Metacognitive monitoring plays a crucial role in self-regulated learning, as accurate monitoring enables effective control, which in turn impacts learning outcomes. Most studies on metacognitive monitoring have focused on learners’ monitoring abilities when they are explicitly prompted to monitor. However, in real-world educational
[...] Read more.
Metacognitive monitoring plays a crucial role in self-regulated learning, as accurate monitoring enables effective control, which in turn impacts learning outcomes. Most studies on metacognitive monitoring have focused on learners’ monitoring abilities when they are explicitly prompted to monitor. However, in real-world educational settings, learners are more often prompted to control their learning, such as deciding whether to allocate additional time to a learning target. The primary goal of this study was to investigate whether retrieval is engaged when learners are explicitly prompted to control their learning processes by making study decisions. To address this, three experiments were conducted. In Experiment 1, participants (N = 39) studied 70 Swahili–English word pairs in a learning task. Each trial displayed a word pair for 8 s, followed by a distractor task (a two-digit mental addition) and a study decision intervention (choose “Study Again” or “Next”). After learning, participants provided a global judgment of learning (JOL), estimating their overall recall accuracy. Finally, they completed a cued recall test (Swahili cue). Responses were scored for accuracy and analyzed alongside study decisions, study decision reaction time (RT), and metacognitive judgments. Reaction times (RTs) for study decisions correlated positively with test accuracy, global judgments of learning (JOLs), and judgments of confidence (JOCs), suggesting retrieval likely underlies these decisions. Experiment 2 (N = 74, between-subjects) compared memory performance and intervention response time between single-study, restudy, retrieval (explicit recall prompt), and study decision (study decision prompt) groups to have better control over study time and cognitive processes. Although no significant group differences in test accuracy emerged, the retrieval group took longer to respond than the study decision group. Within-subject analyses revealed similar recall accuracy patterns: participants recalled successfully retrieved or “no restudy” items better than failed-retrieval or “restudy” items, implying shared cognitive processes underlying retrieval and study decision interventions. Experiment 3 (N = 74, within-subject, three learning conditions: single-study, retrieval, and study decision) replicated these findings, with no condition effects on test accuracy but longer RT for retrieval than study decisions. The similar recall accuracy patterns between retrieval and study decision interventions further supported shared cognitive processes underlying both tasks. Self-reports across experiments confirmed retrieval engagement in both retrieval and study decision interventions. Collectively, the results suggest that retrieval likely supports study decisions but may occur less frequently or less deeply than under explicit monitoring prompts. Additionally, this study explored objective, online measures to detect retrieval-based metacognitive monitoring.
Full article