Salivary ⍺-Amylase Time-Effect on the Main Groups of Thickening Products Intended to Manage Patients with Oropharyngeal Dysphagia
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Products
2.3. Participants
2.4. Equipment
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Shear Viscosity
3.2. Salivary α-Amylase Time-Effect
3.2.1. MS-Based (TP A)
3.2.2. XG-Based (TP B)
3.2.3. Mixture (TP C)
3.2.4. Comparison Between Thickening Products
3.3. Shear Thinning Effect
4. Discussion
5. Conclusions
- MS-based TP undergoes an immediate and extreme reduction in shear viscosity (over 99%) within just 5 s of oral contact, severely compromising their therapeutic efficacy during the swallowing oral phase.
- XG-containing TPs, whether used alone or in combination with MS, show significantly lower viscosity reductions (ranging from 0 to 15% for XG and 15 to 30% for MX), maintaining greater stability over time.
- These differences are explained by the molecular structure of the components: (a) MS contains α-1,4 glycosidic bonds that are easily hydrolyzed by salivary α-amylase; (b) XG forms a tridimensional network with β-linkages, resistant to enzymatic breakdown, and a higher fiber content which contributes to its superior stability.
- These findings suggest that XG-based TP are more suitable for patients with OD, particularly those with prolonged bolus preparation time or impaired swallowing efficacy (oral phase impairment).
- Future research should investigate the behavior of TP in different fluids and conditions, and to include additional rheological parameters. Research focused on TP behavior during swallowing is crucial for improving the treatment of patients with OD, ultimately having a significant impact on their health outcomes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OD | Oropharyngeal dysphagia |
| TP | Thickening products |
| SI | International System of Units |
| mPa·s | Millipascal second |
| MS | Modified starch |
| XG | Xanthan gum |
| MX | Mixture of modified starch and xanthan gum |
References
- Clavé, P.; Shaker, R. Dysphagia: Current Reality and Scope of the Problem. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 259–270. [Google Scholar] [CrossRef]
- Thiyagalingam, S.; Kulinski, A.E.; Thorsteinsdottir, B.; Shindelar, K.L.; Takahashi, P.Y. Dysphagia in Older Adults. Mayo Clin. Proc. 2021, 96, 488–497. [Google Scholar] [CrossRef]
- Vesey, S. Dysphagia and Quality of Life. Br. J. Community Nurs. 2013, 18 (Suppl. S5), S14, S16, S18–S19. [Google Scholar] [CrossRef]
- Serra-Prat, M.; Palomera, M.; Gomez, C.; Sar-Shalom, D.; Saiz, A.; Montoya, J.G.; Navajas, M.; Palomera, E.; Clavé, P. Oropharyngeal Dysphagia as a Risk Factor for Malnutrition and Lower Respiratory Tract Infection in Independently Living Older Persons: A Population-Based Prospective Study. Age Ageing 2012, 41, 376–381. [Google Scholar] [CrossRef]
- Nazarko, L. Maintaining or Improving Nutrition and Hydration in Dysphagia. Indep. Nurse 2018, 2018, 17–20. [Google Scholar] [CrossRef]
- Newman, R.; Vilardell, N.; Clavé, P.; Speyer, R. Effect of Bolus Viscosity on the Safety and Efficacy of Swallowing and the Kinematics of the Swallow Response in Patients with Oropharyngeal Dysphagia: White Paper by the European Society for Swallowing Disorders (ESSD). Dysphagia 2016, 31, 232–249. [Google Scholar] [CrossRef] [PubMed]
- Sworn, G. Rheology Modifiers for the Management of Dysphagia. In Rheology of Biological Soft Matter; Kaneda, I., Ed.; Soft and Biological Matter; Springer: Tokyo, Japan, 2017; pp. 233–263. ISBN 978-4-431-56078-4. [Google Scholar]
- Costa, A.; Carrión, S.; Puig-Pey, M.; Juárez, F.; Clavé, P. Triple Adaptation of the Mediterranean Diet: Design of A Meal Plan for Older People with Oropharyngeal Dysphagia Based on Home Cooking. Nutrients 2019, 11, 425. [Google Scholar] [CrossRef] [PubMed]
- Bolivar-Prados, M.; Rofes, L.; Arreola, V.; Guida, S.; Nascimento, W.V.; Martin, A.; Vilardell, N.; Fernández, O.O.; Ripken, D.; Lansink, M.; et al. Effect of a Gum-based Thickener on the Safety of Swallowing in Patients with Poststroke Oropharyngeal Dysphagia. Neurogastroenterol. Motil. 2019, 31, e13695. [Google Scholar] [CrossRef] [PubMed]
- Ortega, O.; Bolívar-Prados, M.; Arreola, V.; Nascimento, W.V.; Tomsen, N.; Gallegos, C.; La Fuente, E.B.-D.; Clavé, P. Therapeutic Effect, Rheological Properties and α-Amylase Resistance of a New Mixed Starch and Xanthan Gum Thickener on Four Different Phenotypes of Patients with Oropharyngeal Dysphagia. Nutrients 2020, 12, 1873. [Google Scholar] [CrossRef]
- Gallegos, C.; Quinchia, L.; Ascanio, G.; Salinas-Vázquez, M. Rheology and Dysphagia: An Overview. In Annual Transactions of the Nordic Rheology Society; Stavanger University Library: Stavanger, Norway, 2012; Volume 20, pp. 3–10. [Google Scholar]
- Hanson, B.; O’leary, M.T.; Smith, C.H. The Effect of Saliva on the Viscosity of Thickened Drinks. Dysphagia 2012, 27, 10–19. [Google Scholar] [CrossRef]
- Vallons, K.J.R.; Helmens, H.J.; Oudhuis, A.A.C.M. Effect of Human Saliva on the Consistency of Thickened Drinks for Individuals with Dysphagia. Int. J. Lang. Commun. Disord. 2015, 50, 165–175. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Yoon, S.-R.; Yoo, W.; Yoo, B. Effect of Salivary Reaction Time on Flow Properties of Commercial Food Thickeners Used for Dysphagic Patients. Clin. Nutr. Res. 2016, 5, 55–59. [Google Scholar] [CrossRef]
- Gallegos, C.; Brito-de La Fuente, E.; Clavé, P.; Costa, A.; Assegehegn, G. Nutritional Aspects of Dysphagia Management. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2017; Volume 81, pp. 271–318. ISBN 978-0-12-811916-7. [Google Scholar]
- Hadde, E. Understanding the Rheological Parameters of Thickened Fluids for Dysphagia Sufferers. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2017. [Google Scholar]
- La Fuente, E.B.; Turcanu, M.; Ekberg, O.; Gallegos, C. Rheological Aspects of Swallowing and Dysphagia: Shear and Elongational Flows. In Dysphagia; Ekberg, O., Ed.; Medical Radiology; Springer International Publishing: Cham, Germany, 2017; pp. 687–716. ISBN 978-3-319-68571-7. [Google Scholar]
- Vilardell, N.; Rofes, L.; Arreola, V.; Speyer, R.; Clavé, P. A Comparative Study Between Modified Starch and Xanthan Gum Thickeners in Post-Stroke Oropharyngeal Dysphagia. Dysphagia 2016, 31, 169–179. [Google Scholar] [CrossRef]
- Bolivar-Prados, M.; Tomsen, N.; Arenas, C.; Ibáñez, L.; Clave, P. A Bit Thick: Hidden Risks in Thickening Products’ Labelling for Dysphagia Treatment. Food Hydrocoll. 2022, 123, 106960. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef]
- Woolnough, J.W.; Bird, A.R.; Monro, J.A.; Brennan, C.S. The Effect of a Brief Salivary α-Amylase Exposure During Chewing on Subsequent in Vitro Starch Digestion Curve Profiles. Int. J. Mol. Sci. 2010, 11, 2780–2790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Chen, J. The Starch Hydrolysis and Aroma Retention Caused by Salivary α-Amylase during Oral Processing of Food. Curr. Opin. Food Sci. 2022, 43, 237–245. [Google Scholar] [CrossRef]
- Lu, X.; Chen, J.; Guo, Z.; Zheng, Y.; Rea, M.C.; Su, H.; Zheng, X.; Zheng, B.; Miao, S. Using Polysaccharides for the Enhancement of Functionality of Foods: A Review. Trends Food Sci. Technol. 2019, 86, 311–327. [Google Scholar] [CrossRef]
- Vieira, J.M.; Oliveira, F.D.; Salvaro, D.B.; Maffezzolli, G.P.; De Mello, J.D.B.; Vicente, A.A.; Cunha, R.L. Rheology and Soft Tribology of Thickened Dispersions Aiming the Development of Oropharyngeal Dysphagia-Oriented Products. Current Research in Food Science 2020, 3, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Partal, P.; Franco, J.M. Non-Newtonian Fluids. In Encyclopaedia of Life Support Systems (EOLSS); EOLSS: Singapore, 2010; Volume 1, pp. 96–119. [Google Scholar]
- Bolivar-Prados, M.; Tomsen, N.; Hayakawa, Y.; Kawakami, S.; Miyaji, K.; Kayashita, J.; Clavé, P. Proposal for a Standard Protocol to Assess the Rheological Behavior of Thickening Products for Oropharyngeal Dysphagia. Nutrients 2022, 14, 5028. [Google Scholar] [CrossRef]
- Colevas, S.M.; Statler, L.N.; Jones, C.A.; McCulloch, T.M. The Natural Swallow: Factors Affecting Subject Choice of Bolus Volume and Pharyngeal Swallow Parameters in a Self-selected Swallow. Dysphagia 2022, 37, 1172–1182. [Google Scholar] [CrossRef] [PubMed]
- Anton Paar GmbH. Instruction Manual and Safety Information RheolabQC: Rotational Rheometer, Firmware Version 1.33; Document No. C04IB002EN-P; Anton Paar GmbH: Graz, Austria, 2020. [Google Scholar]
- Funami, T. Next Target for Food Hydrocolloid Studies: Texture Design of Foods Using Hydrocolloid Technology. Food Hydrocoll. 2011, 25, 1904–1914. [Google Scholar] [CrossRef]
- Steele, C.M.; Alsanei, W.A.; Ayanikalath, S.; Barbon, C.E.A.; Chen, J.; Cichero, J.A.Y.; Coutts, K.; Dantas, R.O.; Duivestein, J.; Giosa, L.; et al. The Influence of Food Texture and Liquid Consistency Modification on Swallowing Physiology and Function: A Systematic Review. Dysphagia 2015, 30, 2–26. [Google Scholar] [CrossRef]
- Coelho, M.S.; Aquino, S.D.A.; Latorres, J.M.; Salas-Mellado, M.D.L.M. In Vitro and in Vivo Antioxidant Capacity of Chia Protein Hydrolysates and Peptides. Food Hydrocoll. 2019, 91, 19–25. [Google Scholar] [CrossRef]
- Marciani, L.; Faulks, R.; Wickham, M.S.J.; Bush, D.; Pick, B.; Wright, J.; Cox, E.F.; Fillery-Travis, A.; Gowland, P.A.; Spiller, R.C. Effect of Intragastric Acid Stability of Fat Emulsions on Gastric Emptying, Plasma Lipid Profile and Postprandial Satiety. Br. J. Nutr. 2009, 101, 919–928. [Google Scholar] [CrossRef]
- Hadde, E.K.; Mossel, B.; Chen, J.; Prakash, S. The Safety and Efficacy of Xanthan Gum-Based Thickeners and Their Effect in Modifying Bolus Rheology in the Therapeutic Medical Management of Dysphagia. Food Hydrocoll. Health 2021, 1, 100038. [Google Scholar] [CrossRef]
- Speyer, R.; Cordier, R.; Farneti, D.; Nascimento, W.; Pilz, W.; Verin, E.; Walshe, M.; Woisard, V. White Paper by the European Society for Swallowing Disorders: Screening and Non-instrumental Assessment for Dysphagia in Adults. Dysphagia 2021, 37, 333–349. [Google Scholar] [CrossRef]
- Bemiller, J.N. Starch Modification: Challenges and Prospects. Starch-Starke 1997, 49, 127–131. [Google Scholar] [CrossRef]
- Tobar-Fredes, R.; McIntosh-García, J.; Montenegro-Saá, A.; Flores-Jara, C.; Correa, O. Impact of Oral Processing on Liquid Food Viscosity: Clinical Implications for Dysphagia Management. Rev. Chil. Nutr. 2025, 52, 235–241. [Google Scholar] [CrossRef]
- Rao, M.A. Rheology of Fluid, Semisolid, and Solid Foods: Principles and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 978-1-4614-9230-6. [Google Scholar]
- Vickers, Z.; Damodhar, H.; Grummer, C.; Mendenhall, H.; Banaszynski, K.; Hartel, R.; Hind, J.; Joyce, A.; Kaufman, A.; Robbins, J. Relationships Among Rheological, Sensory Texture, and Swallowing Pressure Measurements of Hydrocolloid-Thickened Fluids. Dysphagia 2015, 30, 702–713. [Google Scholar] [CrossRef]



| Thickening Product | Code | Qualitative Composition | Nutritional Composition (100 g) | Production Category |
|---|---|---|---|---|
| Thicken Up Resource | A | Modified starch | Energy: 356 kcal Carbohydrates: 89 g Dietary fiber: 0 g Protein: 0 g Salt: <0.55 g | Modified starch (MS) |
| Nutilis Clear | B | Maltodextrin, xanthan gum, guar gum | Energy: 290 kcal Carbohydrates: 57.6 g Dietary fiber: 28 g Protein: 0.8 g Salt: 3.8 g | Xanthan gum-based (XG) |
| Fresubin Clear | C | Modified starch, xanthan gum, maltodextrin, modified cellulose | Energy: 264 k kcal Carbohydrates: 41.5 g Dietary fiber: 48 g Protein: 0.6 g Salt: 3.8 g | Mixture (MX) |
| Grams of Thickening Product/100mL Mineral Water | |||
|---|---|---|---|
| Viscosity Level (mPa·s) | A | B | C |
| 250 | 5.5 | 2.4 | 1.5 |
| 800 | 6.5 | 4.3 | 2.7 |
| Thickening Product | Viscosity Level | Time | Shear Viscosity at 50 s−1 (mPa·s) | Amylase Effect (% Reduction) |
|---|---|---|---|---|
| A (n = 5) | 250 | Pre-oral | 278.80 ± 39.97 | - |
| 5 s | 1.11 ± 0.22 | 99.60 | ||
| 10 s | 1.12 ± 0.50 | 99.60 | ||
| 20 s | 0.93 ± 0.13 | 99.67 | ||
| 30 s | 0.87 ± 0.13 | 99.69 | ||
| 60 s | 0.83 ± 0.14 | 99.70 | ||
| 800 | Pre-oral | 857.66 ± 69.35 | - | |
| 5 s | 1.20 ± 0.22 | 99.86 | ||
| 10 s | 0.80 ± 0.35 | 99.91 | ||
| 20 s | 1.02 ± 0.73 | 99.88 | ||
| 30 s | 0.96 ± 0.40 | 99.89 | ||
| 60 s | 0.96 ± 0.20 | 99.89 |
| Thickening Product | Viscosity Level | Time | Shear Viscosity at 50 s−1 (mPa·s) | Amylase Effect (% Reduction) |
|---|---|---|---|---|
| B (n = 5) | 250 | Pre-oral | 254.94 ± 18.19 | - |
| 5 s | 232.67 ± 12.19 | 8.74 | ||
| 10 s | 215.39 ± 24.60 | 15.51 | ||
| 20 s | 213.80 ± 16.49 | 16.13 | ||
| 30 s | 216.94 ± 34.01 | 14.90 | ||
| 60 s | 211.04 ± 12.78 | 17.22 | ||
| 800 | Pre-oral | 825.38 ± 60.01 | - | |
| 5 s | 819.56 ± 43.97 | 0.71 | ||
| 10 s | 791.18 ± 38.01 | 4.14 | ||
| 20 s | 724.70 ± 50.46 | 12.20 | ||
| 30 s | 720.36 ± 83.63 | 12.72 | ||
| 60 s | 731.66 ± 75.63 | 11.35 |
| Thickening Product | Viscosity Level | Time | Shear Viscosity at 50 s−1 (mPa·s) | Amylase Effect (% Reduction) |
|---|---|---|---|---|
| C (n = 5) | 250 | Pre-oral | 247.40 ± 19.50 | - |
| 5 s | 193.14 ± 7.67 | 21.93 | ||
| 10 s | 204.41 ± 21.92 | 17.38 | ||
| 20 s | 194.82 ± 24.62 | 21.25 | ||
| 30 s | 171.64 ± 10.13 | 30.62 | ||
| 60 s | 184.96 ± 27.03 | 25.24 | ||
| 800 | Pre-oral | 832.38 ± 65.02 | - | |
| 5 s | 705.66 ± 44.88 | 15.22 | ||
| 10 s | 723.75 ± 52.58 | 13.05 | ||
| 20 s | 705.83 ± 63.79 | 15.20 | ||
| 30 s | 676.76 ± 30.66 | 18.70 | ||
| 60 s | 683.04 ± 83.02 | 17.94 |
| Thickening Product | Viscosity Level | Shear Viscosity Pre-Oral at 300 s−1 (mPa·s) | Shear Viscosity Post-Oral at 300 s−1 (mPa·s) | Shear Thinning (% Reduction) |
|---|---|---|---|---|
| A (n = 5) | 250 | 108.31 ± 12.31 | 1.20 ± 0.15 | 61.15 |
| 800 | 307.28 ± 17.79 | 1.14 ± 0.24 | 64.17 | |
| B (n = 5) | 250 | 60.78 ± 4.70 | 54.86 ± 5.92 | 76.16 |
| 800 | 176.62 ± 14.03 | 162.14 ± 14.60 | 78.60 | |
| C (n = 5) | 250 | 66.06 ± 5.87 | 50.50 ± 6.49 | 73.30 |
| 800 | 187.10 ± 13.50 | 154.66 ± 14.77 | 77.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuñez-Lara, A.; Solís, A.; Domínguez-López, I.; Murga-Jambert, B.; Clave, P.; Bolivar-Prados, M. Salivary ⍺-Amylase Time-Effect on the Main Groups of Thickening Products Intended to Manage Patients with Oropharyngeal Dysphagia. Foods 2025, 14, 3829. https://doi.org/10.3390/foods14223829
Nuñez-Lara A, Solís A, Domínguez-López I, Murga-Jambert B, Clave P, Bolivar-Prados M. Salivary ⍺-Amylase Time-Effect on the Main Groups of Thickening Products Intended to Manage Patients with Oropharyngeal Dysphagia. Foods. 2025; 14(22):3829. https://doi.org/10.3390/foods14223829
Chicago/Turabian StyleNuñez-Lara, Adrian, Alberto Solís, Irene Domínguez-López, Begoña Murga-Jambert, Pere Clave, and Mireia Bolivar-Prados. 2025. "Salivary ⍺-Amylase Time-Effect on the Main Groups of Thickening Products Intended to Manage Patients with Oropharyngeal Dysphagia" Foods 14, no. 22: 3829. https://doi.org/10.3390/foods14223829
APA StyleNuñez-Lara, A., Solís, A., Domínguez-López, I., Murga-Jambert, B., Clave, P., & Bolivar-Prados, M. (2025). Salivary ⍺-Amylase Time-Effect on the Main Groups of Thickening Products Intended to Manage Patients with Oropharyngeal Dysphagia. Foods, 14(22), 3829. https://doi.org/10.3390/foods14223829

