The Role of Glyceraldehyde-3-Phosphate Dehydrogenase in 2-Ketogluconic Acid Industrial Production Strain Pseudomonas plecoglossicida JUIM01
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, Media and Cultivation
2.2. Bioinformatics Analyses of the gapA Gene and Gap Protein in P. plecoglossicida JUIM01
2.3. Construction of the gapA-Knockout Mutant and Its Gene Complementation Strain Derived from P. plecoglossicida JUIM01
2.4. 5′-Rapid Amplification of cDNA Ends (5′-RACE)
2.5. Electrophoretic Mobility Shift Assay (EMSA)
2.6. Analytical Methods
2.7. Statistical Analysis
3. Results and Discussion
3.1. Identification of the Gene Encoding Glyceraldehyde-3-Phosphate Dehydrogenase in P. plecoglossicida JUIM01
3.2. Analysis of the Promoter Region of gapA in P. plecoglossicida JUIM01
3.3. The Role of gapA in the Growth and Metabolism of P. plecoglossicida JUIM01
3.4. 2KGA Production Performance of P. plecoglossicida JUIM01ΔgapA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 2KGA | 2-Ketogluconic acid |
| GAPDH-I | Glyceraldehyde-3-phosphate dehydrogenase, type I |
| EMP | Embden–Meyerhof–Parnas |
| ED | Entner–Doudoroff |
| 6PG | 6-Phosphogluconate |
| 5′-RACE | 5′-Rapid amplification of cDNA ends |
| EMSA | Electrophoretic mobility shift assay |
| OD650nm | Optical density at 650 nm |
References
- Volke, D.C.; Gurdo, N.; Milanesi, R.; Nikel, P.I. Time-resolved, deuterium-based fluxomics uncovers the hierarchy and dynamics of sugar processing by Pseudomonas putida. Metab. Eng. 2023, 79, 159–172. [Google Scholar] [CrossRef]
- Xu, C.; Cao, Q.; Lan, L. Glucose-binding of periplasmic protein GltB activates GtrS-GltR two-component system in Pseudomonas aeruginosa. Microorganisms 2021, 9, 447. [Google Scholar] [CrossRef]
- Sun, W.J.; Alexander, T.; Man, Z.W.; Xiao, F.F.; Cui, F.J.; Qi, X.H. Enhancing 2-ketogluconate production of Pseudomonas plecoglossicida JUIM01 by maintaining the carbon catabolite repression of 2-ketogluconate metabolism. Molecules 2018, 23, 2629. [Google Scholar] [CrossRef]
- Latrach Tlemçani, L.; Corroler, D.; Barillier, D.; Mosrati, R. Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Arch. Microbiol. 2008, 190, 141–150. [Google Scholar] [CrossRef]
- Bitzenhofer, N.L.; Kruse, L.; Thies, S.; Wynands, B.; Lechtenberg, T.; Ronitz, J.; Kozaeva, E.; Wirth, N.T.; Eberlein, C.; Jaeger, K.; et al. Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem. 2021, 65, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Craig, K.; Johnson, B.R.; Grunden, A. Leveraging Pseudomonas stress response mechanisms for industrial applications. Front. Microbiol. 2021, 12, 660134. [Google Scholar] [CrossRef]
- Bugg, T.D.H.; Williamson, J.J.; Alberti, F. Microbial hosts for metabolic engineering of lignin bioconversion to renewable chemicals. Renew. Sust. Energ. Rev. 2021, 152, 111674. [Google Scholar] [CrossRef]
- Weimer, A.; Kohlstedt, M.; Volke, D.C.; Nikel, P.I.; Wittmann, C. Industrial biotechnology of Pseudomonas putida: Advances and prospects. Appl. Microbiol. Biotechnol. 2020, 104, 7745–7766. [Google Scholar] [CrossRef]
- Nikel, P.I.; Chavarria, M.; Danchin, A.; de Lorenzo, V. From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr. Opin. Chem. Biol. 2016, 34, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Nikel, P.I.; de Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metab. Eng. 2018, 50, 142–155. [Google Scholar] [CrossRef]
- Chia, M.; Nguyen, T.B.V.; Choi, W.J. DO-stat fed-batch production of 2-keto-d-gluconic acid from cassava using immobilized Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2008, 78, 759–765. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.J.; Zhou, Y.Z.; Peng, Z.; Cui, F.J.; Zhou, Q.; Man, Z.W.; Guo, J.; Sun, W.J. Can cadmium-contaminated rice be used to produce food additive sodium erythorbate? Food Chem. 2025, 462, 140923. [Google Scholar] [CrossRef]
- Zhou, X.L.; Shen, Y.; Xu, Y.; Balan, V. Directing cell catalysis of glucose to 2-keto-d-gluconic acid using Gluconobacter oxydans NL71. Process Biochem. 2020, 94, 365–369. [Google Scholar] [CrossRef]
- Georgiana, L.R.; Cristina, B.A.; Niculina, D.E.; Irina, G.A.; Dan, C. Mechanism, influencing factors exploration and modelling on the reactive extraction of 2-ketogluconic acid in presence of a phase modifier. Sep. Purif. Technol. 2021, 255, 117740. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS). Scientific Opinion on the re-evaluation of erythorbic acid (E 315) and sodium erythorbate (E 316) as food additives. EFSA J. 2016, 14, 4360. [Google Scholar] [CrossRef]
- del Castillo, T.; Ramos, J.L.; Rodríguez-Herva, J.J.; Fuhrer, T.; Sauer, U.; Duque, E. Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: Genomic and flux analysis. J. Bacteriol. 2007, 189, 5142–5152. [Google Scholar] [CrossRef]
- Daddaoua, A.; Krell, T.; Ramos, J.L. Regulation of glucose metabolism in Pseudomonas: The phosphorylative branch and Entner-Doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J. Biol. Chem. 2009, 284, 21360–21368. [Google Scholar] [CrossRef]
- Rojo, F. Carbon catabolite repression in Pseudomonas: Optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 2010, 34, 658–684. [Google Scholar] [CrossRef] [PubMed]
- Sudarsan, S.; Dethlefsen, S.; Blank, L.M.; Siemann-Herzberg, M.; Schmid, A. The functional structure of central carbon metabolism in Pseudomonas putida KT2440. Appl. Environ. Microb. 2014, 80, 5292–5303. [Google Scholar] [CrossRef]
- Kohlstedt, M.; Wittmann, C. GC-MS-based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab. Eng. 2019, 54, 35–53. [Google Scholar] [CrossRef]
- Nikel, P.I.; Chavarría, M.; Fuhrer, T.; Sauer, U.; de Lorenzo, V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner–Doudoroff, Embden–Meyerhof–Parnas, and pentose phosphate pathways. J. Biol. Chem. 2015, 290, 25920–25932. [Google Scholar] [CrossRef]
- Sasnow, S.S.; Wei, H.; Aristilde, L. Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida. MicrobiologyOpen 2016, 5, 3–20. [Google Scholar] [CrossRef]
- Chavarría, M.; Nikel, P.I.; Pérez-Pantoja, D.; de Lorenzo, V. The Entner–Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ. Microbiol. 2013, 15, 1772–1785. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, M.; Bao, L.; Boström, K.I.; Yao, Y.; Li, J.; Gu, S.; Ji, C. Novel structures of type 1 glyceraldehyde-3-phosphate dehydrogenase from Escherichia coli provide new insights into the mechanism of generation of 1,3-bisphosphoglyceric acid. Biomolecules 2021, 11, 1565. [Google Scholar] [CrossRef]
- Elkhalfi, B.; Araya-Garay, J.M.; Rodríguez-Castro, J.; Rey-Méndez, M.; Soukri, A.; Delgado, A.S. Cloning and heterologous overexpression of three gap genes encoding different glyceraldehyde-3-phosphate dehydrogenases from the plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Protein Expr. Purif. 2013, 89, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Casas-Román, A.; Lorite, M.J.; Werner, M.; Muñoz, S.; Gallegos, M.T.; Sanjuán, J. The gap gene of Rhizobium etli is required for both free life and symbiosis with common beans. Microbiol. Res. 2024, 284, 127737. [Google Scholar] [CrossRef] [PubMed]
- Son, H.F.; Yu, H.; Hong, J.; Lee, D.; Kim, I.K.; Kim, K.J. Structure-guided protein engineering of glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum for dual NAD/NADP cofactor specificity. J. Agric. Food Chem. 2023, 71, 17852–17859. [Google Scholar] [CrossRef]
- Sirover, M.A. Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity. Int. J. Biochem. Cell Biol. 2014, 57, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Querol-García, J.; Fernández, F.J.; Marin, A.V.; Gómez, S.; Fullà, D.; Melchor-Tafur, C.; Franco-Hidalgo, V.; Albertí, S.; Juanhuix, J.; Rodríguez de Córdoba, S.; et al. Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from the gram-positive bacterial pathogen A. vaginae, an immunoevasive factor that interacts with the human C5a anaphylatoxin. Front. Microbiol. 2017, 8, 541. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.J.; Zhang, Q.N.; Li, L.L.; Qu, M.X.; Zan, X.Y.; Cui, F.J.; Zhou, Q.; Wang, D.M.; Sun, L. The functional characterization of the 6-phosphogluconate dehydratase operon in 2-ketogluconic acid industrial producing strain Pseudomonas plecoglossicida JUIM01. Foods 2024, 13, 3444. [Google Scholar] [CrossRef]
- Wang, D.M.; Chen, X.; Guo, H.; Wang, Q.H.; Sun, L.; Sun, W.J. Exploring the response mechanism of Pseudomonas plecoglossicida to high-temperature stress by transcriptomic analyses for 2-keto gluconic acid production. Food Biosci. 2024, 62, 105063. [Google Scholar] [CrossRef]
- Sun, W.J.; Wang, Q.H.; Luan, F.; Man, Z.W.; Cui, F.J.; Qi, X.H. The role of kguT gene in 2-ketogluconate-producing Pseudomonas plecoglossicida JUIM01. Appl. Biochem. Biotech. 2019, 187, 965–974. [Google Scholar] [CrossRef]
- Sun, L.; Yang, W.; Li, L.; Wang, D.; Zan, X.; Cui, F.; Qi, X.; Sun, L.; Sun, W. Characterization and transcriptional regulation of the 2-ketogluconate utilization operon in Pseudomonas plecoglossicida. Microorganisms 2024, 12, 2530. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, D.M.; Sun, W.J.; He, X.Y.; Cui, F.J.; Zhang, X.M.; Gong, J.S.; Shi, J.S.; Xu, Z.H. A 2-ketogluconate kinase KguK in Pseudomonas plecoglossicida JUIM01: Enzymatic characterization and its role in 2-keto-d-gluconic acid metabolism. Int. J. Biol. Macromol. 2020, 165 Pt B, 2640–2648. [Google Scholar] [CrossRef]
- Schäfer, A.; Tauch, A.; Jäger, W.; Kalinowski, J.; Thierbach, G.; Pühler, A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994, 145, 69–73. [Google Scholar] [CrossRef]
- Hao, L.; Liu, X.; Wang, H.; Lin, J.; Pang, X.; Lin, J. Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp. J. Microbiol. Methods 2012, 90, 309–314. [Google Scholar] [CrossRef]
- Qu, M.X.; Li, L.L.; Zan, X.Y.; Cui, F.J.; Sun, L.; Sun, W.J. Molecular characterization of a transcriptional regulator GntR for gluconate metabolism in industrial 2-ketogluconate producer Pseudomonas plecoglossicida JUIM01. Microorganisms 2025, 13, 1395. [Google Scholar] [CrossRef]
- Feng, X.Y.; Zhou, Y.Z.; Sun, W.J.; Wang, D.M.; Yu, S.L.; Liu, J.Z. Iodometric determination of 2-keto-d-gluconic acid in fermentation broth. Food Sci. 2010, 31, 314–317. (In Chinese) [Google Scholar]
- Hager, P.W.; Calfee, M.W.; Phibbs, P.V. The Pseudomonas aeruginosa devB/SOL homolog, pgl, is a member of the hex regulon and encodes 6-phosphogluconolactonase. J. Bacteriol. 2000, 182, 3934–3941. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, J.; Jeon, C.O.; Park, W. Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in Pseudomonas putida. Microbiology 2008, 154, 3905–3916. [Google Scholar] [CrossRef] [PubMed]
- Campilongo, R.; Fung, R.K.Y.; Little, R.H.; Grenga, L.; Trampari, E.; Pepe, S.; Chandra, G.; Stevenson, C.E.; Roncarati, D.; Malone, J.G. One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas. PLoS Genet. 2017, 13, e1006839. [Google Scholar] [CrossRef] [PubMed]
- Udaondo, Z.; Ramos, J.L.; Segura, A.; Krell, T.; Daddaoua, A. Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb. Biotechnol. 2018, 11, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Lee, E.Y.; Choi, C.Y. Effect of dissolved oxygen concentration on the metabolism of glucose in Pseudomonas putida BM014. Biotechnol. Bioprocess Eng. 1998, 3, 109–111. [Google Scholar] [CrossRef]
- Sun, L.; Sun, W.J.; Wang, D.M.; Cui, F.J.; Qi, X.H.; Xu, Z.H. A novel 2-keto-d-gluconic acid high-producing strain Arthrobacter globiformis JUIM02. Appl. Biochem. Biotechnol. 2018, 185, 947–957. [Google Scholar] [CrossRef]
- Sirover, M.A. The role of posttranslational modification in moonlighting glyceraldehyde-3-phosphate dehydrogenase structure and function. Amino Acids 2021, 53, 507–515. [Google Scholar] [CrossRef]
- Hassan, S.S.; Nawn, D.; Mukherjee, N.; Goswami, A.; Uversky, V.N. A mathematical genomics perspective on the moonlighting role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Int. J. Biol. Macromol. 2025, 330 Pt 3, 148045. [Google Scholar] [CrossRef]
- Cao, Y.; Hong, J.; Wang, H.; Lin, M.; Cai, Y.; Liao, L.; Li, X.; Han, Y. Beyond glycolysis: Multifunctional roles of glyceraldehyde-3-phosphate dehydrogenases in plants. Hortic. Res. 2025, 12, uhaf070. [Google Scholar] [CrossRef] [PubMed]






| Strains and Plasmids | Description | Source |
|---|---|---|
| Strains | ||
| P. plecoglossicida JUIM01 | 2-Ketogluconate industrial producing strain | Our lab |
| E. coli JM109 | General cloning strain | TaKaRa (Beijing, China) |
| E. coli BL21(DE3) | Heterologous gene expression strain | TaKaRa |
| E. coli JM109/pK18mobsacB-ΔgapA | JM109 containing vector pK18mobsacB-ΔgapA | This work |
| E. coli JM109/pBBR1MCS-2-gapA | JM109 containing vector pBBR1MCS-2-gapA | This work |
| E. coli JM109/pMD20-T-gapA | JM109 containing vector pMD20-T-gapA | This work |
| P. plecoglossicida JUIM01ΔgapA | gapA-knockout mutant of JUIM01 | This work |
| P. plecoglossicida JUIM01ΔgapA-gapA | gapA-complemented strain of JUIM01ΔgapA | This work |
| E. coli BL21(DE3)/pET-24b-hexR | Heterologous hexR gene expression strain | This work |
| Plasmids | ||
| pK18mobsacB | Mobilizable E. coli vector, Kanr, Sucs | [35] |
| pBBR1MCS-2 | E. coli-Pseudomonas shuttle vector, Kanr | [36] |
| pMD20-T | T-vector, Ampr, lacZ | TaKaRa |
| pET-24b(+) | E. coli expression vector, Kanr | TaKaRa |
| pK18mobsacB-ΔgapA | pK18mobsacB containing incomplete gapA sequence of JUIM01 | This work |
| pBBR1MCS-2-gapA | pBBR1MCS-2 containing the gapA of JUIM01 | This work |
| pMD20-T-gapA | pMD20-T containing the promoter region of gapA (for 5′-RACE) | This work |
| pET-24b-hexR | pET-24b(+) containing the hexR of JUIM01 | This work |
| Medium | Component (g/L) and pH | Description |
|---|---|---|
| LB medium and agar plate | Peptone 10, beef extract 5, NaCl 5 without/with agar 20, pH of 7.0 | For E. coli culture |
| Activation plate | Peptone 10, beef extract 5, NaCl 5, and agar 20, pH of 7.0 | For activation of P. plecoglossicida |
| Seed medium | Glucose 18, corn syrup powder 5, urea 2, KH2PO4 2, MgSO4·7H2O 0.5, and CaCO3 5, pH of 7.0 | For analysis of the role of gapA in the growth and metabolism of P. plecoglossicida (Section 3.3), and to for seed culture preparation |
| Fermentation medium | Glucose 162, corn syrup powder 10, and CaCO3 45, pH of 6.7 | For 2KGA fermentation in shake flasks and bioreactors (Section 3.4) |
| Strains | JUIM01 | JUIM01ΔgapA | JUIM01ΔgapA-gapA |
|---|---|---|---|
| Initial Glucose (g/L) | 162.00 ± 0.00 | 162.00 ± 0.00 | 162.00 ± 0.00 |
| Residual Glucose (g/L) | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.03 ± 0.00 |
| Maximum Cell Concentration (OD650nm) | 9.66 ± 0.31 | 9.73 ± 0.12 | 9.64 ± 0.21 |
| 2KGA Production (g/L) | 153.68 ± 6.48 | 162.43 ± 8.02 * | 152.84 ± 5.94 |
| 2KGA Yield (g/100 g) | 94.86 ± 0.04 | 100.27 ± 0.05 * | 94.35 ± 0.04 |
| 2KGA Yield (mol/100 mol) | 88.02 ± 0.04 | 93.03 ± 0.05 * | 87.54 ± 0.03 |
| Fermentation Period (h) | 72.0 | 72.0 | 72.0 |
| 2KGA Productivity (g/L/h) | 2.13 ± 0.09 | 2.26 ± 0.11 * | 2.12 ± 0.08 |
| Gene | Protein | Adverse Impact on Cell Growth | Mechanism | Reference |
|---|---|---|---|---|
| kguT | 2-Ketogluconate transporter | Yes | Mutant cannot utilize 2KGA | [32,33] |
| kguD | 2-Keto-6-phosphogluconate reductase | Yes | Mutant cannot utilize 2KGA | [33] |
| kguK | 2-Ketogluconate kinase | Yes | Slower utilization of 2KGA | [33,34] |
| kguE | A putative epimerase (not clear) | Yes | Slower utilization of 2KGA | [33] |
| edd | 6-Phosphogluconate dehydratase | Yes | Mutant cannot utilize 2KGA; ED pathway is blocked | [30] |
| gapA | Glyceraldehyde-3-phosphate dehydrogenase | No | Not clear | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Tang, D.-J.; Zhang, Q.-N.; Li, L.-L.; Zhang, L.; Zan, X.-Y.; Cui, F.-J.; Sun, L.; Sun, W.-J. The Role of Glyceraldehyde-3-Phosphate Dehydrogenase in 2-Ketogluconic Acid Industrial Production Strain Pseudomonas plecoglossicida JUIM01. Foods 2025, 14, 3830. https://doi.org/10.3390/foods14223830
Sun L, Tang D-J, Zhang Q-N, Li L-L, Zhang L, Zan X-Y, Cui F-J, Sun L, Sun W-J. The Role of Glyceraldehyde-3-Phosphate Dehydrogenase in 2-Ketogluconic Acid Industrial Production Strain Pseudomonas plecoglossicida JUIM01. Foods. 2025; 14(22):3830. https://doi.org/10.3390/foods14223830
Chicago/Turabian StyleSun, Lei, Dao-Jiao Tang, Qian-Nan Zhang, Lu-Lu Li, Lei Zhang, Xin-Yi Zan, Feng-Jie Cui, Ling Sun, and Wen-Jing Sun. 2025. "The Role of Glyceraldehyde-3-Phosphate Dehydrogenase in 2-Ketogluconic Acid Industrial Production Strain Pseudomonas plecoglossicida JUIM01" Foods 14, no. 22: 3830. https://doi.org/10.3390/foods14223830
APA StyleSun, L., Tang, D.-J., Zhang, Q.-N., Li, L.-L., Zhang, L., Zan, X.-Y., Cui, F.-J., Sun, L., & Sun, W.-J. (2025). The Role of Glyceraldehyde-3-Phosphate Dehydrogenase in 2-Ketogluconic Acid Industrial Production Strain Pseudomonas plecoglossicida JUIM01. Foods, 14(22), 3830. https://doi.org/10.3390/foods14223830

