Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Study Site
2.2. Description of the Land Cover Maps Used as Source Data
2.3. Global Methodological Framework
2.4. Definition of the Human Disturbance Coefficient (HDC)
2.5. Description of the Nine Evaluation Criteria for the Human Disturbance Coefficient (HDC)
- Degradation and Loss of Vegetation
- Pressure on Biodiversity
- Greenhouse Gas (GHG) Emissions
- Air Pollution
- Soil Erosion
- Degradation of Soil Productivity and Properties
- Soil Pollution
- Water Pollution
- Reduction in Water Resources
2.6. Definition of Scores for the 9 HDC Evaluation Criteria
2.7. Weighting of HDC Evaluation Criteria
2.8. Justification of Criteria Scores for Each Land Cover Class Based on Scientific Literature Review
- Natural land cover types
- Surface water
- Semi-natural land cover
- Agricultural land cover
- Artificial land cover
2.9. Spatial Aggregation for LESI Determination
2.10. HDC and LESI Mapping
3. Results
3.1. Human Disturbance Coefficient
3.2. Spatial Variation in Human Disturbance Coefficient
3.3. LESI Maps
4. Discussion
4.1. LESI Results and Implications for Rural Landscape Sustainability in the Study Area
4.2. Advantages of the LESI
4.3. Methodological Limitations and Development Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Hall, C.; Dawson, T.; Macdiarmid, J.; Matthews, R.; Smith, P. The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. IJAS 2017, 15, 124–135. [Google Scholar] [CrossRef]
- Dirzo, R.; Raven, P.H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 2003, 28, 137–167. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Fargione, J.; Wolff, B.; D’antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Sachs, J.; Remans, R.; Smukler, S.; Winowiecki, L.; Andelman, S.J.; Cassman, K.G.; Castle, D.; DeFries, R.; Denning, G.; Fanzo, J. Monitoring the world’s agriculture. Nature 2010, 466, 558–560. [Google Scholar] [CrossRef]
- Latruffe, L.; Diazabakana, A.; Bockstaller, C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. Measurement of sustainability in agriculture: A review of indicators. Stud. Agric. Econ. 2016, 118, 123–130. [Google Scholar] [CrossRef]
- Rosnoblet, J.; Girardin, P.; Weinzaepflen, E.; Bockstaller, C. Analysis of 15 years of agriculture sustainability evaluation methods. In Proceedings of the 9th ESA Congress, Warsaw, Poland, 1 January 2006; pp. 707–708. [Google Scholar]
- Bockstaller, C.; Guichard, L.; Keichinger, O.; Girardin, P.; Galan, M.-B.; Gaillard, G. Comparison of methods to assess the sustainability of agricultural systems. A review. Agron. Sustain. Dev. 2009, 29, 223–235. [Google Scholar] [CrossRef]
- Burke, M.; Driscoll, A.; Lobell, D.B.; Ermon, S. Using satellite imagery to understand and promote sustainable development. Science 2021, 371, eabe8628. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Huang, J.; Kindred, D.; Huang, W. Applications of satellite ‘hyper-sensing’in Chinese agriculture: Challenges and opportunities. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 62–86. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Rowland, C.S. Monitoring the sustainable intensification of arable agriculture: The potential role of earth observation. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 125–136. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Sukopp, H. Dynamik und konstanz in der flora der bundesrepublik deutschland. Schr.reihe Veg.kd 1976, 10, 9–27. [Google Scholar]
- Hoy, C.W. Agroecosystem health, agroecosystem resilience, and food security. J. Environ. Stud. Sci. 2015, 5, 623–635. [Google Scholar] [CrossRef]
- Yu, D.; Wang, D.; Li, W.; Liu, S.; Zhu, Y.; Wu, W.; Zhou, Y. Decreased landscape ecological security of peri-urban cultivated land following rapid urbanization: An impediment to sustainable agriculture. Sustainability 2018, 10, 394. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Q.; Guo, L. Quantifying the impact of the grain-for-green program on ecosystem health in the typical agro-pastoral ecotone: A case study in the Xilin Gol league, Inner Mongolia. Int. J. Environ. Res. Public Health 2020, 17, 5631. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Li, Q.; Xu, T.; Wu, Z.; Liu, J. Application of three deep machine-learning algorithms in a construction assessment model of farmland quality at the county scale: Case study of Xiangzhou, Hubei Province, China. Agriculture 2021, 11, 72. [Google Scholar] [CrossRef]
- Walz, U.; Stein, C. Indicators of hemeroby for the monitoring of landscapes in Germany. J. Nat. Conserv. 2014, 22, 279–289. [Google Scholar] [CrossRef]
- Andre, M. Landscape Ecological Consequences of the (Sub) Urbanization Process in an African City: Lubumbashi (Democratic Republic of Congo); Universite de Liege: Liege, Belgium, 2016. [Google Scholar]
- Fehrenbach, H.; Grahl, B.; Giegrich, J.; Busch, M. Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. Int. J. Life Cycle Assess. 2015, 20, 1511–1527. [Google Scholar] [CrossRef]
- Fushita, A.T.; dos Santos, J.E.; Rocha, Y.T.; Zanin, E.M. Historical land use/cover changes and the hemeroby levels of a bio-cultural landscape: Past, present and future. JGIS 2017, 9, 576. [Google Scholar] [CrossRef]
- Jasinavičiūtė, A.; Veteikis, D. Assessing landscape instability through land-cover change based on the hemeroby index (Lithuanian example). Land 2022, 11, 1056. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, B.; Hu, Y.; Xu, Q.; Qu, M.; Xu, D. Spatio-temporal land-use changes and the response in landscape pattern to hemeroby in a resource-based city. SPRS Int. J. Geo-Inf. 2020, 9, 20. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Lv, H.; Tian, Y. What Are the Correlations between Human Disturbance, the Spatial Pattern of the Urban Landscape, and Eco-Environmental Quality? Sustainability 2023, 15, 1171. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, L.; Bai, X. Spatial and temporal changes of human disturbances and their effects on landscape patterns in the Jiangsu coastal zone, China. Ecol. Indic. 2018, 93, 111–122. [Google Scholar] [CrossRef]
- Sukopp, H. Der Einfluss des Menschen auf die vegetation. Vegetatio 1969, 17, 360–371. [Google Scholar] [CrossRef]
- Direction de la Statistique Agricole. Evolution des Productions Agricoles de 1995 à 2022. Available online: https://dsa.agriculture.gouv.bj/statistics/vegetale (accessed on 30 March 2022).
- Assogba, S.C.-G. Représentations de L’environnement et Adoption des Pratiques Durables de Production par les Cotonculteurs du Bénin; Universite de Liege: Liege, Belgium, 2014. [Google Scholar]
- Zinsou, H.L.; Attingli, A.H.; Gnohossou, P.; Adandedjan, D.; Laleye, P. Caractéristiques physico-chimiques et pollution de l’eau du delta de l’Oueme au Benin. J. Appl. Biosci. 2016, 97, 9163–9173. [Google Scholar] [CrossRef]
- PAPA/INRAB. Caractérisation et Évaluation des Milieux Homogènes des Zones Agroécologiques du Bénin; CRA-Agonkanmey: Benin, Benin Republic, 2017; p. 326. [Google Scholar]
- Institut Géographique National. Limites des Départements du Bénin. 2018. Available online: https://www.geobenin.bj (accessed on 30 March 2022).
- Ganglo, J.; Henrix, F. Etat de la Recherche Forestière au Bénin-Bilan et Perspectives. In Proceedings of the XII World Forestly Congress, Montreal, QC, Canada, 21–28 September 2003. [Google Scholar]
- Aholoukpè, H.; Amadji, G.; Koussihouèdé, H. Chapitre 5. Stocks de carbone dans les sols des zones agro-écologiques du Bénin. In Carbone des sols en Afrique; Chevallier, T., Razafimbelo, T.M., Chapuis-Lardy, L., Brossard, M., Eds.; IRD Édition: Marseille, France, 2020; pp. 101–112. [Google Scholar]
- Chadare, F.J.; Fanou Fogny, N.; Madode, Y.E.; Ayosso, J.O.G.; Honfo, S.H.; Kayodé, F.P.P.; Linnemann, A.R.; Hounhouigan, D.J. Local agro-ecological condition-based food resources to promote infant food security: A case study from Benin. Food Security 2018, 10, 1013–1031. [Google Scholar] [CrossRef]
- Stéphane, D.; Laurence, D.; Raffaele, G.; Valérie, A.; Eloise, R. Land cover maps of Antananarivo (capital of Madagascar) produced by processing multisource satellite imagery and geospatial reference data. Data Br. 2020, 31, 105952. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Dupuy, S.; Defrise, L.; Lebourgeois, V.; Gaetano, R.; Burnod, P.; Tonneau, J.-P. Analyzing urban agriculture’s contribution to a southern city’s resilience through land cover mapping: The case of Antananarivo, capital of Madagascar. Remote Sens. 2020, 12, 1962. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Quintero, I.; Daza-Cruz, Y.X.; León-Sicard, T. Main Agro-Ecological Structure: An Index for Evaluating Agro-Biodiversity in Agro-Ecosystems. Sustainability 2022, 14, 13738. [Google Scholar] [CrossRef]
- Vodouhe, F.G.; Zoundji, G.C.; Yarou, H.; Yabi, J.A. Analyse des impacts environnementaux, sociaux et économiques des modes de production de Coton Conventionnel et Biologique au Bénin. Eur. Sci. J. 2019, 15, 1–22. [Google Scholar] [CrossRef]
- Tittonell, P. Assessing resilience and adaptability in agroecological transitions. Agric. Syst. 2020, 184, 102862. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Putz, F.E.; Redford, K.H. The importance of defining ‘forest’: Tropical forest degradation, deforestation, long-term phase shifts, and further transitions. Biotropica 2010, 42, 10–20. [Google Scholar] [CrossRef]
- Baulcombe, D.; Crute, I.; Davies, B.; Dunwell, J.; Gale, M.; Jones, J.; Pretty, J.; Sutherland, W.; Toulmin, C. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture; The Royal Society: London, UK, 2009. [Google Scholar]
- Lawson, S.; MacFaul, L. Illegal Logging and Related Trade: Indicators of the Global Response; Chatham House London: London, UK, 2010. [Google Scholar]
- Jaureguiberry, P.; Titeux, N.; Wiemers, M.; Bowler, D.E.; Coscieme, L.; Golden, A.S.; Guerra, C.A.; Jacob, U.; Takahashi, Y.; Settele, J. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022, 8, eabm9982. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Han, Q. Assessment of the relation between land use and carbon emission in Eindhoven, the Netherlands. J. Environ. Manage. 2019, 247, 413–424. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O. CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Mohammad Reza, R., Mohammad, F., Mohammad, A.M., Eds.; Woodhead Publishing: Hamadan, Iran, 2020; pp. 3–28. [Google Scholar]
- Climate Trace. Climate TRACE Emissions Inventory v4.1.0. Available online: https://climatetrace.org (accessed on 28 July 2025).
- Singh, P.; Yadav, D. Link between air pollution and global climate change. In Global Climate Change; Suruchi, S., Pardeep, S., Rangabhashiyam, S., Srivastava, K.K., Eds.; Elsevier: Gurgaon, India, 2021; pp. 79–108. [Google Scholar]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Popescu, F.; Ionel, I. Anthropogenic air pollution sources. In Air quality; Kumar, A., Ed.; Intechopen: London, UK, 2010; pp. 1–22. [Google Scholar]
- Lal, R. Soil erosion impact on agronomic productivity and environment quality. Crit. Rev. Plant Sci. 1998, 17, 319–464. [Google Scholar] [CrossRef]
- Dugué, P. Intervenir sur l’environnement des exploitations. La gestion des ressources naturelles: L’aménagement des zones cultivées et la lutte contre l’érosion. In Mémento de L’agronome; CIRAD, G., Ed.; CIRAD: Montpellier, France, 2002; pp. 239–255. [Google Scholar]
- Karlen, D.L. Productivity. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 330–336. [Google Scholar]
- Blevins, R.L.; Frye, W.W. Conservation Tillage: An Ecological Approach to Soil Management. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 1993; Volume 51, pp. 33–78. [Google Scholar]
- Mueller, L.; Schindler, U.; Mirschel, W.; Shepherd, T.G.; Ball, B.C.; Helming, K.; Rogasik, J.; Eulenstein, F.; Wiggering, H. Assessing the productivity function of soils. In Sustainable Agriculture; Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P., Eds.; Springer: Dordrecht, The Netherland, 2011; Volume 2, pp. 743–760. [Google Scholar]
- Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M. Soil degradation in India: Challenges and potential solutions. Sustainability 2015, 7, 3528–3570. [Google Scholar] [CrossRef]
- Mondal, S.; Mishra, J.S.; Poonia, S.P.; Kumar, R.; Dubey, R.; Kumar, S.; Verma, M.; Rao, K.K.; Ahmed, A.; Dwivedi, S. Can yield, soil C and aggregation be improved under long-term conservation agriculture in the eastern Indo-Gangetic plain of India? Eur. J. Soil Sci. 2021, 72, 1742–1761. [Google Scholar] [CrossRef]
- Mirsal, I.A. Soil Pollution; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Artic Monitoring and Assessment Progamme. Assessment Report: Arctic Pollution Issues. Available online: https://www.amap.no/documents/download/100/inline (accessed on 28 July 2024).
- Basosi, R.; Spinelli, D.; Fierro, A.; Jez, S. Mineral nitrogen fertilizers: Environmental impact of production and use. In Fertilizers: Components, Uses in Agriculture and Environmental Impacts; Fernando, L.-V., Fabián, F.-L., Eds.; NOVA Publishers: New York, NY, USA, 2014; pp. 3–43. [Google Scholar]
- Xie, Z.-j.; Ye, C.; Li, C.-h.; Shi, X.-g.; Shao, Y.; Qi, W. The global progress on the non-point source pollution research from 2012 to 2021: A bibliometric analysis. Environ. Sci. Eur. 2022, 34, 121. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Zarei, A.; Esmaeilzadeh, M.; Taghavi, M.; Yousefi, M.; Yousefi, Z.; Sedighi, F.; Javan, S. Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur, Iran. Biol. Trace Elem. Res. 2020, 195, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, T. Water Scarcity at the Global and Regional Scales: Unravelling Its Dominant Drivers in Historical and Future Time Periods. Ph.D. Thesis, Vrije Universiteit Amsterdam, Netherlands, 2017. [Google Scholar]
- Leijnse, M.; Bierkens, M.F.; Gommans, K.H.; Lin, D.; Tait, A.; Wanders, N. Key drivers and pressures of global water scarcity hotspots. Environ. Res. Lett. 2024, 19, 054035. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Chibarabada, T.; Modi, A. Water-food-nutrition-health nexus: Linking water to improving food, nutrition and health in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2016, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.S.; Kareemulla, K.; Krishnan, P.; Murthy, G.; Ramesh, P.; Ananthan, P.; Joshi, P. Agro-ecosystem based sustainability indicators for climate resilient agriculture in India: A conceptual framework. Ecol. Indic. 2019, 105, 621–633. [Google Scholar] [CrossRef]
- Hountondji, Y.-C.; Gaoué, O.G.; Sokpon, N.; Ozer, P. Analyse écogéographique de la fragmentation du couvert végétal au nord Bénin: Paramètres dendrométriques et phytoécologiques comme indicateurs in situ de la dégradation des peuplements ligneux. Geo-Eco-Trop 2013, 37, 53–70. [Google Scholar]
- Imorou, I.T.; Arouna, O.; Zakari, S.; Djaouga, M.; Thomas, O.; Kinmadon, G. Évaluation de la déforestation et de la dégradation des forêts dans les aires protégées et terroirs villageois du bassin cotonnier du Bénin. In Proceedings of the Conférence OSFACO: Des Images Satellites Pour la Gestion Durable des Territoires en Afrique, Cotonou, Benin, 13–15 March 2019. [Google Scholar]
- Liu, Y.; Goodrick, S.; Heilman, W. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions. For. Ecol. Manag. 2014, 317, 80–96. [Google Scholar] [CrossRef]
- Kim, D.-G.; Thomas, A.D.; Pelster, D.; Rosenstock, T.S.; Sanz-Cobena, A. Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: Synthesis of available data and suggestions for further research. Biogeosciences 2016, 13, 4789–4809. [Google Scholar] [CrossRef]
- Oloukoia, J.; Mamab, V.J.; Houssouc, C.S. Satellite Data-Based Analysis of Vegetation Fires in the Central Region of Benin Republic. Octa J. Environ. Res. 2017, 5, 140–148. [Google Scholar]
- Knorr, W.; Dentener, F.; Lamarque, J.-F.; Jiang, L.; Arneth, A. Wildfire air pollution hazard during the 21st century. Atmos. Chem. Phys. 2017, 17, 9223–9236. [Google Scholar] [CrossRef]
- Elliot, W.J.; Page-Dumroese, D.; Robichaud, P.R. The effects of forest management on erosion and soil productivity. In Proceedings of the Soil Quality and Erosion Interaction, Keystone, CO, USA, 7 July 1996; pp. 195–208. [Google Scholar]
- Kooiman, A. The Factor C: Relations between Landcover and Landuse, and Aspects of Soil Erosion, Specifically for the Upper Komering Catchment, South Sumatra, Indonesia; ITC: Geneva, Switzerland, 1987. [Google Scholar]
- Calder, I.; Hofer, T.; Vermont, S.; Warren, P. Towards a new understanding of forests and water. Unasylva 2007, 58, 3–10. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Houelome, T.M.A.; Adandedjan, D.; Chikou, A.; Toko, I.I.; Bonou, C.; Youssao, I.; Laleye, P. Evaluation de la qualité des eaux des ruisseaux du cours moyen de la rivière Alibori par l’étude des macroinvertébrés benthiques dans le bassin cotonnier du Bénin (Afrique de l’Ouest). Int. J. Biol. Chem. Sci. 2016, 10, 2461–2476. [Google Scholar] [CrossRef]
- Houelome, T.M.A.; Adandedjan, D.; Chikou, A.; Toko, I.I.; Koudenoukpo, C.; Bonou, C.; Youssao, I.; Laleye, P. Inventaire et caractéristiques faunistiques des macroinvertébrés de la rivière Alibori dans le bassin cotonnier du Bénin. IJIAS 2017, 21, 433–448. [Google Scholar]
- Adechian, S.A.; Baco, M.N.; Akponikpe, I.; Toko, I.I.; Egah, J.; Affoukou, K. Les pratiques paysannes de gestion des pesticides sur le maïs et le coton dans le bassin cotonnier du Bénin. VertigO 2015, 15, 9–20. [Google Scholar] [CrossRef]
- Follin, J.-C.; Deat, M. Le rôle des facteurs techniques dans l’accroissement des rendements en culture cotonnière. In Coton et Développement: Cinquante Ans d’action Cotonnière au Service du Développement; Hors Série; L’Institut de Recherches du Coton: Paris, France, 1999; pp. 14–23. [Google Scholar]
- Agbohessi, P.T.; Toko, I.I.; Ouédraogo, A.; Jauniaux, T.; Mandiki, S.; Kestemont, P. Assessment of the health status of wild fish inhabiting a cotton basin heavily impacted by pesticides in Benin (West Africa). Sci. Total Environ. 2015, 506, 567–584. [Google Scholar] [CrossRef]
- Epule, E.T.; Peng, C.; Mafany, N.M. Methane emissions from paddy rice fields: Strategies towards achieving a win-win sustainability scenario between rice production and methane emission reduction. JSD 2011, 4, 188. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, J.; Lu, Y.; Sun, K.; Wang, J.; Wang, S. Carbon transportation, transformation, and sedimentation processes at the land-river-estuary continuum. Fundam. Res. 2024, 4, 1594–1602. [Google Scholar] [CrossRef]
- Chanu, T.N.; Nag, S.K.; Koushlesh, S.K.; Devi, M.S.; Das, B.K. Greenhouse Gas Emission from Inland Open Water Bodies and Their Estimation Process—An Emerging Issue in the Era of Climate Change. Agric. Sci. 2022, 13, 290–306. [Google Scholar] [CrossRef]
- Hessou, H.K.; Aïtondji, A.L.; Bio, A.; Djego, G.J.; Tente, B.A. Phytodiversité du sous-bois des plantations de Tectona grandis Lf au Sud de la République du Bénin: État de conservation et perspectives. Afr. sci. 2020, 16, 127–141. [Google Scholar]
- Amanoudo, M.; Wedjangnon, A.; Dossou, J.; Ouinsavi, C.I. Caracterisation des pratiques culturales et de gestion des plantations d’anacardiers (Anacardium occidentale l.) au Benin. Agron. Afr. 2022, 34, 69–79. [Google Scholar]
- Abi, A.; Zountchegnon, L.; Djossa, B.; Rudant, J.-P. Contribution des écosystèmes de plantation d’anacardier à la séquestration du stock de carbone dans la zone soudano-guinéenne du Centre-Bénin à partir des images sentinel-2a. Afr. sci. 2023, 23, 56–71. [Google Scholar]
- Zoundji, C.C.; Houngnandan, P.; Dedehouanou, H.; Toukourou, F. Determinants of soybean [Glycine max (L.) Merrill] production system in Benin. J. Exp. Biol. Agric. Sci. 2015, 3, 430–439. [Google Scholar] [CrossRef]
- DSA. Evolution de la Production Végétale par Commune de 1995 en 2022. Available online: https://dsa.agriculture.gouv.bj/statistics/vegetale (accessed on 30 March 2023).
- Gouda, A.I.; Toko, I.I.; Salami, S.D.; Richert, M.; Scippo, M.L.; Kestemont, P.; Schiffers, B. Pratiques phytosanitaires et niveau d’exposition aux pesticides des producteurs de coton du nord du Bénin. Cah. Agric. 2018, 27, 65002. [Google Scholar] [CrossRef]
- Hermann, M.B.; Moumouni, I.; Mere, S.B.J.T.O. Contribution à l’amélioration des pratiques paysannes de production durable de coton (Gossypium hirsutum) au Bénin: Cas de la commune de Banikoara. IJBCS 2015, 9, 2401–2413. [Google Scholar] [CrossRef]
- Wonka, E. Flächenstatistik und Datengrundlagen nach regionalstatistischen Rastereinheiten in Österreich. In Flächennutzungsmonitoring [I]: Konzepte-Indikatoren-Statistik; Meinel, G., Schumacher, U., Eds.; Shaker: Aachen, Germany, 2009; pp. 155–175. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Lin, B.B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef]
- Naylor, R.L. Managing food production systems for resilience. In Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World; Springer: New York, NY, USA, 2009; pp. 259–280. [Google Scholar]
- Østergård, H.; Finckh, M.R.; Fontaine, L.; Goldringer, I.; Hoad, S.P.; Kristensen, K.; Lammerts van Bueren, E.T.; Mascher, F.; Munk, L.; Wolfe, M.S. Time for a shift in crop production: Embracing complexity through diversity at all levels. J. Sci. Food Agric. 2009, 89, 1439–1445. [Google Scholar] [CrossRef]
- Pieterse, E. Building with ruins and dreams: Some thoughts on realising integrated urban development in South Africa through crisis. Urban Stud. 2006, 43, 285–304. [Google Scholar] [CrossRef]
- Anderson, P.; Brown-Luthango, M.; Cartwright, A.; Farouk, I.; Smit, W. Brokering communities of knowledge and practice: Reflections on the African Centre for Cities’ CityLab programme. Cities 2013, 32, 1–10. [Google Scholar] [CrossRef]
- Parnell, S.; Walawege, R. Sub-Saharan African urbanisation and global environmental change. Glob. Environ. Change 2011, 21, S12–S20. [Google Scholar] [CrossRef]
- dos Santos, J.S.; Dodonov, P.; Oshima, J.E.F.; Martello, F.; de Jesus, A.S.; Ferreira, M.E.; Silva-Neto, C.M.; Ribeiro, M.C.; Collevatti, R.G. Landscape ecology in the Anthropocene: An overview for integrating agroecosystems and biodiversity conservation. Perspect. Ecol. Conserv. 2021, 19, 21–32. [Google Scholar] [CrossRef]
- Niño, L.; Jaramillo, A.; Villamizar, V.; Rangel, O. Geomorphology, Land-Use, and Hemeroby of Foothills in Colombian Orinoquia: Classification and Correlation at a Regional Scale. Pap. Appl. Geogr. 2023, 9, 295–314. [Google Scholar] [CrossRef]
- Marshall, E. Agricultural landscapes: Field margin habitats and their interaction with crop production. J. Crop Improv. 2004, 12, 365–404. [Google Scholar] [CrossRef]
- Garçon, R.; Houdant, B.; Garavaglia, F.; Mathevet, T.; Paquet, E.; Gailhard, J. Expertise humaine des prévisions hydrométéorologiques et communication de leurs incertitudes dans un contexte décisionnel. La Houille Blanche 2009, 5, 71–80. [Google Scholar] [CrossRef]
- Agarski, B.; Budak, I.; Kosec, B.; Hodolic, J. An approach to multi-criteria environmental evaluation with multiple weight assignment. Environ. Model. Assess. 2012, 17, 255–266. [Google Scholar] [CrossRef]
Data Type | Spatial Resolution (m) | Collection Time |
---|---|---|
SPOT 6/7 | 1.5 m | 21 and 27 October 2022 |
Sentinel-2 | 10 m | Time series from 1 January 2022 to 31 December 2022 |
SRTM | 30 m | 2000 |
Land Cover Type | Bagou | Ouenou | Parakou | |||
---|---|---|---|---|---|---|
(km2) | (%) | (km2) | (%) | (km2) | (%) | |
Forest and Riparian | 3.95 | 0.16 | 22.99 | 0.92 | 113.25 | 4.53 |
Woody Savannah | 138.88 | 5.55 | 388.67 | 15.53 | 325.57 | 13.01 |
Deciduous Savannah | 364.28 | 14.56 | 126.48 | 5.06 | 152.08 | 6.08 |
Water | 0.78 | 0.03 | 0.13 | 0.01 | 3.93 | 0.16 |
Other Tree Crops (Teck) | 13.33 | 0.53 | 26.91 | 1.08 | 27.12 | 1.08 |
Fruit Tree Crops (Cashew, Mango) | 24.96 | 1.00 | 238.08 | 9.52 | 562.20 | 22.47 |
Leguminous/Oleaginous (Soja) | 126.24 | 5.05 | 961.98 | 38.45 | 724.37 | 28.95 |
Cereals | 1485.99 | 59.41 | 623.15 | 24.91 | 483.62 | 19.33 |
Roots/Tubers | 0.03 | 0.001 | 30.47 | 1.20 | 29.97 | 1.20 |
Cotton | 326.30 | 13.05 | 61.60 | 2.46 | 8.31 | 0.33 |
Bare Soil | 1.06 | 0.04 | 2.97 | 0.12 | 6.62 | 0.26 |
Built-up Surfaces | 15.56 | 0.62 | 18.50 | 0.74 | 64.93 | 2.60 |
Total | 2501.36 | 100 | 2501.93 | 100 | 2501.97 | 100 |
Criteria | Score 1 (No Intensity) | Score 3 (Moderate) | Score 5 (High) | Score 7 (Maximum) |
---|---|---|---|---|
Degradation of vegetation | No degradation of the initial natural vegetation | Replacement of the original natural vegetation by tree plantations | Replacement of the original natural vegetation by intensive crops | Total disappearance of all forms of vegetation |
Pressures on biodiversity | No pressure | Moderate intensity of the various pressures on biodiversity | High intensity of the various pressures on biodiversity | Total disappearance of all forms of animal and plant life |
Greenhouse gas emissions | No emissions | Comparable to intensive agriculture | Comparable to that of an urban area with more than 10,000 inhabitants/km2 | Comparable to an industrial zone using energy from combustion |
Air pollution | No pollution | |||
Soil erosion | No erosion | Sheet erosion | Sheet and rill erosion | Sheet, rill and gully erosion |
Degradation of soil productivity and characteristics | No degradation | Soil with a reduction in organic matter, loose, and with diversified plant cover | Soil devoid of organic matter, moderately compact, with little plant cover | Soil devoid of organic matter, compact, with no plant cover |
Soil pollution | No pollution | Moderate-intensity pollution linked to urban or low-intensity agricultural activity | High-intensity pollution linked to intensive urban or agricultural activity | Extremely intense pollution linked to industrial discharges |
Water pollution | No pollution | |||
Reduction in water resources | No reduction in the water resources available to humans and ecosystems | Moderately problematic reduction in water resources available to humans and ecosystems | Highly problematic reduction in water resources available to humans and ecosystems | Extremely problematic reduction in water resources available to humans and ecosystems |
Environmental Systems | Criteria | Criteria Weights |
---|---|---|
Hydrosphere | Water pollution | 0.125 |
Reduction in water resources | 0.125 | |
Pedosphere | Soil pollution | 0.083 |
Soil erosion | 0.083 | |
Degradation of soil productivity | 0.083 | |
Atmosphere | Air pollution | 0.125 |
Greenhouse gases emissions | 0.125 | |
Biosphere | Vegetation degradation | 0.125 |
Pressures on biodiversity | 0.125 |
Criteria | Weight | FR | WS | DS | WA | TC | FTC | LO | CER | RT | COT | BS | BUS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Degradation of vegetation | 0.125 | 2 | 2 | 2 | 1 | 3 | 3 | 4 | 4 | 4 | 5 | 6 | 6 |
Pressures on biodiversity | 0.125 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 |
Greenhouse gas emissions | 0.125 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 4 |
Air pollution | 0.125 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 4 |
Soil erosion | 0.083 | 1 | 1 | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 |
Degradation of soil productivity and characteristics | 0.083 | 1 | 1 | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 |
Soil pollution | 0.083 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 3 | 2 | 5 | 5 | 5 |
Water pollution | 0.125 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 3 | 2 | 5 | 5 | 5 |
Reduction in water resources | 0.125 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Human Disturbance Coefficient (HDC) | 2.00 | 2.00 | 1.75 | 2.25 | 2.66 | 2.66 | 2.96 | 3.41 | 3.21 | 3.95 | 4.29 | 4.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padonou, M.J.D.D.D.; Denis, A.; Hountondji, Y.-C.H.; Tychon, B.; Gouwakinnou, G.N. Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data. Environments 2025, 12, 271. https://doi.org/10.3390/environments12080271
Padonou MJDDD, Denis A, Hountondji Y-CH, Tychon B, Gouwakinnou GN. Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data. Environments. 2025; 12(8):271. https://doi.org/10.3390/environments12080271
Chicago/Turabian StylePadonou, Mikhaïl Jean De Dieu Dotou, Antoine Denis, Yvon-Carmen H. Hountondji, Bernard Tychon, and Gérard Nounagnon Gouwakinnou. 2025. "Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data" Environments 12, no. 8: 271. https://doi.org/10.3390/environments12080271
APA StylePadonou, M. J. D. D. D., Denis, A., Hountondji, Y.-C. H., Tychon, B., & Gouwakinnou, G. N. (2025). Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data. Environments, 12(8), 271. https://doi.org/10.3390/environments12080271