validation
3.2. Detection Rate in Fishery Products
3.3. Residue in Fishery Products
3.4. Risk Assessment by Gender and Age for Average Consumers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation; FAO: Rome, Italy, 2022; pp. 1–266. Available online: https://openknowledge.fao.org/handle/20.500.14283/cc0461en (accessed on 18 December 2024).
- Ministry of Oceans and Fisheries. Ministry of Oceans and Fisheries Statistics System. Available online: https://www.mof.go.kr/statPortal/ (accessed on 18 December 2024).
- Jung, Y. Analysis of Seafood Preference According to Food-Related Lifestyle. Master’s Thesis, Seoul National University, Seoul, Republic of Korea, August 2015. [Google Scholar]
- Ogbeide, O.; Tongo, I.; Ezemonye, L. Risk assessment of agricultural pesticides in water, sediment, and fish from Owan River, Edo State, Nigeria. Environ. Monit. Assess. 2015, 187, 654. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety. Korea Pesticides MRLs. 2024. Available online: http://www.foodsafetykorea.go.kr/residue/main.do (accessed on 18 December 2024).
- Australian Government. Australia New Zealand Food Standards Code–Schedule 20–Maximum Residue Limits. Available online: https://www.legislation.gov.au/Details/F2022C00304 (accessed on 18 December 2024).
- European Commission. EU Pesticides Database. 2024. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 18 December 2024).
- Ministry of Health. Labour and Welfare: Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods. 2024. Available online: https://db.ffcr.or.jp/front/ (accessed on 18 December 2024).
- US EPA. Tolerances and Exemptions for Pesticide Chemical Residues in Food, 40 CFR Part 180. 2024. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/part-180#se40 (accessed on 18 December 2024).
- Codex Alimentarius. Codex Pesticides Residues in Food Online Database. 2024. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/en/ (accessed on 18 December 2024).
- Liang, C.-P.; Sack, C.; McGrath, S.; Cao, Y.; Thompson, C.J.; Robin, L.P. US Food and Drug Administration regulatory pesticide residue monitoring of human foods: 2009–2017. Food Addit. Contam. Part A 2021, 38, 1520–1538. [Google Scholar] [CrossRef]
- Streit, B. Bioaccumulation of contaminants in fish. In Fish Ecotoxicology; Birkhäuser: Basel, Switzerland, 1998; pp. 353–387. [Google Scholar] [CrossRef]
- Cho, H.J.; Hwang, K.H.; Hong, H.S. A Study on Improvement of Seafood Safety Management System; Korea Maritime Institute: Busan, Republic of Korea, 2022; Available online: https://www.kmi.re.kr/web/main/viewer.do?rbsIdx=1&m=board&f=2&_o_f=202302231433151600.pdf (accessed on 18 December 2024).
- Yigit, N.; Velioglu, Y.S. Effects of processing and storage on pesticide residues in foods. Crit. Rev. Food Sci. Nutr. 2020, 60, 3622–3641. [Google Scholar] [CrossRef]
- Cho, M.Y.; Kim, K.I.; Min, E.Y.; Jeong, S.H. Global outbreaks and strategies to control the emerging diseases in aquaculture farms in Korea. Ocean Policy Res. 2019, 34, 67–88. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09232246 (accessed on 18 December 2024).
- Yılmaz, S.; Ergün, S.; Yiğit, M.; Yılmaz, E. An extensive review on the use of feed additives against fish diseases and improvement of health status of fish in Turkish aquaculture sector. Aquac. Stud. 2022, 22, AQUAST710. [Google Scholar] [CrossRef]
- Yuan, X.; Lv, Z.; Zhang, Z.; Han, Y.; Liu, Z.; Zhang, H. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: Occurrence, contamination, and transmission. Toxics 2023, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, K.; Ekelund, R.; Grabic, R.; Bergqvist, P.A. Bioaccumulation of PCB congeners in marine benthic infauna. Mar. Environ. Res. 2006, 61, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Polat, A.; Polat, S.; Simsek, A.; Kurt, T.T.; Ozyurt, G. Pesticide residues in muscles of some marine fish species and seaweeds of Iskenderun Bay (Northeastern Mediterranean), Turkey. Environ. Sci. Pollut. Res. 2018, 25, 3756–3764. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety (MFDS). Development of Analytical Methods and Monitoring for Pesticide Residues in Fishery Products. 2022. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202300003847 (accessed on 18 December 2024).
- Kim, M.H.; Kim, T.H.; Park, J.W.; Lee, Y.M.; Jo, M.R.; Moon, Y.S.; Im, M.H. A Robust Method for Simultaneous Determination and Risk Assessment of Multiresidual Pesticides in Fishery Products. Toxics 2024, 12, 633. [Google Scholar] [CrossRef]
- Seo, C.K.; Kim, M.H.; Cho, M.H.; Im, J.B.; Park, C.H.; Lee, Y.M.; Jo, M.R.; Moon, Y.S.; Im, M.H. Residue Monitoring and Risk Assessment of 51 Pesticides in Domestic Shellfish and Seaweed Using GC-MS/MS. Int. J. Mol. Sci 2025, 26, 4765. [Google Scholar] [CrossRef] [PubMed]
- Korea Health Industry Development Institute (KHIDI). National Health Statistics Data. Available online: https://www.khidi.or.kr/kps/dhraStat/result2?menuId=MENU01653&gubun=age1&year=7%EA%B8%B0 (accessed on 18 December 2024).
- Ministry of Food and Drug Safety (MFDS). Development of Analytical Methods and Monitoring for Pesticide Residues in Fishery Products. 2020. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202100007716&dbt=TRKO (accessed on 18 December 2024).
- Ministry of Food and Drug Safety (MFDS). Development of Analytical Methods and Monitoring for Pesticide Residues in Fishery Products. 2021. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202300003835# (accessed on 18 December 2024).
- Ministry of Food and Drug Safety (MFDS). Food Code. 2023. Available online: https://various.foodsafetykorea.go.kr/fsd/#/ext/Document/FC (accessed on 18 December 2024).
- Kim, J.-Y. Development of Analytical Method for Pesticide Residues in Fishery Products Using Tandem Mass Spectrometry and Risk Assessment. Doctoral Thesis, Chungbuk National University, Chungbuk, Republic of Korea, 2023. Available online: http://www.riss.kr/link?id=T16812669 (accessed on 18 December 2024).
- Ministry of Food and Drug Safety. Pesticide MRLs in Agricultural Commodities. 2022. Available online: https://www.nifds.go.kr/brd/m_18/view.do?seq=12484 (accessed on 20 December 2024).
- Rural Development Administration (RDA). Standards for Registration of Pesticides and Active Ingredients. 2024. Available online: https://www.law.go.kr (accessed on 20 December 2024).
- European Food Safety Authority (EFSA). OpenFoodTox: Chemical Hazards Database. Available online: https://www.efsa.europa.eu/en/microstrategy/openfoodtox (accessed on 20 December 2024).
- U.S. Environmental Protection Agency (EPA). Pesticide Chemical Search Database. Available online: https://comptox.epa.gov/dashboard/chemical-lists/EPAPCS (accessed on 20 December 2024).
- World Health Organization (WHO). JECFA Database: Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2024; Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/ (accessed on 20 December 2024).
- Food Safety Commission of Japan (FSCJ). Available online: https://www.fsc.go.jp/english/ (accessed on 20 December 2024).
- Noh, H.H.; Lee, J.Y.; Park, H.K.; Lee, J.W.; Jo, S.H.; Lim, J.B.; Kyung, K.S. Dissipation, persistence, and risk assessment of fluxapyroxad and penthiopyrad residues in perilla leaf (Perilla frutescens var. Japonica Hara). PLoS ONE 2019, 14, e0212209. [Google Scholar] [CrossRef]
- Kruve, A.; Leito, I. Comparison of different methods aiming to account for/overcome matrix effects in LC/ESI/MS on the example of pesticide analyses. Anal. Methods 2013, 5, 3035–3044. [Google Scholar] [CrossRef]
- Dams, R.; Huestis, M.A.; Lambert, W.E.; Murphy, C.M. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: Influence of ionization type, sample preparation, and biofluid. J. Am. Soc. Mass Spectrom. 2003, 14, 1290–1294. [Google Scholar] [CrossRef]
- Ghosh, C.; Shinde, C.P.; Chakraborty, B.S. Influence of ionization source design on matrix effects during LC–ESI-MS/MS analysis. J. Chromatogr. B 2012, 893, 193–200. [Google Scholar] [CrossRef]
- He, Z.; Wang, L.; Peng, Y.; Luo, M.; Wang, W.; Liu, X. Multiresidue analysis of over 200 pesticides in cereals using a QuEChERS and gas chromatography–tandem mass spectrometry-based method. Food Chem. 2015, 169, 372–380. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Mastovska, K.; Lightfield, A.R.; Gates, R.A. Multi-analyst, multi-matrix performance of the QuEChERS approach for pesticide residues in foods and feeds using HPLC/MS/MS analysis with different calibration techniques. J. AOAC Int. 2010, 93, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Park, H.; Park, S.; Choi, J.; Yoon, H.J.; Kim, J.H. Simultaneous determination of multi-class veterinary drugs in fishery products with liquid chromatography–tandem mass spectrometry. Appl. Biol. Chem. 2021, 64, 40. [Google Scholar] [CrossRef]
- Kwon, H.Y.; Kim, C.S.; Park, B.J.; Jin, Y.D.; Son, K.; Hong, S.M.; Im, G.J. Multiresidue analysis of 240 pesticides in apple and lettuce by QuEChERS sample preparation and HPLC-MS/MS analysis. Korean J. Pestic. Sci. 2011, 15, 417–433. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO201113742749602 (accessed on 17 December 2024).
- Berdikova Bohne, V.J.; Hamre, K.; Arukwe, A. Hepatic biotransformation and metabolite profile during a 2-week depuration period in Atlantic salmon fed graded levels of the synthetic antioxidant, ethoxyquin. Toxicol. Sci. 2006, 93, 11–21. [Google Scholar] [CrossRef]
- Kranawetvogl, A.; Elsinghorst, P.W. Determination of the synthetic antioxidant ethoxyquin and its metabolites in fish and fishery products using liquid chromatography–fluorescence detection and stable-isotope dilution analysis–liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2019, 67, 6650–6657. [Google Scholar] [CrossRef]
- Berntssen, M.H.G.; Hoogenveen, R.; Bernhard, A.; Lundebye, A.K.; Ørnsrud, R.; Zeilmaker, M.J. Modelling of the feed-to-fillet transfer of ethoxyquin and one of its main metabolites, ethoxyquin dimer, to the fillet of farmed Atlantic salmon (Salmon salar L.). Food Addit. Contam. Part A 2019, 36, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Bohne, V.J.B.; Lundebye, A.K.; Hamre, K. Accumulation and depuration of the synthetic antioxidant ethoxyquin in the muscle of Atlantic salmon (Salmo salar L.). Food Chem. Toxicol. 2008, 46, 1834–1843. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Ko, S.K.; Ryu, S.H.; Jin, Y.H.; Kwak, J.E.; Lee, M.S.; Hang, I.S. Residue analysis and risk assessment of ethoxyquin and ethoxyquin dimer in farmed fish. Korean J. Food Sci. Technol. 2021, 53, 239–244. [Google Scholar] [CrossRef]
- Hwang, I.S.; Oh, Y.J.; Kwon, H.Y.; Ro, J.H.; Kim, D.B.; Moon, B.C.; Lee, H.S. Monitoring of pesticide residues concerned in stream water. Korean J. Environ. Agric. 2019, 38, 173–184. [Google Scholar] [CrossRef]
- Park, B.J.; Lee, B.M.; Kim, C.S.; Park, K.H.; Park, S.W.; Kwon, H.; Lim, S.J. Long-term monitoring of pesticide residues in arable soils in Korea. Korean J. Pestic. Sci. 2013, 17, 283–292. [Google Scholar] [CrossRef]
- Cho, H.H.; Jung, J.K. Residue level and pharmacokinetics of trichlorfon in the Japanese eel (Anguilla japonica) after bath treatment. J. Fish Pathol. 2022, 35, 93. [Google Scholar] [CrossRef]
- Yang, W.H.; Song, Y.W. Study on the Exposure Factors of Korean Children (III). 2015. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201700007874 (accessed on 20 December 2024).
- Kim, M.H.; Cho, M.H.; Kim, S.H.; Lee, Y.M.; Jo, M.R.; Moon, Y.S.; Im, M.H. Monitoring and risk assessment of pesticide residues in fishery products using GC–MS/MS in South Korea. Toxics 2024, 12, 299. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Guidelines on Good Laboratory Practice in Residue Analysis. CAC/GL 40-1993. Rev. 1-2003. 2003. Available online: https://www.fao.org/input/download/standards/378/cxg_040e.pdf (accessed on 17 December 2024).
Classification | Fishery Product |
---|---|
Saltwater fish | Convict grouper 2, croaker 1, filefish 2, flatfish 1, flounder 2, gizzard shad 2, mackerel 1, mullet 2, pollock 1, rockfish 2, salmon 2, sea bass 2, snapper 2, tuna 2, yellow tail 2 |
Freshwater fish | Catfish 1, carp 2, crucian carp 2, eel 1, leather carp 2, loach 1, trout 2 |
Instrument | Nexera X3, Shimadzu, Japan | ||
Data processing | Labsolution (version 5.98) | ||
Column | Phenomenex Kinetex C18 (150 mm L.× 2.1 mm I.D., 2.6 μm particle size) | ||
Flow rate | 0.4 mL/min | ||
Detector | Triple-quadruple spectrometer, LCMS-8050, Shimadzu, Japan | ||
Mobile phase | A: 1 mM ammonium formate with 0.1% formic acid in water B: 1 mM ammonium formate with 0.1% formic acid in methanol | ||
Time (min) | A (%) | B (%) | |
1.00 | 90 | 10 | |
3.00 | 45 | 55 | |
10.50 | 0 | 100 | |
12.00 | 0 | 100 | |
12.01 | 90 | 10 | |
15.00 | 90 | 10 | |
Injection volume | 5 µL | ||
Ionization source | Electrospray ionization (ESI) | ||
Polarity | Positive and negative | ||
Interface temperature | 150 °C | ||
Nebulizing gas flow | 3.0 L/min | ||
Drying gas flow | 10.0 L/min | ||
Heating gas flow | 10.0 L/min | ||
DL temperature | 250 °C | ||
Heat block temperature | 400 °C |
Category | Average | Age | Gender | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1–2 | 3–6 | 7–12 | 13–19 | 20–64 | 65 Older | 20 Under | 20 Older | Male | Female | ||
Average body weight (kg BW) | 59.71 | 12.60 | 19.61 | 38.40 | 61.66 | 65.96 | 60.39 | 40.01 | 64.27 | 65.60 | 54.99 |
Compound | Species of Fish | Sample Size | Detection Number | Detection Rate (%) | Concentration (mg/kg) | MRL c (mg/kg) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Domestic | Imported | Range a | Mean b | ||||||
Ethoxyquin | Saltwater fish | Croaker | 44 | 10 | 2 | 8 | 22.7 | 0.06–0.97 | 0.37 | Korea: 1.0 (Fish) |
Flatfish | 44 | 1 | 1 | - | 2.3 | 0.01 | 0.01 | |||
Flounder | 13 | 1 | 1 | - | 7.7 | 0.02 | 0.02 | |||
Sea bass | 12 | 3 | 1 | 2 | 25.0 | 0.01–0.02 | 0.01 | |||
Snapper | 8 | 1 | - | 1 | 12.5 | 0.03 | 0.03 | |||
Yellow tail | 8 | 1 | 1 | - | 12.5 | 0.04 | 0.04 | |||
Freshwater fish | Carp | 8 | 1 | - | 1 | 12.5 | 0.03 | 0.03 | ||
Catfish | 44 | 14 | 14 | - | 31.8 | 0.01–0.04 | 0.02 | |||
Eel | 44 | 23 | 23 | - | 52.3 | 0.02–0.45 | 0.12 | |||
Leather carp | 11 | 10 | 3 | 7 | 90.9 | 0.05–0.11 | 0.08 | |||
Loach | 44 | 27 | 19 | 8 | 61.4 | 0.01–0.14 | 0.06 | |||
Ipfencarbazone | Freshwater fish | Trout | 11 | 1 | 1 | - | 9.1 | 0.01 | 0.01 | Japan: 0.04 (Seafood) |
Isoprothiolane | Freshwater fish | Catfish | 44 | 1 | 1 | - | 2.3 | 0.01 | 0.01 | Japan: 3.0 (Seafood) |
Lufenuron | Saltwater fish | Salmon | 11 | 1 | - | 1 | 9.1 | 0.04 | 0.04 | - |
Freshwater fish | Catfish | 44 | 1 | 1 | - | 2.3 | 0.01 | 0.01 | ||
Eel | 44 | 8 | 8 | - | 18.2 | 0.01–1.58 | 0.36 | |||
Trout | 11 | 3 | 3 | - | 27.3 | 0.02 | 0.02 | |||
Metaflumizone | Saltwater fish | Gizzard shad | 11 | 1 | 1 | - | 9.1 | 0.03 | 0.03 | - |
Freshwater fish | Loach | 44 | 1 | 1 | - | 2.3 | 0.01 | 0.01 | ||
Oxadiargyl | Freshwater fish | Catfish | 44 | 3 | 3 | - | 6.8 | 0.02–0.04 | 0.03 | Japan: 0.02 (Seafood) |
Pendimethalin | Freshwater fish | Carp | 8 | 2 | 2 | - | 25.0 | 0.01 | 0.01 | Japan: 0.03 (Seafood) |
Catfish | 44 | 3 | 3 | - | 6.8 | 0.01–0.02 | 0.01 | |||
Crucian carp | 11 | 1 | 1 | - | 9.1 | 0.03 | 0.03 | |||
Loach | 44 | 9 | 8 | 1 | 20.5 | 0.01–0.93 | 0.20 | |||
Phoxim | Freshwater fish | Eel | 44 | 1 | 1 | - | 2.3 | 0.02 | 0.02 | - |
Loach | 44 | 8 | 5 | 3 | 18.2 | 0.03–1.88 | 0.58 | |||
Propiconazole | Saltwater fish | Flounder | 13 | 1 | 1 | - | 7.7 | 0.01 | 0.01 | - |
Trichlorfon | Freshwater fish | Loach | 44 | 6 | 5 | 1 | 13.6 | 0.03–0.42 | 0.16 | Japan: 0.01 (Eel) |
Chemical | Fishery Product | %ADI (Acceptable Daily Intake) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All Age | 1–2 | 3–6 | 7–12 | 13–19 | 20–64 | 65 Older | 20 Under | 20 Older | Male | Female | ||
Ethoxyquin | Carp | 0.0 a | - b | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 |
Catfish | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | |
Croaker | 0.6 | 4.3 | 3.4 | 0.5 | 0.5 | 0.5 | 0.7 | 0.9 | 0.6 | 0.7 | 0.6 | |
Eel | 0.2 | - | 0.0 | 0.1 | 0.1 | 0.2 | 0.3 | 0.1 | 0.2 | 0.2 | 0.2 | |
Flatfish | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Flounder | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | |
Leather carp | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | - | 0.0 | |
Loach | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | |
Sea bass | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | |
Snapper | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Yellow tail | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Ipfencarbazone | Trout | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | - |
Isoprothiolane | Catfish | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 |
Lufenuron | Catfish | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 |
Eel | 0.2 | - | 0.0 | 0.1 | 0.1 | 0.2 | 0.3 | 0.1 | 0.2 | 0.2 | 0.2 | |
Salmon | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Trout | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | - | |
Metaflumizone | Gizzard shad | 0.0 | - | - | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Loach | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Oxadiagyl | Catfish | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 |
Pendimethalin | Carp | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 |
Catfish | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | |
Crucian carp | 0.0 | - | - | - | - | 0.0 | - | - | 0.0 | - | 0.0 | |
Loach | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Phoxim | Eel | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Loach | 0.7 | - | 0.1 | 0.2 | 0.1 | 0.6 | 1.2 | 0.1 | 0.8 | 0.8 | 0.6 | |
Propiconazole | Flounder | 0.0 | - | - | - | - | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 |
Trichlorfon | Loach | 0.3 | - | 0.0 | 0.1 | 0.1 | 0.3 | 0.6 | 0.1 | 0.4 | 0.4 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-j.; Oh, E.-b.; Moon, J.-h.; Choi, J.-w.; Kim, T.-h.; Lee, S.-h.; Park, J.-y.; Kwon, C.-h.; Kyung, K.-s. Nationwide Monitoring and Risk Assessment of Pesticide Residues in Fishery Products. Toxics 2025, 13, 778. https://doi.org/10.3390/toxics13090778
Kim D-j, Oh E-b, Moon J-h, Choi J-w, Kim T-h, Lee S-h, Park J-y, Kwon C-h, Kyung K-s. Nationwide Monitoring and Risk Assessment of Pesticide Residues in Fishery Products. Toxics. 2025; 13(9):778. https://doi.org/10.3390/toxics13090778
Chicago/Turabian StyleKim, Dong-ju, Eun-been Oh, Jee-hyo Moon, Jeong-won Choi, Tae-hwa Kim, Seok-hee Lee, Ju-yeon Park, Chan-hyeok Kwon, and Kee-sung Kyung. 2025. "Nationwide Monitoring and Risk Assessment of Pesticide Residues in Fishery Products" Toxics 13, no. 9: 778. https://doi.org/10.3390/toxics13090778
APA StyleKim, D.-j., Oh, E.-b., Moon, J.-h., Choi, J.-w., Kim, T.-h., Lee, S.-h., Park, J.-y., Kwon, C.-h., & Kyung, K.-s. (2025). Nationwide Monitoring and Risk Assessment of Pesticide Residues in Fishery Products. Toxics, 13(9), 778. https://doi.org/10.3390/toxics13090778