Effect of High-Temperature Nitridation and Buffer Layer on Semi-Polar (10–13) AlN Grown on Sapphire by HVPE
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Jiang, K.; Sun, X.; Guo, C. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43–110. [Google Scholar] [CrossRef]
- Jo, M.; Hirayama, H. Growth of non-polar a-plane AlN on r-plane sapphire. Jpn. J. Appl. Phys. 2016, 55. [Google Scholar] [CrossRef]
- Le, D.D.; Kim, D.Y.; Hong, S.-K. Crystal orientation variation of nonpolar AlN films with III/V ratio on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Electron. Mater. Lett. 2014, 10, 1109–1114. [Google Scholar] [CrossRef]
- Leathersich, J.; Suvarna, P.; Tungare, M.; Shahedipour-Sandvik, F. Homoepitaxial growth of non-polar AlN crystals using molecular dynamics simulations. Surf. Sci. 2013, 617, 36–41. [Google Scholar] [CrossRef]
- Shen, X.-Q.; Kojima, K.; Okumura, H. Single-phase high-quality semipolar (10–13) AlN epilayers on m-plane (10–10) sapphire substrates. Appl. Phys. Express 2020, 13, 035502. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Liu, T.; Lu, Y.; Zhang, J. Growth of semi-polar (10–13) AlN film on m-plane sapphire with high-temperature nitridation by HVPE. Materials 2021, 14, 1722. [Google Scholar] [CrossRef] [PubMed]
- Kukushkin, S.A.; Osipov, A.V.; Redkov, A.V.; Sharofidinov, S.S. Epitaxial growth of bulk semipolar AlN films on Si (001) and Hybrid SiC/Si (001) Substrates. Tech. Phys. Lett. 2020, 46, 539–542. [Google Scholar] [CrossRef]
- Bessolov, V.N.; Kompan, M.E.; Konenkova, E.V.; Panteleev, V.N. Hydride vapor-phase epitaxy of a semipolar AlN(10–12) layer on a nanostructured Si(100) substrate. Tech. Phys. Lett. 2020, 46, 59–61. [Google Scholar] [CrossRef]
- Jo, M.; Itokazu, Y.; Kuwaba, S.; Hirayama, H. Improved crystal quality of semipolar AlN by employing a thermal annealing technique with MOVPE. J. Cryst. Growth 2019, 507, 307–309. [Google Scholar] [CrossRef]
- Tajima, J.; Murakami, H.; Kumagai, Y.; Takada, K.; Koukitu, A. Preparation of a crack-free AlN template layer on sapphire substrate by hydride vapor-phase epitaxy at 1450 °C. J. Cryst. Growth 2009, 311, 2837–2839. [Google Scholar] [CrossRef]
- Ranalli, F.; Parbrook, P.J.; Bai, J.; Lee, K.B.; Wang, T.; Cullis, A.G. Non-polar AlN and GaN/AlN on r-plane sapphire. Phys. Status Solidi C 2009, 6, 780–783. [Google Scholar] [CrossRef]
- Hu, N.; Dinh, D.V.; Pristovsek, M.; Honda, Y.; Amano, H. How to obtain metal-polar untwinned high-quality (10–13) GaN on m-plane sapphire. J. Cryst. Growth 2019, 507, 205–208. [Google Scholar] [CrossRef]
- Ueno, K.; Kobayashi, A.; Ohta, J.; Fujioka, H. Improvement in the Crystalline Quality of Semipolar AlN(1–102) Films by Using ZnO Substrates with Self-Organized Nanostripes. Appl. Phys. Express 2010, 3, 041002. [Google Scholar] [CrossRef]
- Ueno, K.; Kobayashi, A.; Ohta, J.; Fujioka, H. Structural properties of semipolar AlxGa1−xN (1–103) films grown on ZnO substrates using room temperature epitaxial buffer layers. Phys. Status Solidi A 2010, 207, 2149–2152. [Google Scholar] [CrossRef]
- Ichikawa, S.; Funato, M.; Kawakami, Y. Metalorganic vapor phase epitaxy of pit-free AlN homoepitaxial films on various semipolar substrates. J. Cryst. Growth 2019, 522, 68–77. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, J.; Guo, Y.; Zhang, L.; Lu, Y.; Wei, X.; Wang, J.; Li, J. Study of the morphology evolution of AlN grown on nano-patterned sapphire substrate. J. Semicond. 2019, 40, 122803. [Google Scholar] [CrossRef]
- Sun, X.; Li, D.; Chen, Y.; Song, H.; Jiang, H.; Li, Z.; Miao, G.; Zhang, Z. In situ observation of two-step growth of AlN on sapphire using high-temperature metal–organic chemical vapour deposition. CrystEngComm 2013, 15, 6066–6073. [Google Scholar] [CrossRef]
- Lahourcade, L.; Bellet-Amalric, E.; Monroy, E.; Chauvat, M.P.; Ruterana, P. Molecular beam epitaxy of semipolar AlN(11–22) and GaN(11–22) on m-sapphire. J. Mater. Sci.: Mater. Electron. 2008, 19, 805–809. [Google Scholar] [CrossRef]
- Nagashima, T.; Harada, M.; Yanagi, H.; Fukuyama, H.; Kumagai, Y.; Koukitu, A.; Takada, K. Improvement of AlN crystalline quality with high epitaxial growth rates by hydride vapor phase epitaxy. J. Cryst. Growth 2007, 305, 355–359. [Google Scholar] [CrossRef]
- Ma, Z.-C.; Chiu, K.-A.; Wei, L.-L.; Chang, L. Formation of m-plane AlN on plasma-nitrided m-plane sapphire. Jpn. J. Appl. Phys. 2019, 58, Sc1033. [Google Scholar] [CrossRef]
- Won, Y.; So, B.; Woo, S.; Lee, D.; Kim, M.; Nam, K.; Im, S.; Shim, K.B.; Nam, O. Effect of nitridation on the orientation of GaN layer grown on m-sapphire substrates using hydride vapor phase epitaxy. J. Ceram. Process. Res. 2014, 15, 61–65. [Google Scholar]
- Stellmach, J.; Frentrup, M.; Mehnke, F.; Pristovsek, M.; Wernicke, T.; Kneissl, M. MOVPE growth of semipolar (11–22) AIN on m-plane (10–10) sapphire. J. Cryst. Growth 2012, 355, 59–62. [Google Scholar] [CrossRef]
- Jo, M.; Itokazu, Y.; Kuwaba, S.; Hirayama, H. Controlled crystal orientations of semipolar AlN grown on an m-plane sapphire by MOCVD. Jpn. J. Appl. Phys. 2019, 58, SC1031. [Google Scholar] [CrossRef]
- Zhao, D.G.; Jiang, D.S.; Wu, L.L.; Le, L.C.; Li, L.; Chen, P.; Liu, Z.S.; Zhu, J.J.; Wang, H.; Zhang, S.M.; et al. Effect of dual buffer layer structure on the epitaxial growth of AlN on sapphire. J. Alloys Compd. 2012, 544, 94–98. [Google Scholar] [CrossRef]
- Lin, C.H.; Yamashita, Y.; Miyake, H.; Hiramatsu, K. Fabrication of high-crystallinity a-plane AlN films grown on r-plane sapphire substrates by modulating buffer-layer growth temperature and thermal annealing conditions. J. Cryst. Growth 2017, 468, 845–850. [Google Scholar] [CrossRef]
- Miyake, H.; Nishio, G.; Suzuki, S.; Hiramatsu, K.; Fukuyama, H.; Kaur, J.; Kuwano, N. Annealing of an AlN buffer layer in N2-CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 2016, 9, 025501. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K.; Sun, X.; Ben, J.; Jia, Y.; Liu, H.; Wang, Y.; Wu, Y.; Kai, C.; Li, D. The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. CrystEngComm 2018, 20, 2720–2728. [Google Scholar] [CrossRef]
- Sun, M.; Li, J.; Zhang, J.; Sun, W. The fabrication of AlN by hydride vapor phase epitaxy. J. Semicond. 2019, 40, 121803. [Google Scholar] [CrossRef]
- Okojie, R.S.; Holzheu, T.; Huang, X.; Dudley, M. X-ray diffraction measurement of doping induced lattice mismatch in n-type 4H-SiC epilayers grown on p-type substrates. Appl. Phys. Lett. 2003, 83, 1971–1973. [Google Scholar] [CrossRef] [Green Version]
- Kallel, T.; Dammak, M.; Wang, J.; Jadwisienczak, W.M. Raman characterization and stress analysis of AlN: Er3+ epilayers grown on sapphire and silicon substrates. Mater. Sci. Eng. B 2014, 187, 46–52. [Google Scholar] [CrossRef]
- Kim, D.H.; Schweitz, M.A.; Koo, S.M. Effect of gas annealing on the electrical properties of Ni/AlN/SiC. Micromachines 2021, 12, 283. [Google Scholar] [CrossRef]
Sample | Nitridation Temperature/°C | Temperature of Buffer Layer/°C | Growth Temperature/°C |
---|---|---|---|
A | 1050 | 800 | 1500 |
B | 1050 | 1300 | 1500 |
C | 1300 | 800 | 1500 |
D | 1300 | 1300 | 1500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, X.; Zhao, J.; Sun, Z.; Lu, Y.; Liu, T.; Zhang, J. Effect of High-Temperature Nitridation and Buffer Layer on Semi-Polar (10–13) AlN Grown on Sapphire by HVPE. Micromachines 2021, 12, 1153. https://doi.org/10.3390/mi12101153
Zhang Q, Li X, Zhao J, Sun Z, Lu Y, Liu T, Zhang J. Effect of High-Temperature Nitridation and Buffer Layer on Semi-Polar (10–13) AlN Grown on Sapphire by HVPE. Micromachines. 2021; 12(10):1153. https://doi.org/10.3390/mi12101153
Chicago/Turabian StyleZhang, Qian, Xu Li, Jianyun Zhao, Zhifei Sun, Yong Lu, Ting Liu, and Jicai Zhang. 2021. "Effect of High-Temperature Nitridation and Buffer Layer on Semi-Polar (10–13) AlN Grown on Sapphire by HVPE" Micromachines 12, no. 10: 1153. https://doi.org/10.3390/mi12101153
APA StyleZhang, Q., Li, X., Zhao, J., Sun, Z., Lu, Y., Liu, T., & Zhang, J. (2021). Effect of High-Temperature Nitridation and Buffer Layer on Semi-Polar (10–13) AlN Grown on Sapphire by HVPE. Micromachines, 12(10), 1153. https://doi.org/10.3390/mi12101153