Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (58,121)

Search Parameters:
Keywords = high-temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 (registering DOI) - 2 Aug 2025
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
38 pages, 6505 KiB  
Review
Trends in Oil Spill Modeling: A Review of the Literature
by Rodrigo N. Vasconcelos, André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, Diego P. Costa, Soltan G. Duverger and Elaine C. B. Cambui
Water 2025, 17(15), 2300; https://doi.org/10.3390/w17152300 (registering DOI) - 2 Aug 2025
Abstract
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused [...] Read more.
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused on examining trends in scientific publications, utilizing the complete dataset derived after systematic screening and database integration. In the second phase, we applied elements of a systematic review to identify and evaluate the most influential contributions in the scientific field of oil spill simulations. Our analysis revealed a steady and accelerating growth of research activity over the past five decades, with a particularly notable expansion in the last two. The field has also experienced a marked increase in collaborative practices, including a rise in international co-authorship and multi-authored contributions, reflecting a more global and interdisciplinary research landscape. We cataloged the key modeling frameworks that have shaped the field from established systems such as OSCAR, OIL-MAP/SIMAP, and GNOME to emerging hybrid and Lagrangian approaches. Hydrodynamic models were consistently central, often integrated with biogeochemical, wave, atmospheric, and oil-spill-specific modules. Environmental variables such as wind, ocean currents, and temperature were frequently used to drive model behavior. Geographically, research has concentrated on ecologically and economically sensitive coastal and marine regions. We conclude that future progress will rely on the real-time integration of high-resolution environmental data streams, the development of machine-learning-based surrogate models to accelerate computations, and the incorporation of advanced biodegradation and weathering mechanisms supported by experimental data. These advancements are expected to enhance the accuracy, responsiveness, and operational value of oil spill modeling tools, supporting environmental monitoring and emergency response. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
33 pages, 12598 KiB  
Article
OKG-ConvGRU: A Domain Knowledge-Guided Remote Sensing Prediction Framework for Ocean Elements
by Renhao Xiao, Yixiang Chen, Lizhi Miao, Jie Jiang, Donglin Zhang and Zhou Su
Remote Sens. 2025, 17(15), 2679; https://doi.org/10.3390/rs17152679 (registering DOI) - 2 Aug 2025
Abstract
Accurate prediction of key ocean elements (e.g., chlorophyll-a concentration, sea surface temperature, etc.) is imperative for maintaining marine ecological balance, responding to marine disaster pollution, and promoting the sustainable use of marine resources. Existing spatio-temporal prediction models primarily rely on either physical or [...] Read more.
Accurate prediction of key ocean elements (e.g., chlorophyll-a concentration, sea surface temperature, etc.) is imperative for maintaining marine ecological balance, responding to marine disaster pollution, and promoting the sustainable use of marine resources. Existing spatio-temporal prediction models primarily rely on either physical or data-driven approaches. Physical models are constrained by modeling complexity and parameterization errors, while data-driven models lack interpretability and depend on high-quality data. To address these challenges, this study proposes OKG-ConvGRU, a domain knowledge-guided remote sensing prediction framework for ocean elements. This framework integrates knowledge graphs with the ConvGRU network, leveraging prior knowledge from marine science to enhance the prediction performance of ocean elements in remotely sensed images. Firstly, we construct a spatio-temporal knowledge graph for ocean elements (OKG), followed by semantic embedding representation for its spatial and temporal dimensions. Subsequently, a cross-attention-based feature fusion module (CAFM) is designed to efficiently integrate spatio-temporal multimodal features. Finally, these fused features are incorporated into an enhanced ConvGRU network. For multi-step prediction, we adopt a Seq2Seq architecture combined with a multi-step rolling strategy. Prediction experiments for chlorophyll-a concentration in the eastern seas of China validate the effectiveness of the proposed framework. The results show that, compared to baseline models, OKG-ConvGRU exhibits significant advantages in prediction accuracy, long-term stability, data utilization efficiency, and robustness. This study provides a scientific foundation and technical support for the precise monitoring and sustainable development of marine ecological environments. Full article
Show Figures

Figure 1

37 pages, 3618 KiB  
Review
Lithium Slag as a Supplementary Cementitious Material for Sustainable Concrete: A Review
by Sajad Razzazan, Nuha S. Mashaan and Themelina Paraskeva
Materials 2025, 18(15), 3641; https://doi.org/10.3390/ma18153641 (registering DOI) - 2 Aug 2025
Abstract
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes [...] Read more.
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes experimental findings on LS replacement levels, fresh-state behavior, mechanical performance (compressive, tensile, and flexural strengths), time-dependent deformation (shrinkage and creep), and durability (sulfate, acid, abrasion, and thermal) of LS-modified concretes. Statistical analysis identifies an optimal LS dosage of 20–30% (average 24%) for maximizing compressive strength and long-term durability, with 40% as a practical upper limit for tensile and flexural performance. Fresh-state tests show that workability losses at high LS content can be mitigated via superplasticizers. Drying shrinkage and creep strains decrease in a dose-dependent manner with up to 30% LS. High-volume (40%) LS blends achieve up to an 18% gain in 180-day compressive strength and >30% reduction in permeability metrics. Under elevated temperatures, 20% LS mixes retain up to 50% more residual strength than controls. In advanced systems—autoclaved aerated concrete (AAC), one-part geopolymers, and recycled aggregate composites—LS further enhances both microstructural densification and durability. In particular, LS emerges as a versatile SCM that optimizes mechanical and durability performance, supports material circularity, and reduces the carbon footprint. Full article
17 pages, 4156 KiB  
Article
Numerical and Experimental Study on Deposition Mechanism of Laser-Assisted Plasma-Sprayed Y2O3 Coating
by Hui Zou, Xutao Zhao, Bin Fu, Huabao Yang and Chengda Sun
Coatings 2025, 15(8), 904; https://doi.org/10.3390/coatings15080904 (registering DOI) - 2 Aug 2025
Abstract
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, [...] Read more.
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, the temperature of coating particles under laser loading displays a gradient distribution, with the surface having the highest temperature. The particles deposit on the substrate to form uniform pits of a certain depth. Plastic deformation causes maximum stress to occur at the edges of the pits and maximum strain to occur on the sidewall of the pits. The deposition region had both compressive and tensile stresses, and laser loading greatly reduced the tensile stresses’ magnitude while having less of an impact on the particle strains. Laser assistance promotes further melting of particles, reduces coating thickness, lowers coating porosity to 3.94%, increases hardness to 488 MPa, reduces maximum pore size from 68 µm to 32 µm, and causes particle sputtering to gradually evolve from being disc-shaped to being finger-shaped, creating cavities at the coating edges. The comparison between the surface morphology and the cross-section pores of the experimentally prepared coating verified the rationality and viability of the simulation work. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 (registering DOI) - 2 Aug 2025
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

17 pages, 6127 KiB  
Article
Road Performance and Modification Mechanism of Waste Polyethylene Terephthalate-Modified Asphalt
by Ruiduo Li, Menghao Wang, Dingbin Tan, Yuzhou Sun, Liqin Li, Yanzhao Yuan and Fengzhan Mu
Coatings 2025, 15(8), 902; https://doi.org/10.3390/coatings15080902 (registering DOI) - 2 Aug 2025
Abstract
The incorporation of waste polyethylene terephthalate (PET) as a modifier for asphalt presents a promising approach to addressing the environmental pollution associated with waste plastics while simultaneously extending the service life of road surfaces. This study investigates the fundamental physical properties and rheological [...] Read more.
The incorporation of waste polyethylene terephthalate (PET) as a modifier for asphalt presents a promising approach to addressing the environmental pollution associated with waste plastics while simultaneously extending the service life of road surfaces. This study investigates the fundamental physical properties and rheological properties of asphalt modified with waste PET at both high and low temperatures. Utilizing the theory of fractional derivatives, performance evaluation indicators, such as the deformation factor and viscoelasticity factor, have been developed for the assessment of waste PET-modified asphalt. The underlying mechanism of this modification was examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicate that the addition of waste PET enhances the high-temperature stability of the base asphalt but reduces its resistance to cracking at low temperatures. The fractional derivative model effectively describes the dynamic shear rheological properties of waste PET-modified asphalt, achieving a maximum correlation coefficient of 0.99991. Considering the performance of modified asphalt at both high and low temperatures, the optimal concentration of waste PET was determined to be 6%. At this concentration, the minimum creep stiffness of the PET-modified asphalt was approximately 155 MPa at −6 °C. Additionally, the rutting factor of the waste PET-modified asphalt achieved a maximum value of 527.12 KPa at 52 °C. The interaction between waste PET and base asphalt was primarily physical, with mutual adsorption leading to the formation of a spatial network structure that enhanced the deformation resistance of the asphalt. This study provides a theoretical foundation and technical support for the engineering application of waste PET as a modifier in asphalt. Full article
Show Figures

Figure 1

31 pages, 5203 KiB  
Article
Projecting Extinction Risk and Assessing Conservation Effectiveness for Three Threatened Relict Ferns in the Western Mediterranean Basin
by Ángel Enrique Salvo-Tierra, Jaime Francisco Pereña-Ortiz and Ángel Ruiz-Valero
Plants 2025, 14(15), 2380; https://doi.org/10.3390/plants14152380 (registering DOI) - 1 Aug 2025
Abstract
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. [...] Read more.
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. This study assesses the population trends and climate sensitivity of these species in Los Alcornocales Natural Park using annual abundance time series for a decade, empirical survival projections, and principal component analysis to identify key climatic drivers. Results reveal distinct climate response clusters among populations, though intra-specific variation highlights the importance of local conditions. Climate change is already impacting population viability, especially for P. incompleta, which shows high sensitivity to rising maximum temperatures and prolonged heatwaves. Climate-driven models forecast more severe declines than empirical ones, particularly for C. macrocarpa and P. incompleta, with the latter showing a projected collapse by the mid-century. In contrast, D. caudatum exhibits moderate vulnerability. Crucially, the divergence between models underscores the impact of conservation efforts: without reinforcement and reintroduction actions, projected declines would likely be more severe. These results project a decline in the populations of the studied ferns, highlighting the urgent need to continue implementing both in situ and ex situ conservation measures. Full article
(This article belongs to the Special Issue Plant Conservation Science and Practice)
Show Figures

Figure 1

21 pages, 20135 KiB  
Article
Strain-Rate Effects on the Mechanical Behavior of Basalt-Fiber-Reinforced Polymer Composites: Experimental Investigation and Numerical Validation
by Yuezhao Pang, Chuanlong Wang, Yue Zhao, Houqi Yao and Xianzheng Wang
Materials 2025, 18(15), 3637; https://doi.org/10.3390/ma18153637 (registering DOI) - 1 Aug 2025
Abstract
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in [...] Read more.
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in aerospace and shipbuilding. This study experimentally investigated the mechanical properties of BFRP plates under various strain rates (10−4 s−1 to 103 s−1) and directions using an electronic universal testing machine and a split Hopkinson pressure bar (SHPB).The results demonstrate significant strain rate dependency and pronounced anisotropy. Based on experimental data, relationships linking the strength of BFRP composites in different directions to strain rate were established. These relationships effectively predict mechanical properties within the tested strain rate range, providing reliable data for numerical simulations and valuable support for structural design and engineering applications. The developed strain rate relationships were successfully validated through finite element simulations of low-velocity impact. Full article
(This article belongs to the Special Issue Mechanical Properties of Advanced Metamaterials)
Show Figures

Figure 1

41 pages, 1651 KiB  
Review
Progress and Challenges in the Process of Using Solid Waste as a Catalyst for Biodiesel Synthesis
by Zhaolin Dong, Kaili Dong, Haotian Li, Liangyi Zhang and Yitong Wang
Molecules 2025, 30(15), 3243; https://doi.org/10.3390/molecules30153243 (registering DOI) - 1 Aug 2025
Abstract
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various [...] Read more.
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various methods for preparing biodiesel catalysts from solid waste. These methods not only enhance the utilization rate of waste but also reduce the production costs and environmental impact of biodiesel. Finally, the limitations of waste-based catalysts and future research directions are discussed. Research indicates that solid waste can serve as a catalyst carrier or active material for biodiesel production. Methods such as high-temperature calcination, impregnation, and coprecipitation facilitate structural modifications to the catalyst and the formation of active sites. The doping of metal ions not only alters the catalyst’s acid-base properties but also forms stable metal bonds with functional groups on the carrier, thereby maintaining catalyst stability. The application of microwave-assisted and ultrasound-assisted methods reduces reaction parameters, making biodiesel production more economical and sustainable. Overall, this study provides a scientific basis for the reuse of solid waste and ecological protection, emphasizes the development potential of waste-based catalysts in biodiesel production, and offers unique insights for innovation in this field, thereby accelerating the commercialization of biodiesel. Full article
Show Figures

Graphical abstract

17 pages, 5839 KiB  
Article
Hydrogen Bond-Regulated Rapid Prototyping and Performance Optimization of Polyvinyl Alcohol–Tannic Acid Hydrogels
by Xiangyu Zou and Jun Huang
Gels 2025, 11(8), 602; https://doi.org/10.3390/gels11080602 (registering DOI) - 1 Aug 2025
Abstract
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by [...] Read more.
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by the evaporation of ethanol. Rheological testing and analysis of the liquid-solid transformation process of the hydrogel were performed. The gelation onset time (GOT) could be tuned from 10 s to over 100 s by adjusting the ethanol content and temperature. The addition of polyhydroxyl components (e.g., glycerol) significantly enhances the hydrogel’s water retention capacity (by 858%) and tensile strain rate (by 723%), while concurrently increasing the gelation time. Further studies have shown that the addition of alkaline substances (such as sodium hydroxide) promotes the entanglement of PVA molecular chains, increasing the tensile strength by 23% and the fracture strain by 41.8%. The experimental results indicate that the optimized PVA-TA hydrogels exhibit a high tensile strength (>2 MPa) and excellent tensile properties (~600%). Moreover, the addition of an excess of weakly alkaline substances (such as sodium acetate) reduces the degree of hydrolysis of PVA, enabling the system to form a hydrogel with extrudable characteristics before the ethanol has completely evaporated. This property allows for patterned printing and thus demonstrates the potential of the hydrogel in 3D printing. Overall, this study provides new insights for the application of PVA-TA based hydrogels in the fields of rapid prototyping and strength optimization. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (3rd Edition))
Show Figures

Graphical abstract

25 pages, 7708 KiB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 (registering DOI) - 1 Aug 2025
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

25 pages, 6272 KiB  
Article
Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking
by Qi Jiang, Shusheng Xiong, Baoquan Sun, Ping Chen, Huipeng Chen and Shaopeng Zhu
Energies 2025, 18(15), 4100; https://doi.org/10.3390/en18154100 (registering DOI) - 1 Aug 2025
Abstract
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating [...] Read more.
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating temperature (OOT), addressing challenges of temperature control accuracy and high energy consumption in the PEMFC thermal management system (TMS). First, PEMFC and TMS models were developed and experimentally validated. Subsequently, the PEMFC power–temperature coupling curve was experimentally determined under multiple operating conditions to serve as the reference trajectory for TMS multi-objective optimization. For MPC controller design, the TMS model was linearized and discretized, yielding a predictive model adaptable to different load demands for stack temperature across the full operating range. A multi-constrained quadratic cost function was formulated, aiming to minimize the deviation of the PEMFC operating temperature from the OOT while accounting for TMS parasitic power consumption. Finally, simulations under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) conditions evaluated the OOT tracking performance of both PID and MPC control strategies, as well as their impact on stack efficiency and TMS energy consumption at different ambient temperatures. The results indicate that, compared to PID control, MPC reduces temperature tracking error by 33%, decreases fan and pump speed fluctuations by over 24%, and lowers TMS energy consumption by 10%. These improvements enhance PEMFC operational stability and improve FCV energy efficiency. Full article
Show Figures

Figure 1

9 pages, 4716 KiB  
Commentary
A Lens on Fire Risk Drivers: The Role of Climate and Vegetation Index Anomalies in the May 2025 Manitoba Wildfires
by Afshin Amiri, Silvio Gumiere and Hossein Bonakdari
Earth 2025, 6(3), 88; https://doi.org/10.3390/earth6030088 (registering DOI) - 1 Aug 2025
Abstract
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning [...] Read more.
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning for fire, highlighting the potential of these compound anomalies to inform fire risk awareness in boreal regions. Results indicate that rainfall deficits and diminished snowpack significantly reduced soil moisture, which subsequently decreased vegetative greenness and created a flammable environment prior to ignition. This concept captures how multiple moderate anomalies, when occurring simultaneously, can converge to create high-impact fire conditions that would not be flagged by individual thresholds alone. These findings underscore the importance of integrating climate and biosphere anomalies into wildfire risk monitoring to enhance preparedness in boreal regions under accelerating climate change. Full article
18 pages, 1621 KiB  
Article
The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets
by David Sango-Parco, Lizbeth Zamora-Mendoza, Yuliana Valdiviezo-Cuenca, Camilo Zamora-Ledezma, Si Amar Dahoumane, Floralba López and Frank Alexis
Bioengineering 2025, 12(8), 838; https://doi.org/10.3390/bioengineering12080838 (registering DOI) - 1 Aug 2025
Abstract
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences [...] Read more.
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences in their chemical components, making them equivalent for compression into tablets containing ibuprofen. TGA measurements indicate that the RC is slightly better for multilayer formulations due to its favorable degradation profile. This is corroborated by an XRD analysis that reveals its higher crystalline fraction (~55%). The use of a heat press at combined high pressures and temperatures allows the layer-by-layer tablet formulation of ibuprofen, taken as a model drug. Additionally, this study compares the release profile of three types of tablets compressed with cellulose: mixed (MIX), two-layer (BL), and three-layer (TL). The MIX tablet shows a profile like that of conventional ibuprofen tablets. Although both BL and TL tablets significantly reduce their release percentage in the first hours, the TL ones have proven to be better in the long run. In fact, formulations made of extracted cellulose sandwiching ibuprofen display a zero-order release profile and prolonged release since the drug release amounts to ~70% after 120 h. This makes the TL formulations ideal for maintaining the therapeutic effect of the drug and improving patients’ wellbeing and compliance while reducing adverse effects. Full article
Show Figures

Figure 1

Back to TopTop