Photovoltaic System for Residential Energy Sustainability in Santa Elena, Ecuador
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection Criteria for Case Study and Pilot Area
- Prevailing solar radiation: Data based on the Solar Atlas published by the Ministry of Energy and Mines of Ecuador [71].
- Energy use: The region with the highest electricity use was selected [71].
- Solar potential of Santa Elena Province: Climatic data for 2025 for the pilot area were drawn from the PVsyst database [72].
- Pilot housings (scenarios): The housing selection considered residential consumption and economic factors (e.g., self-financing or government incentives) to represent different levels of household demand in a grid-connected design. Three residential homes—one in each canton—were selected (Figure 2c). In Santa Elena Canton, the high-demand (H) scenario has 14,542 housing units in 31 neighborhoods. Salinas Canton represents the medium-demand (M) scenario with 8715 housing units in 90 neighborhoods, and La Libertad Canton represents the low-demand (L) scenario with 29,377 housing units in 107 neighborhoods [73].
Characterization of Residential Consumption Scenarios and Tariff Structure
2.2. Proposed Design of PV System
- Sizing the PV system: according to the actual energy demand of the users.
- Optimization of panel layout: considering the orientation, inclination and possible obstructions to maximize solar gain.
- Incorporation of solar exposure time and daily electricity generation patterns: obtained from simulations in the PVsyst software, improving energy production as a function of the solar radiation available during the day.
- Evaluation of the performance of the modules: based on the angle of incidence of solar radiation, using the IAM index as an efficiency parameter that emphasizes the precise sizing of the photovoltaic system.
2.2.1. Determination of the PV System Configuration
- Orientation of solar panels: Determines the amount of sunlight captured and the system’s efficiency relative to the sun and the horizon.
- Panel tilt angle: Optimizes energy capture relative to a horizontal plane. For maximum efficiency, sunlight should strike the panels perpendicularly at 90 degrees [91].
- Shading: Reduces panel performance and causes power loss in the system [92].
- Solar panels: Convert sunlight into electrical energy through silicon-based PV cells, generating direct current (DC) [13]. There are several types of solar panels: monocrystalline—highest efficiency, requires less space; polycrystalline—lower cost, slightly less efficient; thin-film—lower efficiency, but flexible and lightweight [93].
- Inverter: Transforms direct current (DC) into alternating current (AC), suitable for domestic use [94].
- Direct solar radiation: Solar energy that reaches the earth’s surface without being scattered in the atmosphere, which occurs when the sun is fully visible [95].
- Diffuse radiation: Reaches a surface after being scattered in the atmosphere or reflected in various directions. It accounts for a larger share in winter and represents approximately 55% of global radiation annually [96].
- Albedo solar radiation: Refers to the fraction of solar irradiance reflected by a surface. Horizontal surfaces receive minimal reflected radiation, while vertical surfaces capture the most [97].
- Global solar radiation: Corresponds to the combination of direct and diffuse radiation [98]. The PVsyst software incorporates a location-specific radiation database, which improves the accuracy of the simulations.
2.2.2. Matriz de Sensibilidad
2.3. Strategies for PV System Design
2.3.1. Technical–Environmental Analysis
2.3.2. SWOT and AHP Analysis
3. Results
3.1. Characteristics of Pilot Area
3.1.1. Energy Consumption Profiles
3.1.2. Analysis of Solar Generation Profile
3.2. Proposed Design of PV Systems
Impact of Variables on PV System Viability
3.3. Benefits of PV System Design
3.4. Proposed Strategic Guidelines
- Implement net-metering tariffs for the national electric grid, adapting the existing regulatory framework for residential users.
- Promote strategic alliances between public and private entities, taking advantage of financial resources and technical capacities for the development of PV projects.
- Consider the integration of hybrid energy sources, such as solar-wind and solar-biomass combinations, in order to generate employment and strengthen resilience to energy crises.
- Develop an energy contingency plan that includes risk assessments, environmental solution design, and community training.
- Reduce taxes on solar PV equipment to improve the market supply and accessibility of solar panels.
- Encourage training programs in PV system design for both technicians and the general public to reduce technical limitations.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaurasia, A.R. Population effects of increase in world energy use and CO2 emissions: 1990–2019. J. Popul. Sustain. 2020, 5, 87–107. [Google Scholar] [CrossRef]
- Vaca, P.; Cartuche, I. Relationship between CO2 emissions and the degree of urbanization globally and between groups of countries: An approach using advanced econometric techniques of panel data. Rev. Económica 2020, 5, 82–89. Available online: https://revistas.unl.edu.ec/index.php/economica/article/view/775 (accessed on 14 July 2025).
- Wang, W.; Tang, Q.; Gao, B. Exploration of CO2 emission reduction pathways: Identification of influencing factors of CO2 emission and CO2 emission reduction potential of power industry. Clean Technol. Environ. Policy 2023, 25, 1589–1603. [Google Scholar] [CrossRef]
- Choudhary, A.K. Environmental Aspects and Electrical Energy Generation. Desarro. Energías Renov. Tecnol. Mater. Sostenibilidad 2025, 1, 327–350. [Google Scholar] [CrossRef]
- Kaur, D.; Rehman, M. Renewable energy made in India: Navigating geopolitics in achieving sustainability. J. Chinese Econ. Bus. Stud. 2024, 22, 455–476. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100–545. [Google Scholar] [CrossRef]
- Holloway, M.L. The oil and gas state adds renewable wind and solar. Innov. Dyn. Policy Energy Sect. 2021, 11, 249–262. [Google Scholar] [CrossRef]
- Ullah, S.; Lin, B. Green energy dynamics: Analyzing the environmental impacts of renewable, hydro, and nuclear energy consumption in Pakistan. Renew. Energy 2024, 232, 121–125. [Google Scholar] [CrossRef]
- Girgibo, N.; Hiltunen, E.; Lü, X.; Mäkiranta, A.; Tuomi, V. Risks of climate change effects on renewable energy resources and the effects of their utilisation on the environment. Energy Rep. 2024, 11, 1517–1534. [Google Scholar] [CrossRef]
- Mahmood, S.; Misra, P.; Sun, H.; Luqman, A.; Papa, A. Sustainable infrastructure, energy projects, and economic growth: Mediating role of sustainable supply chain management. Ann. Oper. Res. 2024, 7, 1–32. [Google Scholar] [CrossRef]
- Lundmark, R. Examining the inaction in energy renovation decisions: The role of transaction costs in single-family households in Sweden. Energy Res. Soc. Sci. 2024, 114, 103591. [Google Scholar] [CrossRef]
- Campodónico, H.; Carrera, C. Energy transition and renewable energies: Challenges for Peru. Energy Policy 2022, 171, 113261. [Google Scholar] [CrossRef]
- Tang, J.; Ni, H.; Peng, R.-L.; Wang, N.; Zuo, L. A review on energy conversion using hybrid photovoltaic and thermoelectric systems. J. Power Sources 2023, 562, 232–785. [Google Scholar] [CrossRef]
- Rüstemli, S.; Güntas, O.; Şahin, G.; Koç, A.; van Sark, W.; Doğan, S.Ş. Wind power plant site selection problem solution using GIS and resource assessment and analysis of wind energy potential by estimating Weibull distribution function for sustainable energy production: The case of Bitlis/Turkey. Energy Strateg. Rev. 2024, 56, 101–552. [Google Scholar] [CrossRef]
- Naveen Kumar, K.A.; Vigneshwaran, A. Renewable Energy Resources and Their Types; IGI Global Scientific Publishing: Hershey, PA, USA, 2023; pp. 116–135. [Google Scholar] [CrossRef]
- Shen, L.; Yin, X. Solar spectral management for natural photosynthesis: From photonics designs to potential applications. Nano Converg. 2022, 9, 36. [Google Scholar] [CrossRef]
- Shaker, L.M.; Mohammed, J.K.; Basem, A.; Halbos, R.J.; Mahdi, R.R.; Mohammed, S.A.; Fayad, M.A.; Al-Amiery, A.; Lami, M.H. Al Comparative analysis of solar cells and hydrogen fuel: A mini-review. Results Eng. 2024, 23, 102507. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Santa, R.; Crnac, Z.; Bošnjaković, T. Environmental Impact of PV Power Systems. Sustainability 2023, 15, 11888. [Google Scholar] [CrossRef]
- Bin Alam, F.; Tushar, S.R.; Debnath, B.; Taghipour, A.; Dinçer, H.; Islam, A.R.M.T.; Bari, A.B.M.M.; Tushan, S.S. Assessing the factors influencing the adoption of geothermal energy to support the national grid in emerging economies: Implications for sustainability. Sustain. Oper. Comput. 2024, 5, 167–180. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K.S.; Sangmesh, B.; Karuppasamy, K.S.K. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Spangerberg, J.H. Sustainability Indicators: A Scientific Assessment. 2007. Available online: https://books.google.com.ec/books?hl=es&lr=&id=W4o-qunretMC&oi=fnd&pg=PA107&dq=the+four+pillars+of+sustainable+development:+economic,+social,+environmental,+and+institu-tional+development+&ots=iiDdQCuM79&sig=cQPpb0nAnfU5Y161c4fm9o4o2Nk&redir_esc=y#v=onepa (accessed on 15 July 2025).
- Nyasapoh, M.A.; Elorm, M.D.; Derkyi, N.S.A. The role of renewable energies in sustainable development of Ghana. Sci. Afr. 2022, 16, 11–99. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Chen, Z.; Abdelhaleem, A.; Ihara, I.; Mohamed, I.M.A.; Yap, P.S.; Rooney, D.W. Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: A review. Environ. Chem. Lett. 2023, 21, 1381–1418. [Google Scholar] [CrossRef]
- Bashiru, O.; Ochem, C.; Enyejo, L.A.; Manuel, H.N.N.; Adeoye, T.O. The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. Glob. J. Eng. Technol. Adv. 2024, 19, 011–036. [Google Scholar] [CrossRef]
- Vaidya, H.; Chatterji, T. SDG 11 Sustainable Cities and Communities; Springer: Singapore, 2020; pp. 173–185. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://www.un.org/sustainabledevelopment/es/ (accessed on 25 November 2024).
- Franco, A.; Rocca, M. Renewable Electricity and Green Hydrogen Integration for Decarbonization of “Hard-to-Abate” Industrial Sectors. Electricity 2024, 5, 471–490. [Google Scholar] [CrossRef]
- Çağlayan, D. A Robust Design of a Renewable European Energy System Encompassing a Hydrogen Infrastructure. Energy & environment 2020, 523, 46–50. [Google Scholar] [CrossRef]
- de Lima, F.J.L.; Gonçalves, A.R.; Costa, R.S.; Pes, M.P.; dos Santos, A.P.P.; Orsini, J.A.M.; Pereira, E.B.; Martins, F.R. Reducing uncertainties of climate projections on solar energy resources in Brazil. Sci. Rep. 2024, 14, 23586. [Google Scholar] [CrossRef]
- Endo, A.; Yamada, M.; Miyashita, Y.; Sugimoto, R.; Ishii, A.; Nishijima, J.; Fujii, M.; Kato, T.; Hamamoto, H.; Kimura, M.; et al. Dynamics of water–energy–food nexus methodology, methods, and tools. Curr. Opin. Environ. Sci. Health 2020, 13, 46–60. [Google Scholar] [CrossRef]
- Macedo, L.; Franco, J.; Romero, R.; Rider, M. An MILP model for the analysis of operation of energy storage devices in distribution systems. In Proceedings of the 2016 IEEE PES Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA), Morelia, Mexico, 20–24 September 2016; ISBN 978-1-5090-2875-7. [Google Scholar]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renew. Sustain. Energy Rev. 2018, 92, 160–170. [Google Scholar] [CrossRef]
- IRENA. The Global Atlas for Renewable Energy: A Decade in the Making; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2024; ISBN 978-92-9260-587-2. [Google Scholar]
- Herrera-Franco, G.; Bollmann, H.A.; Lofhagen, J.C.P.; Bravo-Montero, L.; Carrión-Mero, P. Approach on water-energy-food (WEF) nexus and climate change: A tool in decision-making processes. Environ. Dev. 2023, 46, 100858. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Bravo-Montero, L.; Caicedo-Potosí, J.; Carrión-Mero, P. A Sustainability Approach between the Water–Energy–Food Nexus and Clean Energy. Water 2024, 16, 1017. [Google Scholar] [CrossRef]
- Serrano-Guerrero, X.; Alvarez-Lozano, D.; Romero, S.F.L. Influence of local climate on the tilt and orientation angles in fixed flat surfaces to maximize the capture of solar irradiation: A case study in Cuenca-Ecuador. In Proceedings of the 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 13–15 November 2019. [Google Scholar] [CrossRef]
- Cevallos-Sierra, J.; Ramos-Martin, J. Spatial assessment of the potential of renewable energy: The case of Ecuador. Renew. Sustain. Energy Rev. 2018, 81, 1154–1165. [Google Scholar] [CrossRef]
- CEIC. Ecuador Electricity Production, 1971–2024. 2024. Available online: https://www.ceicdata.com/en/indicator/ecuador/electricity-production (accessed on 1 November 2024).
- Ministerio de Energía y Minas. Balance Energético Nacional 2023. 2024. Available online: https://mem.gob.gt/wp-content/uploads/2024/08/BALANCE-ENERGETICO-2023.pdf (accessed on 1 November 2024).
- Ministerio de Energía y Minas. National Electric Energy Balance (BNEE)—March 2024—Open Data Ecuador. 2025. Available online: https://datosabiertos.gob.ec/dataset/https-www-controlrecursosyenergia-gob-ec-balance-nacional-de-energia-electrica/resource/3e1082fd-eb7a-4d3a-96c6-75633024c110 (accessed on 14 April 2025).
- Rajput, I.; Verma, J.; Ahuja, H. Performance evaluation of microgrid with extreme learning machine based PID controller. Bull. Electr. Eng. Inform. 2023, 12, 1901–1907. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Nagaj, R.; Žuromskaitė-Nagaj, B.; Grebski, W.W. The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis. Energies 2024, 17, 947. [Google Scholar] [CrossRef]
- Zuo, Z.; Niu, Y.; Li, J.; Fu, H.; Zhou, M. Machine Learning for Advanced Emission Monitoring and Reduction Strategies in Fossil Fuel Power Plants. Appl. Sci. 2024, 14, 8442. [Google Scholar] [CrossRef]
- Trela, M.; Dubel, A. Net-Metering vs. Net-Billing from the Investors Perspective—Impacts of Changes in RES Financing in Poland on the Profitability of a Joint Photovoltaic Panels and Heat Pump System. Energies 2021, 15, 227. [Google Scholar] [CrossRef]
- Simoglou, C.K.; Vagropoulos, S.I.; Biskas, P.N. A comparative techno-economic study of the Net-Metering and Net-Billing self-consumption schemes for industrial and residential consumers in Greece. Sustain. Energy Grids Netw. 2025, 43, 101726. [Google Scholar] [CrossRef]
- Szabo, L.; Moner- Girona, M.; Jäger-Waldau, A.; Kougias, I.; Mezosi, A.; Fahl, F.; Szabo, S. Impacts of large-scale deployment of vertical bifacial photovoltaics on European electricity market dynamics. Nat. Commun. 2024, 15, 6681. [Google Scholar] [CrossRef]
- IEC. IEC 61727: Photovoltaic (PV) Systems—Grid Interface Characteristics. 2004. Available online: http://solargostaran.com (accessed on 25 December 2024).
- ARCENNR. Regulation No. ARCERNNR-008/24. 2025. Available online: https://arconel.gob.ec/wp-content/uploads/downloads/2025/05/Regulacion-Nro.-ARCERNNR-008-23-signed1.pdf (accessed on 30 December 2024).
- AlMallahi, N.M.; Al Swailmeen, Y.; Ali Abdelkareem, M.; Ghani Olabi, A.; Elgendi, M. A path to sustainable development goals: A case study on the thirteen largest photovoltaic power plants. Energy Convers. Manag. X 2024, 22, 100553. [Google Scholar] [CrossRef]
- Hinrichs-Rahlwes, R. Massive Growth of PV Capacity As a Major Cornerstone of Germany’s Energy Security and Climate Policies; Springer: Cham, Switzerland, 2024; pp. 149–161. [Google Scholar] [CrossRef]
- Zatonatskiy, D.; Lieonov, S. Progressive practices of implementing public-private partnership projects un critical infraestructure. Socio-Econ. Relat. Digit. Soc. 2024, 1, 59–72. [Google Scholar] [CrossRef]
- Aguiar-Hernandez, C.; Breetz, H.L. The adverse effects of political instability on innovation systems: The case of Mexico’s wind and solar sector. Technovation 2024, 136, 103083. [Google Scholar] [CrossRef]
- Ministerio de Energías y Recursos Naturales no Renovables. Energy Consumption by Sector and Source 2023; 2024. En; 2019 ISBN 2.48913.5031. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2024/08/BEN_2023-final_compressed.pdf (accessed on 30 December 2024).
- Sánchez Cano, J.E. El Sector Energético del Ecuador y la Diversificación de la Matriz Energética: El Caso de Manta, Ecuador, 1st ed.; Editorial Of the Juárez University of Durango: Durango, México, 2015; p. 416. ISBN 978-9942-959-27-0. [Google Scholar]
- Escandón, A.B.; Nieves, D.J.; Fajardoc, I.R.; Leónesteban, E.F.Z.; Guerrero, X.S. Barriers to renewable energy expansion: Ecuador as a case study. Energy Strateg. Rev. 2022, 43, 100903. [Google Scholar] [CrossRef]
- U.S Mission Ecuador. Alert: Update on Electrical Outages, Water Rationing, and Curfews—U.S. Embassy and Consulate in Ecuador. 2024. Available online: https://ec.usembassy.gov/alert-update-on-electrical-outages-water-rationing-and-curfews/ (accessed on 21 October 2024).
- Ministerio de Energía y Minas. The Minister of Energy and Mines Reported on the Current Energy Situation and Government Actions to Achieve Stability in the Sector. 2024. Available online: https://www.recursosyenergia.gob.ec/el-ministro-de-energia-y-minas-informo-sobre-la-situacion-energetica-actual-y-las-acciones-gubernamentales-para-alcanzar-la-estabilidad-del-sector/ (accessed on 21 October 2024).
- Adewnmi, A.; Olu-lawal, K.A.; Okoli, C.E.; Usman, F.O.; Usiagu, G.S. Sustainable energy solutions and climate change: A policy review of emerging trends and global responses. World J. Adv. Res. Rev. 2023, 21, 408–420. [Google Scholar] [CrossRef]
- Kouhestani, F.M.; Byrne, J.; Johnson, D.; Spencer, L.; Hazendonk, P.; Brown, B. Evaluating solar energy technical and economic potential on rooftops in an urban setting: The city of Lethbridge, Canada. Int. J. Energy Environ. Eng. 2019, 10, 13–32. [Google Scholar] [CrossRef]
- Hidalgo, A.; Villacrés, L.; Hechavarría, R.; Moya, D. Proposed integration of a photovoltaic solar energy system and energy efficient technologies in the lighting system of the UTA-Ecuador. Energy Procedia 2017, 134, 296–305. [Google Scholar] [CrossRef]
- IDAE. La Electrificación Rural En Ecuador. 2018. Available online: https://biblioteca.olade.org/opac-tmpl/Documentos/cg00288.pdf? (accessed on 24 July 2025).
- Vallati, A.; Di Matteo, M.; Sundararajan, M.; Muzi, F.; Fiorini, C.V. Development and optimization of an energy saving strategy for social housing applications by water source-heat pump integrating photovoltaic-thermal panels. Energy 2024, 301, 131531. [Google Scholar] [CrossRef]
- Veličkovska, I. Implementation of a SWOT-AHP methodology for strategic development of a district heating plant in fuzzy environment. Strateg. Manag. 2022, 27, 43–56. [Google Scholar] [CrossRef]
- Rolando, M.; Salas, C.; Americana De Europa, U. Design of a Renewable Energy System Based on Photovoltaic Solar Panels for the Ibarra Market, Ecuador. Cienc. Lat. Rev. Científica Multidiscip. 2024, 8, 731–748. [Google Scholar] [CrossRef]
- Umar, I.H.; Lin, H.; Hassan, J.I. Transforming Landslide Prediction: A Novel Approach Combining Numerical Methods and Advanced Correlation Analysis in Slope Stability Investigation. Appl. Sci. 2024, 14, 3685. [Google Scholar] [CrossRef]
- Chevez, P.; Viñuela, J.; Urteneche, E.; Fondoso, S.; Martini, I. Caracterización de Patrones de Consumo Eléctrico e Inserción de Sistemas Fotovoltaicos en Edificios Universitarios. Av. En Energías Renov. Medio Ambient.—AVERMA 2023, 27, 321–332. Available online: https://portalderevistas.unsa.edu.ar/index.php/averma/article/view/4633 (accessed on 20 July 2025).
- PVsyst, S.A. Grid Connected Systems, Sistema Fotovoltaico PVsyst Versión 8.0.4. 2024. Available online: https://www.pvsyst.com/pdf-tutorials/ (accessed on 23 June 2024).
- Baqir, M.; Channi, H.K. Analysis and design of solar PV system using Pvsyst software. Mater. Today Proc. 2022, 48, 1332–1338. [Google Scholar] [CrossRef]
- Carmona, C.; Bacelar, T.; Barbosa, E.; Vilela, O. Evaluación de Métodos de Gestión de Activos Aplicados a Los Sistemas Fotovoltaicos Flotantes. Available online: https://portalderevistas.unsa.edu.ar/index.php/averma/article/view/1182/1137 (accessed on 17 July 2025).
- Gobierno del Ecuador. Energy Consumption by Sector and Source 2023. National Energy Balance Chapter 4. 2024. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2024/08/BEN_2023-cap_4.pdf (accessed on 3 February 2025).
- Echegaray-Aveiga, R.C.; Masabanda, M.; Rodriguez, F.; Toulkeridis, T.; Mato, F. Solar Energy Potential in Ecuador. In Proceedings of the 2018 Fifth International Conference on eDemocracy & eGovernment (ICEDEG), Ambato, Ecuador, 4–6 April 2018; pp. 46–51. [Google Scholar] [CrossRef]
- CELEC EP. Photovoltaic Solar Potential. 2024. Available online: https://www.google.com/search?q=Potencial+Solar+Fotovoltaico&rlz=1C1VDKB_esEC1034EC1034&oq=Potencial+Solar+Fotovoltaico&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIICAEQABgWGB4yCggCEAAYgAQYogQyCggDEAAYogQYiQUyCggEEAAYgAQYogQyCggFEAAYgAQYogQyCggGEAAYgAQYogTSAQc5NTFqMGo (accessed on 27 January 2025).
- INEC. Occupied Private Homes by Type of Housing, According to Province, Canton, Area, and Predominant Roof Material. 2022. Available online: https://www.censoecuador.gob.ec/ (accessed on 30 January 2025).
- ARCERNNR. Pliego Tarifario del Servicio Público de Energía Eléctrica Año 2025. Resolución Nro. ARCONEL-022/2024. 2025. Available online: https://www.cnelep.gob.ec/wp-content/uploads/2025/01/2.-Pliego-Tarifario-del-Servicio-Publico-de-Energia-Electrcia-ano-2025.pdf (accessed on 18 July 2025).
- Parra, R.; Yánez, G.; Pinto, G.; Rea, A. Heterogeneous energy consumption across household types in the residential sector of Ecuador. Figempa Investig. Desarro. 2024, 17, 102–111. [Google Scholar] [CrossRef]
- ARCERNNR. Annual and Multi-Year Statistics on the Ecuadorian Electricity Sector. 2024. Available online: https://arconel.gob.ec/wp-content/uploads/downloads/2025/04/Estadistica2024_abr.pdf (accessed on 18 July 2025).
- CNEL EP. Factura de Consumo Eléctrico del año 2024. Corporación Nacional de Electricidad. Available online: https://www.cnelep.gob.ec/ (accessed on 18 July 2025).
- US Department of Energy. Representative Profiles of Utility-Scale Solar Photovoltaics in the United States (1998–2023). 2024. Available online: https://data.openei.org/ (accessed on 16 July 2025).
- Litardo, J.; Palme, M.; Hidalgo-León, R.; Amoroso, F.; Soriano, G. Energy saving strategies and on-site power generation in a university building from a tropical climate. Appl. Sci. 2021, 11, 542. [Google Scholar] [CrossRef]
- Praprost, M.; Fleming, K.A.; Dahlhausen, M. ENERGY STAR for Tenants: An Online Energy Estimation Tool for Commercial Office Building Tenants; National Renewable Energy Laboratory: Applewood, CO, USA, 2020. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL) Data and Tools. Available online: https://www.nrel.gov/solar (accessed on 16 July 2025).
- Akshay VR. Achieving Peak Efficiency with Optimal Solar Panel Orientation and Tilt. 2023. Available online: https://arka360.com/ros/optimize-solar-panel-orientation-tilt-maximum-efficiency/ (accessed on 21 October 2024).
- Jiménez, D.L.; Marrero, S.; Castañeda, D.; Fabara, F.; Montero, R. Solar Radiation Prediction Using Recurrent Neural Networks for Photovoltaic Plant Sizing. Rev. Politécnica 2024, 54, 27–34. [Google Scholar] [CrossRef]
- Maykel, I.; Palacios Arauz, A.; Danner, M.; Figueroa Guerra, A.; Samantha, M.; Puente Bosquez, M.; Carlos, M.J.; Vanegas, P. On-grid photovoltaic system for self-supply of energy in a housing development. Boletín Científico Ideas Voces 2025, 5, 75–89. [Google Scholar] [CrossRef]
- González Solórzano, E.R.; Gualotuña Caiza, D.O.; Quinteros Flores, J.F. Design of an Optimal Microgrid Based on the Solar Photovoltaic Resource at the Salesian Polytechnic University—South Campus, Using HOMER PRO Software. ID tecnológico. 2022, 18, 109–123. Available online: https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/3647/4312 (accessed on 16 July 2025).
- Khan, S.U.D.; Wazeer, I.; Almutairi, Z. Comparative Analysis of SAM and RETScreen Tools for the Case Study of 600 kW Solar PV System Installation in Riyadh, Saudi Arabia. Sustainability 2023, 15, 5381. [Google Scholar] [CrossRef]
- Zhong, Q.; Tong, D. Spatial layout optimization for solar photovoltaic (PV) panel installation. Renew. Energy 2020, 150, 1–11. [Google Scholar] [CrossRef]
- Shin, H.; Khoshelham, K.; Lee, K.; Jung, S.; Kim, D.; Lee, W. Effect of Incidence Angle on Temperature Measurement of Solar Panel with Unmanned Aerial Vehicle-Based Thermal Infrared Camera. Remote Sens. 2024, 16, 1607. [Google Scholar] [CrossRef]
- Samaila, B.; Garba, J.M. Comparative Study on Ground and Roof-Mounted Solar PV Systems. J. Energy Eng. Thermodyn. 2024, 4, 9–21. [Google Scholar] [CrossRef]
- Awan, A.B.; Alghassab, M.; Zubair, M.; Bhatti, A.R.; Uzair, M.; Abbas, G. Comparative Analysis of Ground-Mounted vs. Rooftop Photovoltaic Systems Optimized for Interrow Distance between Parallel Arrays. Energies 2020, 13, 3639. [Google Scholar] [CrossRef]
- Lu, N.; Qin, J. Optimization of tilt angle for PV in China with long-term hourly surface solar radiation. Renew. Energy 2024, 229, 120741. [Google Scholar] [CrossRef]
- Jamal, J.; Mansur, I.; Rasid, A.; Mulyadi, M.; Marwan, M.D.; Marwan, M. Evaluating the shading effect of photovoltaic panels to optimize the performance ratio of a solar power system. Results Eng. 2024, 21, 101878. [Google Scholar] [CrossRef]
- El Gany, M.A.A.; Hassan, M.F.; Asham, M.D.; Demerdash, U.M. El Experimental Investigation of Silicon and Dye Sensitized Solar Cells Based on Wavelength Dependence. J. Basic Environ. Sci. 2018, 5, 123–133. [Google Scholar] [CrossRef]
- Tareen, W.U.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system. Renew. Sustain. Energy Rev. 2017, 70, 635–655. [Google Scholar] [CrossRef]
- Oliveira, M.; Silva Lopes, H.; Mendonça, P.; Tenpierik, M.; Silva, L.T. Solar Radiation Measurement Tools and Their Impact on In Situ Testing—A Portuguese Case Study. Buildings 2024, 14, 2117. [Google Scholar] [CrossRef]
- Bijarniya, J.P.; Sudhakar, K.; Baredar, P. Concentrated solar power technology in India: A review. Renew. Sustain. Energy Rev. 2016, 63, 593–603. [Google Scholar] [CrossRef]
- Ziar, H.; Sönmez, F.F.; Isabella, O.; Zeman, M. A comprehensive albedo model for solar energy applications: Geometric spectral albedo. Appl. Energy 2019, 255, 113867. [Google Scholar] [CrossRef]
- Dal Pai, A.; Escobedo, J.F.; Martins, D.; Teramoto, É.T. Analysis of hourly global, direct and diffuse solar radiations attenuation as a function of optical air mass. Energy Procedia 2014, 57, 1060–1069. [Google Scholar] [CrossRef]
- Araújo, V.; Cabré, M. Energía Solar y Eólica en Colombia: Panorama y Resumen de Políticas 2022; Stockholm Environment Institute: Stockholm, Sweden, 2022. [Google Scholar] [CrossRef]
- Vicidomini, M.; Figaj Rafałand Cappiello, F.L.; Cristea, M.; Cristea, C.; Tîrnovan, R.-A.; Mioara, F. Levelized Cost of Energy (LCOE) of Different Photovoltaic Technologies. Appl. Sci. 2025, 15, 6710. [Google Scholar] [CrossRef]
- Naing, M.T.; Mar, S.S.; Kyaw, H.W.W.; Dare, R. Grounded Theory Exploration and SWOT Analysis for the Strategic Development of Photovoltaic Solar Energy in Myanmar. 2024. Available online: https://jofscience.com/index.php/ARJOCS/article/view/121 (accessed on 11 December 2024).
- PVsyst, S.A. Project Design, Economic Evaluation, Financial Results. 2023. Available online: https://www.pvsyst.com/help-pvsyst7/financial_balance.htm (accessed on 3 February 2025).
- Nugent, D.; Sovacool, B.K. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey. Energy Policy 2014, 65, 229–244. [Google Scholar] [CrossRef]
- Style, O. Off-Grid Solar Energy: Planning, Sizing, and Installing an Off-Grid PV System. pg, 19. ITACA: Rome, Italy, 2021; ISBN 978-84-615-7887-0. Available online: https://books.google.es/books?hl=es&lr=&id=cNJB5tdbcJ0C&oi=fnd&pg=PP1&dq=la+Eficiencia+Energética+Relativa+(EER),+definida+como+la+relación+entre+la+ener (accessed on 24 July 2025).
- García Castillo, A. Life Cycle Analysis of a Photovoltaic Installation in Jaén; pg (19). 2021. Available online: https://crea.ujaen.es/server/api/core/bitstreams/e8e4d389-bd8c-442f-82aa-460c05e63dba/content (accessed on 4 February 2025).
- Adanma, U.M.; Ogunbiyi, E.O. Assessing the economic and environmental impacts of renewable energy adoption across different global regions. Eng. Sci. Technol. J. 2024, 5, 1767–1793. [Google Scholar] [CrossRef]
- IRENA Renewable Power Generation Costs in 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf (accessed on 24 July 2025).
- Millingalli Ayala, J.F.; Pazuña Naranjo, W.P.; Corrales Bonilla, J.I. Analysis and evaluation of distributed photovoltaic generation as an alternative to mitigate the energy crisis in Ecuador. Int. J. 2025, 4, 87–103. [Google Scholar] [CrossRef]
- Ayala-Chauvin, M.; Sanmartí, G.R.; Riba, C.; Lara, P. Evaluation of the energy autonomy of urban areas as an instrument to promote the energy transition. Energy Sources Part B Econ. Plan. Policy 2022, 17. [Google Scholar] [CrossRef]
- Fernández Rabadán, M. Diseño de Una Instalación Fotovoltaica en el Campus Sur UPM Con Módulos Bifaciales de Última Generación. Available online: https://oa.upm.es/70967/1/TFG_VICTOR_MAESTRE_SAEZ.pdf (accessed on 17 July 2025).
- Solargis Data. Free Solar Resource Maps and GIS Data, Ecuador. Global Horizontal Irradiation. 2021, 1. Available online: https://solargis.com/resources/free-maps-and-gis-data?locality=ecuador (accessed on 18 September 2024).
- SENPLADES. Generation of Geoinformation for National Land Management, Scale 1:25,000. 2021. Available online: https://iedg.sni.gob.ec/wp-content/uploads/2022/06/Plan_Geografico_Nacional_2017_2021_V1.pdf (accessed on 13 June 2025).
- Alsharif, M.H.; Kim, J.; Kim, J.H. Opportunities and challenges of solar and wind energy in South Korea: A review. Sustainability 2018, 10, 1822. [Google Scholar] [CrossRef]
- Khezri, R.; Mahmoudi, A.; Aki, H. Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives. Renew. Sustain. Energy Rev. 2022, 153, 111763. [Google Scholar] [CrossRef]
- Energy Data Global Solar Atlas PV Electricity and Solar Radiation. 2025. Available online: https://globalsolaratlas.info/detail?c=-1.384143,-80.727539,7&s=-2.227603,-80.90538&m=site&pv=small,0,3,1 (accessed on 17 July 2025).
- Ayala, J.M.B.; Bernal, S.A.M.; Torres, J.C.C. Sistemas fotovoltaicos On-Grid en viviendas vacacionales, caso de estudio Tarqui-Ecuador. AlfaPublicaciones 2025, 7, 150–171. [Google Scholar] [CrossRef]
- García, J.L.; Jurado, F.; Larco, V. Review and Resource Assessment: Solar Energy in Different Regions in Ecuador. E3S Web Conf. 2019, 80, 01003. [Google Scholar] [CrossRef]
- Leite, N.H.; Guzman Lascano, C.P.; Valente Morais, H.G.; Pereira da Silva, L.C. Impact of the net-metering policies on solar photovoltaic investments for residential scale: A case study in Brazil. Renew. Energy 2024, 231, 120788. [Google Scholar] [CrossRef]
- Zalamaea León, E.; Ochoa Correa, D.; Sánchez Castillo, H.; Astudillo Flores, M.; Barragán Escandon, E.A.; Ordoñez Castro, A. Expectations Versus Reality: Economic Performance of a Building-Integrated Photovoltaic System in the Andean Ecuadorian Context. Buildings 2025, 15, 2493. [Google Scholar] [CrossRef]
- Beltrán, Y.M.G. Small-scale power generation in Mexico: Obstacles and alternatives. Andamios Rev. Investig. Soc. 2024, 21, 319–345. [Google Scholar] [CrossRef]
- Chabla-Auqui, L.; Ochoa-Correa, D.; Villa-Ávila, E.; Astudillo-Salinas, P. Distributed Generation Applied to Residential Self-Supply in South America in the Decade 2013–2023: A Literature Review. Energies 2023, 16, 6207. [Google Scholar] [CrossRef]
- Song, C.; Gardner, K.H.; Klein, S.J.W.; Souza, S.P.; Mo, W. Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renew. Sustain. Energy Rev. 2018, 90, 945–956. [Google Scholar] [CrossRef]
- Dey, B.; Bhattacharyya, B.; Márquez, F.P.G. A hybrid optimization-based approach to solve environment constrained economic dispatch problem on microgrid system. J. Clean. Prod. 2021, 307, 127196. [Google Scholar] [CrossRef]
- Mogrovejo-Narvaez, M.; Barragán-Escandón, A.; Zalamea-León, E.; Serrano-Guerrero, X. Barriers to the Implementation of On-Grid Photovoltaic Systems in Ecuador. Sustainability 2024, 16, 9466. [Google Scholar] [CrossRef]
- Jasiński, J.; Kozakiewicz, M.; Sołtysik, M. Analysis of the Economic Soundness and Viability of Migrating from Net Billing to Net Metering Using Energy Cooperatives. Energies 2024, 17, 1330. [Google Scholar] [CrossRef]
- Ordóñez, Á.; Sánchez, E.; Rozas, L.; García, R.; Parra-Domínguez, J. Net-metering and net-billing in photovoltaic self-consumption: The cases of Ecuador and Spain. Sustain. Energy Technol. Assess. 2022, 53, 102434. [Google Scholar] [CrossRef]
- Hancevic, P.I.; Sandoval, H.H. Solar panel adoption among Mexican small and medium-sized commercial and service businesses. Energy Econ. 2023, 126, 106979. [Google Scholar] [CrossRef]
- Lu, B.; Blakers, A.; Stocks, M.; Cheng, C.; Nadolny, A. A zero-carbon, reliable and affordable energy future in Australia. Energy 2021, 220, 119678. [Google Scholar] [CrossRef]
- Carrera Iturralde, L.A.; Borges Jiménez, R.; Romero Santiago, D.; Cuán Cortés, M.A.; Robles Constantino, C.D.; Hernández Hernández, R. Implementation of Solar Photovoltaic Systems in Caribbean Buildings: Case Study Efficient; 16. 2024. Available online: http://scielo.sld.cu/pdf/rus/v16n2/2218-3620-rus-16-02-244.pdf (accessed on 16 July 2025).
- Murphy, D.J.; Raugei, M.; Carbajales-Dale, M.; Estrada, B.R. Energy Return on Investment of Major Energy Carriers: Review and Harmonization. Sustainability 2022, 14, 7098. [Google Scholar] [CrossRef]
- Celik, I.; Philips, A.B.; Song, Z.; Yan, Y.; Ellingson, R.J.; Heben, M.J.; Apul, D. Energy payback time (EPBT) and energy return on energy invested (EROI) of perovskite tandem photovoltaic solar cells. IEEE J. Photovolt. 2018, 8, 305–309. [Google Scholar] [CrossRef]
- Gupta, A. Energy Return on Energy Invested (EROI) and Energy Payback Time (EPBT) for PVs. A Compr. Guid. Sol. Energy Syst. 2018, 21, 407–425. [Google Scholar] [CrossRef]
- Portillo, F.; Alcayde, A.; Garcia, R.M.; Fernandez-Ros, M.; Gazquez, J.A.; Novas, N. Life Cycle Assessment in Renewable Energy: Solar and Wind Perspectives. Environments 2024, 11, 147. [Google Scholar] [CrossRef]
- Shakeel, S.R.; Yousaf, H.; Irfan, M.; Rajala, A. Solar PV adoption at household level: Insights based on a systematic literature review. Energy Strateg. Rev. 2023, 50, 101178. [Google Scholar] [CrossRef]
- Saxena, V.; Manna, S.; Rajput, S.K.; Kumar, P.; Sharma, B.; Alsharif, M.H.; Kim, M.K. Navigating the complexities of distributed generation: Integration, challenges, and solutions. Energy Rep. 2024, 12, 3302–3322. [Google Scholar] [CrossRef]
- Uzum, B.; Onen, A.; Hasanien, H.M.; Muyeen, S.M. Rooftop Solar PV Penetration Impacts on Distribution Network and Further Growth Factors—A Comprehensive Review. Electronics 2020, 10, 55. [Google Scholar] [CrossRef]
- Sun Conservation. How Much Does It Cost to Install Solar Panels in Ecuador? 2024. Available online: https://www.sunconservation.com/post/cuánto-cuesta-instalar-paneles-solares-en-ecuador (accessed on 26 June 2025).
- Yajamín, G.S.I.; Carrión, D.F.C.; Gualán, D.F.V.; Zurita, R.C.B.; Carrion, H.D.C. Assessment of the current state of photovoltaic systems in Ecuador: Progress, challenges, and prospects. Cienc. Lat. Rev. Científica Multidiscip. 2023, 7, 9493–9509. [Google Scholar] [CrossRef]
- Guillén-Mena, V.; Quesada, F. Assessment model of energy performance in housing of Cuenca, Ecuador. Ain Shams Eng. J. 2019, 10, 897–905. [Google Scholar] [CrossRef]
- Castillo-Ramírez, A.; Mejía-Giraldo, D.; Molina-Castro, J.D. Fiscal incentives impact for RETs investments in Colombia. Energy Sources Part B Econ. Plan. Policy 2017, 12, 759–764. [Google Scholar] [CrossRef]
- Power Technology. Top Five Solar PV Plants in Development in Peru. 2024. Available online: https://www.power-technology.com/data-insights/top-5-solar-pv-plants-in-development-in-peru/ (accessed on 25 January 2025).
- Ouerghi, F.H.; Omri, M.; Nisar, K.S.; El-Aziz, R.M.A.; Taloba, A.I. Investigating the potential of geothermal energy as a sustainable replacement for fossil fuels in commercial buildings. Alexandria Eng. J. 2024, 97, 215–229. [Google Scholar] [CrossRef]
- Berrezueta, E.; Kovacs, T.; Herrera-Franco, G.; Mora-Frank, C.; Caicedo-Potosí, J.; Carrion-Mero, P.; Carneiro, J. Laboratory studies on CO2-brine-rock interaction: An analysis of research trends and current knowledge. Int. J. Greenh. Gas Control. 2023, 123, 103842. [Google Scholar] [CrossRef]
- Solar Placas. LCOE of Renewable Energy: Key Economic Assessment. 2024. Available online: https://solarplacas.es/lcoe-de-las-energias-renovables/? (accessed on 25 January 2025).
- Muñoz-Vizhñay, J.P.; Rojas-Moncayo, M.V.; Barreto-Calle, C.R. Incentive for distributed generation in Ecuador. Ingenius 2018, 19, 60–68. [Google Scholar] [CrossRef]
- Garlet, T.B.; Ribeiro, J.L.D.; de Souza Savian, F.; Siluk, J.C.M. Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil. Renew. Sustain. Energy Rev. 2019, 111, 157–169. [Google Scholar] [CrossRef]
- Chere-Quiñónez, B.F.; Martínez-Peralta, A.J.; Mercado-Bautista, J.D. Technical-economic analysis of the implementation of a microgrid with integration of renewable energies in the Esmeraldas Canton, Ecuador. Int. J. Phys. Sci. Eng. 2022, 6, 91–108. [Google Scholar] [CrossRef]
- Mera, Á.Q.; Velasco, M.T. Economic analysis of energy efficiency due to the use of LED technology in residential electrical consumption. Res Non Verba Rev. Científica 2021, 11, 73–91. [Google Scholar] [CrossRef]
- Giuseppe Marco, T.; Bontempo Scavo, F.; Merlo, L.; Bizzarri, F. Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants. Appl. Energy 2021, 281, 116084. [Google Scholar] [CrossRef]
- Hayibo, K.S.; Petsiuk, A.; Mayville, P.; Brown, L.; Pearce, J.M. Monofacial vs bifacial solar photovoltaic systems in snowy environments. Renew. Energy 2022, 193, 657–668. [Google Scholar] [CrossRef]
- Barbero, D.A.; Chévez, P.J.; Discoli, C.A.; Martini, I. Modelo sistémico para el análisis de escenarios de consumo energético residencial. Cuad. Urbano 2022, 32, 25. [Google Scholar] [CrossRef]
- Zurich Resilience Solutions Risk Insight: Roof Mounted Photovoltaic Panels and Systems Design, Installation and Maintenance. Available online: https://www.riscauthority.co.uk/resource-download/404 (accessed on 24 July 2025).
- Easysolar. Cómo el Sombreado Afecta la Eficiencia de los Paneles Solares. 2025. Available online: https://easysolar.app/en/how-shading-impacts-solar-panel-efficiency/? (accessed on 24 July 2025).
Voltage Level | Energy (USD/kWh) | Voltage Level | Energy (USD/kWh) |
---|---|---|---|
1–50 | 0.091 | 351–500 | 0.105 |
51–100 | 0.093 | 501–700 | 0.1285 |
101–150 | 0.095 | 701–1000 | 0.145 |
151–200 | 0.097 | 1001–1500 (M) | 0.1709 |
201–250 (L) | 0.099 | 1501–2500 (H) | 0.2752 |
251–300 | 0.101 | 2501–3500 * | 0.436 |
301–350 | 0.103 | >3500 | 0.6812 |
Scenario | Jan * | Feb * | Mar * | Apr * | May * | Jun * | Jul * | Aug * | Sep * | Oct * | Nov * | Dec * | Total * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | 149 | 124 | 138 | 202 | 208 | 180 | 201 | 167 | 180 | 134 | 137 | 126 | 1946 |
M | 1000 | 900 | 850 | 800 | 750 | 900 | 1000 | 950 | 850 | 800 | 900 | 1000 | 10,700 |
H | 2700 | 2609 | 2490 | 2475 | 2400 | 2200 | 2490 | 2491 | 2480 | 2486 | 2500 | 2600 | 29,921 |
0° | 30° | 50° | 60° | 70° | 75° | 80° | 85° | 90° |
---|---|---|---|---|---|---|---|---|
1 | 0.999 | 0.987 | 0.962 | 0.892 | 0.816 | 0.681 | 0.44 | 0 |
Solar Panel | Inverter | ||
---|---|---|---|
Technology | Mono-crystalline bifacial module with (half-cell twin) technology | Technology | Generic |
Unit power | 500 Wp | Nominal Power | 7.5 kWac |
Design Specifications | System Design Losses (%) | ||
DC/AC ratio | 1.07 | Temperature | 6.00 |
System inclination | 20° | Module mismatch | 2.00 |
Orientation (azimuth) | 0° north | DC wiring | 1.00 |
Module quality | 0.40 | ||
Shading | not present | Irradiance | 0.60 |
Total global | 11.70 |
Parameter | L | M | H | Unit |
---|---|---|---|---|
Azimuth | 20 | 20 | 20 | ° |
N° panels | 5 | 16 | 35 | units |
Inverter | 1 | 1 | 3 | |
Annual energy | 1946.16 | 10,700 | 35,080 | kWh/year |
Energy prod annual | 2241.5 | 12,481 | 38,172 | |
Pnom total of panels | 1.50 | 8 | 25 | kWp |
Pnom total of inverter | 1.80 | 7.5 | 18.8 | kWac |
Modules (string × in series) | 1 × 5 | 1 × 8 | 5 × 7 | - |
Panels area | 7.1 | 35 | 102 | m2 |
Perf ratio (Pr) | 83.42% | 87.10% | 86.96% | % |
Solar fraction (SF) | 41.79% | 41.55% | 41.25% | % |
System Summary | L | M | H | Unit |
---|---|---|---|---|
Total installation cost | 4038.8 | 7985.6 | 16,182 | USD |
Operating costs | 100 | 200 | 250 | USD/year |
Useful energy from solar | 813 | 891 | 14,500 | Kwh/year |
Energy sold to the grid | 1428 | 8036 | 23,700 | Kwh/year |
Cost of produced energy (LCOE) | 0.0567 | 0.0556 | 0.020 | USD/kWh |
Data for Emissions Balance | L Scenario | M Scenario | H Scenario | Unit |
---|---|---|---|---|
Required capacity | 2 | 8 | 24 | kWp |
Embodied energy | 1000 | 4000 | 12,000 | kWh |
Manufacturing emissions | 100 | 400 | 1200 | Kg CO2 |
Energy generated over 25 years | 56,038.25 | 312,000 | 954,250 | kWh |
Emissions avoided | 2.60 | 99.5 | 304.4 | t CO2 |
System output | 2241.53 | 12,480 | 38,170 | kWh/yr |
Grid life cycle emissions | 319 | 319 | 319 | gCO2/kWh |
Lifespan | 25 | 25 | 25 | years |
Annual degradation | 1 | 1 | 1 | % |
EPBT | 0.44 | 0.32 | 0.31 | years |
Net balance | 13.3 | 83 | 265.1 | t CO2 |
Strengths (Internal, Positive) | Opportunities (External, Positive) |
---|---|
S1: Interest in PV energy projects for sustainable housing in Santa Elena Province. S2: Harnessing solar energy as a long-term sustainable power source. S3: Reduction in dependence on the conventional power grid and increased energy autonomy. | O1: Reduction of carbon footprint and improvement of air quality. O2: Development of strategic plans for sustainable residential energy consumption. O3: Dissemination and support for PV system training by academia, technicians, and companies. |
Weaknesses (Internal, Negative) | Threats (External, Negative) |
W1: High initial investment required for PV systems. W2: Limited training for technicians and the general public on PV systems. W3: Economic limitations for purchasing PV equipment and software for analyzing complex hybrid systems. | T1: Public resistance to training in PV system design. T2: Climate–technical limitations that may affect the performance of PV systems. T3: High taxes on PV system equipment. |
SWOT Categories | Factor Weight | Factor Intensity | Total Intensity |
---|---|---|---|
S1: Interest in PV energy projects for sustainable housing in Santa Elena Province. | 30 | 4 | 1.2 |
S2: Harnessing solar energy as a long-term sustainable power source. | 50 | 5 | 2.5 |
S3: Reduction in dependence on the conventional power grid and increased energy autonomy. | 20 | 3 | 0.6 |
O1: Reduction of carbon footprint and improvement of air quality. | 50 | 5 | 2.5 |
O2: Development of strategic plans for sustainable residential energy consumption. | 30 | 4 | 1.2 |
O3: Dissemination and support for PV system training by academia, technicians, and companies. | 20 | 3 | 0.6 |
W1: High initial investment required for PV systems. | 50 | 5 | 2.5 |
W2: Limited training for technicians and the general public on PV systems. | 30 | 4 | 1.2 |
W3: Economic limitations for purchasing PV equipment and software for analyzing complex hybrid systems. | 20 | 3 | 0.6 |
T1: Public resistance to training in PV system design. | 15 | 2 | 0.3 |
T2: Climate–technical limitations that may affect the performance of PV systems. | 35 | 4 | 1.4 |
T3: High taxes on PV system equipment. | 50 | 5 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Guillén, A.; Gutiérrez-Hinestroza, M.; Moreno-Alcívar, L.; Bravo-Montero, L.; Herrera-Franco, G. Photovoltaic System for Residential Energy Sustainability in Santa Elena, Ecuador. Environments 2025, 12, 281. https://doi.org/10.3390/environments12080281
García-Guillén A, Gutiérrez-Hinestroza M, Moreno-Alcívar L, Bravo-Montero L, Herrera-Franco G. Photovoltaic System for Residential Energy Sustainability in Santa Elena, Ecuador. Environments. 2025; 12(8):281. https://doi.org/10.3390/environments12080281
Chicago/Turabian StyleGarcía-Guillén, Angela, Marllelis Gutiérrez-Hinestroza, Lucrecia Moreno-Alcívar, Lady Bravo-Montero, and Gricelda Herrera-Franco. 2025. "Photovoltaic System for Residential Energy Sustainability in Santa Elena, Ecuador" Environments 12, no. 8: 281. https://doi.org/10.3390/environments12080281
APA StyleGarcía-Guillén, A., Gutiérrez-Hinestroza, M., Moreno-Alcívar, L., Bravo-Montero, L., & Herrera-Franco, G. (2025). Photovoltaic System for Residential Energy Sustainability in Santa Elena, Ecuador. Environments, 12(8), 281. https://doi.org/10.3390/environments12080281