Next Issue
Volume 13, November
Previous Issue
Volume 13, September
 
 

Toxins, Volume 13, Issue 10 (October 2021) – 65 articles

Cover Story (view full-size image): The toxicokinetics of the food and feed contaminant Fumonisin B1 (FB1) are characterized by low oral absorption and rapid plasma elimination. For these reasons, FB1 is not considered to accumulate in animals. This study shows for the first time that FB1 accumulates in liver and muscle after four and nine days of exposure of chickens to a non-toxic dose of around 20 mg FB1 + FB2/kg of feed. Concentrations of sphinganine (Sa) and sphingosine (So) increased over time in the liver, but no sign of toxicity and no effect on performances were observed. Feeding algo-clay to the chickens reduced accumulation of FB1 in the liver and muscle approximately 40% and 50%, respectively, on day nine, and decreased Sa and So contents in the liver compared to the levels of Sa and So found in chickens fed FB1 alone. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 8547 KiB  
Article
Passage Number-Induced Replicative Senescence Modulates the Endothelial Cell Response to Protein-Bound Uremic Toxins
by Fatima Guerrero, Andres Carmona, Maria Jose Jimenez, Teresa Obrero, Victoria Pulido, Juan Antonio Moreno, Sagrario Soriano, Alejandro Martín-Malo and Pedro Aljama
Toxins 2021, 13(10), 738; https://doi.org/10.3390/toxins13100738 - 19 Oct 2021
Cited by 8 | Viewed by 3113
Abstract
Endothelial aging may be induced early in pathological situations. The uremic toxins indoxyl sulfate (IS) and p-cresol (PC) accumulate in the plasma of chronic kidney disease (CKD) patients, causing accelerated endothelial aging, increased cardiovascular events and mortality. However, the mechanisms by which uremic [...] Read more.
Endothelial aging may be induced early in pathological situations. The uremic toxins indoxyl sulfate (IS) and p-cresol (PC) accumulate in the plasma of chronic kidney disease (CKD) patients, causing accelerated endothelial aging, increased cardiovascular events and mortality. However, the mechanisms by which uremic toxins exert their deleterious effects on endothelial aging are not yet fully known. Thus, the aim of the present study is to determine the effects of IS and PC on endothelial damage and early senescence in cultured human umbilical vein endothelial cells (HUVECs). Hence, we establish an in vitro model of endothelial damage mediated by different passages of HUVECs and stimulated with different concentrations of IS and PC to evaluate functional effects on the vascular endothelium. We observe that cell passage-induced senescence is associated with apoptosis, ROS production and decreased endothelial proliferative capacity. Similarly, we observe that IS and PC cause premature aging in a dose-dependent manner, altering HUVECs’ regenerative capacity, and decreasing their cell migration and potential to form vascular structures in vitro. In conclusion, IS and PC cause accelerated aging in HUVECs, thus contributing to endothelial dysfunction associated with CKD progression. Full article
(This article belongs to the Section Uremic Toxins)
Show Figures

Figure 1

14 pages, 6306 KiB  
Article
Zearalenone Affect the Intestinal Villi Associated with the Distribution and the Expression of Ghrelin and Proliferating Cell Nuclear Antigen in Weaned Gilts
by Quanwei Zhang, Libo Huang, Bo Leng, Yang Li, Ning Jiao, Shuzhen Jiang, Weiren Yang and Xuejun Yuan
Toxins 2021, 13(10), 736; https://doi.org/10.3390/toxins13100736 - 19 Oct 2021
Cited by 9 | Viewed by 5519
Abstract
This study explored and investigated how zearalenone (ZEA) affects the morphology of small intestine and the distribution and expression of ghrelin and proliferating cell nuclear antigen (PCNA) in the small intestine of weaned gilts. A total of 20 weaned gilts (42-day-old, D × [...] Read more.
This study explored and investigated how zearalenone (ZEA) affects the morphology of small intestine and the distribution and expression of ghrelin and proliferating cell nuclear antigen (PCNA) in the small intestine of weaned gilts. A total of 20 weaned gilts (42-day-old, D × L × Y, weighing 12.84 ± 0.26 kg) were divided into the control and ZEA groups (ZEA at 1.04 mg/kg in diet) in a 35-d study. Histological observations of the small intestines revealed that villus injuries of the duodenum, jejunum and ileum, such as atrophy, retardation and branching dysfunction, were observed in the ZEA treatment. The villi branch of the ileum in the ZEA group was obviously decreased compared to that of the ileum, jejunum and duodenum, and the number of lymphoid nodules of the ileum was increased. Additionally, the effect of ZEA (1.04 mg/kg) was decreased by the immunoreactivity and distribution of ghrelin and PCNA in the duodenal and jejunal mucosal epithelial cells. Interestingly, ZEA increased the immunoreactivity of ghrelin in the ileal mucosal epithelial cells and decreased the immunoreactivity expression of PCNA in the gland epithelium of the small intestine. In conclusion, ZEA (1.04 mg/kg) had adverse effects on the development and the absorptive capacity of the villi of the intestines; yet, the small intestine could resist or ameliorate the adverse effects of ZEA by changing the autocrine of ghrelin in intestinal epithelial cells. Full article
(This article belongs to the Special Issue Research on Pathogenic Fungi and Mycotoxins in China)
Show Figures

Figure 1

12 pages, 2087 KiB  
Article
Evaluation of Cyanobacterial Bloom from Lake Taihu as a Protein Substitute in Fish Diet—A Case Study on Tilapia
by Yan Huo, Yuanze Li, Wei Guo, Jin Liu, Cuiping Yang, Lin Li, Haokun Liu and Lirong Song
Toxins 2021, 13(10), 735; https://doi.org/10.3390/toxins13100735 - 19 Oct 2021
Cited by 3 | Viewed by 2459
Abstract
The utility of cyanobacterial bloom is often hindered by concerns about the toxin content. Over three years of investigation, we found that the toxin content of cyanobacterial bloom in Lake Taihu was always low in June and higher in late summer and autumn. [...] Read more.
The utility of cyanobacterial bloom is often hindered by concerns about the toxin content. Over three years of investigation, we found that the toxin content of cyanobacterial bloom in Lake Taihu was always low in June and higher in late summer and autumn. The findings enabled us to compare the effects of diets containing low and high toxic cyanobacterial blooms on the growth and consumption safety of tilapia. There were no negative effects on the growth of tilapia, and the muscle seemed to be safe for human consumption in the treatment of 18.5% low toxic cyanobacterial bloom. Therefore, limitations of the utilization of cyanobacterial biomass can be overcome by selecting low toxic cyanobacterial bloom that can be found and collected in large lakes. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

25 pages, 2176 KiB  
Article
Prioritization of Mycotoxins Based on Their Genotoxic Potential with an In Silico-In Vitro Strategy
by Maria Alonso-Jauregui, María Font, Elena González-Peñas, Adela López de Cerain and Ariane Vettorazzi
Toxins 2021, 13(10), 734; https://doi.org/10.3390/toxins13100734 - 19 Oct 2021
Cited by 7 | Viewed by 3045
Abstract
Humans are widely exposed to a great variety of mycotoxins and their mixtures. Therefore, it is important to design strategies that allow prioritizing mycotoxins based on their toxic potential in a time and cost-effective manner. A strategy combining in silico tools (Phase 1), [...] Read more.
Humans are widely exposed to a great variety of mycotoxins and their mixtures. Therefore, it is important to design strategies that allow prioritizing mycotoxins based on their toxic potential in a time and cost-effective manner. A strategy combining in silico tools (Phase 1), including an expert knowledge-based (DEREK Nexus®, Lhasa Limited, Leeds, UK) and a statistical-based platform (VEGA QSAR©, Mario Negri Institute, Milan, Italy), followed by the in vitro SOS/umu test (Phase 2), was applied to a set of 12 mycotoxins clustered according to their structure into three groups. Phase 1 allowed us to clearly classify group 1 (aflatoxin and sterigmatocystin) as mutagenic and group 3 (ochratoxin A, zearalenone and fumonisin B1) as non-mutagenic. For group 2 (trichothecenes), contradictory conclusions were obtained between the two in silico tools, being out of the applicability domain of many models. Phase 2 confirmed the results obtained in the previous phase for groups 1 and 3. It also provided extra information regarding the role of metabolic activation in aflatoxin B1 and sterigmatocystin mutagenicity. Regarding group 2, equivocal results were obtained in few experiments; however, the group was finally classified as non-mutagenic. The strategy used correlated with the published Ames tests, which detect point mutations. Few alerts for chromosome aberrations could be detected. The SOS/umu test appeared as a good screening test for mutagenicity that can be used in the absence and presence of metabolic activation and independently of Phase 1, although the in silico–in vitro combination gave more information for decision making. Full article
Show Figures

Figure 1

13 pages, 1641 KiB  
Article
Salinity Affects Saxitoxins (STXs) Toxicity in the Dinoflagellate Alexandrium pacificum, with Low Transcription of SXT-Biosynthesis Genes sxtA4 and sxtG
by Quynh Thi Nhu Bui, Hansol Kim, Hyunjun Park and Jang-Seu Ki
Toxins 2021, 13(10), 733; https://doi.org/10.3390/toxins13100733 - 18 Oct 2021
Cited by 22 | Viewed by 3536
Abstract
Salinity is an important factor for regulating metabolic processes in aquatic organisms; however, its effects on toxicity and STX biosynthesis gene responses in dinoflagellates require further elucidation. Herein, we evaluated the physiological responses, toxin production, and expression levels of two STX synthesis core [...] Read more.
Salinity is an important factor for regulating metabolic processes in aquatic organisms; however, its effects on toxicity and STX biosynthesis gene responses in dinoflagellates require further elucidation. Herein, we evaluated the physiological responses, toxin production, and expression levels of two STX synthesis core genes, sxtA4 and sxtG, in the dinoflagellate Alexandrium pacificum Alex05 under different salinities (20, 25, 30, 35, and 40 psu). Optimal growth was observed at 30 psu (0.12 cell division/d), but cell growth significantly decreased at 20 psu and was irregular at 25 and 40 psu. The cell size increased at lower salinities, with the highest size of 31.5 µm at 20 psu. STXs eq was highest (35.8 fmol/cell) in the exponential phase at 30 psu. GTX4 and C2 were predominant at that time but were replaced by GTX1 and NeoSTX in the stationary phase. However, sxtA4 and sxtG mRNAs were induced, and their patterns were similar in all tested conditions. PCA showed that gene transcriptional levels were not correlated with toxin contents and salinity. These results suggest that A. pacificum may produce the highest amount of toxins at optimal salinity, but sxtA4 and sxtG may be only minimally affected by salinity, even under high salinity stress. Full article
Show Figures

Graphical abstract

15 pages, 3454 KiB  
Article
The Protective Effect of Heme Oxygenase-1 on Liver Injury Caused by DON-Induced Oxidative Stress and Cytotoxicity
by Zitong Meng, Liangliang Wang, Yuxiao Liao, Zhao Peng, Dan Li, Xiaolei Zhou, Shuang Liu, Yanmei Li, Andreas K. Nüssler, Liegang Liu, Liping Hao and Wei Yang
Toxins 2021, 13(10), 732; https://doi.org/10.3390/toxins13100732 - 17 Oct 2021
Cited by 10 | Viewed by 3417
Abstract
Deoxynivalenol (DON) is a kind of Fusarium toxin that can cause a variety of toxic effects. Oxidative stress and DNA damage play a critical role in the toxicity of DON. However, previous studies focused more on acute toxicity in vivo/vitro models and lacked [...] Read more.
Deoxynivalenol (DON) is a kind of Fusarium toxin that can cause a variety of toxic effects. Oxidative stress and DNA damage play a critical role in the toxicity of DON. However, previous studies focused more on acute toxicity in vivo/vitro models and lacked subchronic toxicity study in vivo. The potentially harmful effect of DON given at doses comparable to the daily human consumption in target organs, especially the liver, which is the main detoxification organ of DON, is also still not fully understood. Otherwise, Heme Oxygenase-1 (HO-1) has also reduced cell damage under the DON condition according to our previous study. Therefore, we used a rodent model that mimicked daily human exposure to DON and further explored its mechanism of toxic effects on liver tissue and Hepa 1–6 cell line. We also used adeno-associated virus (AAV)-modified HO-1 expressing by tail vein injection and constructed lentivirus-Hepa 1–6 cell line for mimicking HO-1 protective ability under the DON condition. The main results showed that both 30 d and 90 d exposures of DON could cause low-grade inflammatory infiltration around hepatic centrilobular veins. The reactive oxygen species (ROS) and 8-hydroxy-2 deoxyguanosine (8-OHdG) increased during DON exposure, indicating oxidation stress and DNA damage. Significantly, AAV-mediated liver-specific overexpression of HO-1 reduced DON-induced liver damage and indirectly protected the abilities of antioxidant enzyme/DNA damage repair system, while AAV-mediated silence of HO-1 produced the opposite effect. In addition, we found that overexpression of HO-1 could enhance autophagy and combined it with an antioxidant enzyme/DNA damage repair system to inhibit DON-induced hepatocyte damage. Altogether, these data suggest that HO-1 reduces the oxidative stress and DNA damage caused by DON sub-chronic exposure through maintaining DNA repair, antioxidant activity, as well as autophagy. Full article
Show Figures

Graphical abstract

11 pages, 1463 KiB  
Article
Tetrodotoxin/Saxitoxins Selectivity of the Euryhaline Freshwater Pufferfish Dichotomyctere fluviatilis
by Hongchen Zhu, Towa Sakai, Yuji Nagashima, Hiroyuki Doi, Tomohiro Takatani and Osamu Arakawa
Toxins 2021, 13(10), 731; https://doi.org/10.3390/toxins13100731 - 16 Oct 2021
Cited by 5 | Viewed by 3717
Abstract
The present study evaluated differences in the tetrodotoxin (TTX)/saxitoxins (STXs) selectivity between marine and freshwater pufferfish by performing in vivo and in vitro experiments. In the in vivo experiment, artificially reared nontoxic euryhaline freshwater pufferfish Dichotomyctere fluviatilis were intrarectally administered a mixture of [...] Read more.
The present study evaluated differences in the tetrodotoxin (TTX)/saxitoxins (STXs) selectivity between marine and freshwater pufferfish by performing in vivo and in vitro experiments. In the in vivo experiment, artificially reared nontoxic euryhaline freshwater pufferfish Dichotomyctere fluviatilis were intrarectally administered a mixture of TTX (24 nmol/fish) and STX (20 nmol/fish). The amount of toxin in the intestine, liver, muscle, gonads, and skin was quantified at 24, 48, and 72 h. STX was detected in the intestine over a long period of time, with some (2.7–6.1% of the given dose) being absorbed into the body and temporarily located in the liver. Very little TTX was retained in the body. In the in vitro experiments, slices of intestine, liver, and skin tissue prepared from artificially reared nontoxic D. fluviatilis and the marine pufferfish Takifugu rubripes were incubated in buffer containing TTX and STXs (20 nmol/mL each) for up to 24 or 72 h, and the amount of toxin taken up in the tissue was quantified over time. In contrast to T. rubripes, the intestine, liver, and skin tissues of D. fluviatilis selectively took up only STXs. These findings indicate that the TTX/STXs selectivity differs between freshwater and marine pufferfish. Full article
(This article belongs to the Special Issue Monitoring of Marine Biotoxins)
Show Figures

Figure 1

12 pages, 543 KiB  
Article
Occurrence and Characterization of Penicillium Species Isolated from Post-Harvest Apples in Lebanon
by Wassim Habib, Mario Masiello, Hala Chahine-Tsouvalakis, Zahraa Al Moussawi, Carine Saab, Salwa Tohmé Tawk, Luca Piemontese, Michele Solfrizzo, Antonio Francesco Logrieco, Antonio Moretti and Antonia Susca
Toxins 2021, 13(10), 730; https://doi.org/10.3390/toxins13100730 - 16 Oct 2021
Cited by 7 | Viewed by 2990
Abstract
The apple is one of the most important fruit tree crops in the Mediterranean region. Lebanon, in particular, is among the top apple producer countries in the Middle East; however, recently, several types of damage, particularly rot symptoms, have been detected on fruits [...] Read more.
The apple is one of the most important fruit tree crops in the Mediterranean region. Lebanon, in particular, is among the top apple producer countries in the Middle East; however, recently, several types of damage, particularly rot symptoms, have been detected on fruits in cold storage. This study aims to identify the causal agents of apple decay in Lebanese post-harvest facilities and characterize a set of 39 representative strains of the toxigenic fungus Penicillium. The results demonstrated that blue mould was the most frequent fungal disease associated with apples showing symptoms of decay after 3–4 months of storage at 0 °C, with an average frequency of 76.5% and 80.6% on cv. Red and cv. Golden Delicious apples, respectively. The morphological identification and phylogenetic analysis of benA gene showed that most Penicillium strains (87.2%) belong to P. expansum species whereas the remaining strains (12.8%) belong to P. solitum. Furthermore, 67.7% of P. expansum strains produced patulin when grown on apple puree for 14 days at 25 °C with values ranging from 10.7 mg kg−1 to 125.9 mg kg−1, whereas all P. solitum did not produce the mycotoxin. This study highlights the presence of Penicillium spp. and their related mycotoxin risk during apple storage and calls for the implementation of proper measures to decrease the risk of mycotoxin contamination of apple fruit products. Full article
Show Figures

Figure 1

19 pages, 1140 KiB  
Article
Effects of Deoxynivalenol and Fumonisins on Broiler Gut Cytoprotective Capacity
by Vasileios Paraskeuas, Eirini Griela, Dimitrios Bouziotis, Konstantinos Fegeros, Gunther Antonissen and Konstantinos C. Mountzouris
Toxins 2021, 13(10), 729; https://doi.org/10.3390/toxins13100729 - 16 Oct 2021
Cited by 16 | Viewed by 3521
Abstract
Mycotoxins are a crucial problem for poultry production worldwide. Two of the most frequently found mycotoxins in feedstuffs are deoxynivalenol (DON) and fumonisins (FUM) which adversely affect gut health and poultry performance. The current knowledge on DON and FUM effects on broiler responses [...] Read more.
Mycotoxins are a crucial problem for poultry production worldwide. Two of the most frequently found mycotoxins in feedstuffs are deoxynivalenol (DON) and fumonisins (FUM) which adversely affect gut health and poultry performance. The current knowledge on DON and FUM effects on broiler responses relevant for gut detoxification, antioxidant capacity, and health is still unclear. The aim of this study was to assess a range of selected molecular intestinal biomarkers for their responsiveness to the maximum allowable European Union dietary levels for DON (5 mg/kg) and FUM (20 mg/kg) in broilers. For the experimental purpose, a challenge diet was formulated, and biomarkers relevant for detoxification, antioxidant response, stress, inflammation, and integrity were profiled across the broiler intestine. The results reveal that DON significantly (p < 0.05) induced aryl hydrocarbon receptor (AhR) and cytochrome P450 enzyme (CYP) expression mainly at the duodenum. Moreover, DON and FUM had specific significant (p < 0.05) effects on the antioxidant response, stress, inflammation, and integrity depending on the intestinal segment. Consequently, broiler molecular responses to DON and FUM assessed via a powerful palette of biomarkers were shown to be mycotoxin and intestinal site specific. The study findings could be highly relevant for assessing various dietary bioactive components for protection against mycotoxins. Full article
(This article belongs to the Special Issue Toxicological Effects of Mycotoxins)
Show Figures

Figure 1

17 pages, 2691 KiB  
Article
Enniatin B and Deoxynivalenol Activity on Bread Wheat and on Fusarium Species Development
by Luisa Ederli, Giovanni Beccari, Francesco Tini, Irene Bergamini, Ilaria Bellezza, Roberto Romani and Lorenzo Covarelli
Toxins 2021, 13(10), 728; https://doi.org/10.3390/toxins13100728 - 15 Oct 2021
Cited by 12 | Viewed by 3005
Abstract
Fusarium head blight (FHB) is a devastating wheat disease, mainly caused by Fusarium graminearum (FG)—a deoxynivalenol (DON)-producing species. However, Fusarium avenaceum (FA), able to biosynthesize enniatins (ENNs), has recently increased its relevance worldwide, often in co-occurrence with FG. While DON is a well-known [...] Read more.
Fusarium head blight (FHB) is a devastating wheat disease, mainly caused by Fusarium graminearum (FG)—a deoxynivalenol (DON)-producing species. However, Fusarium avenaceum (FA), able to biosynthesize enniatins (ENNs), has recently increased its relevance worldwide, often in co-occurrence with FG. While DON is a well-known mycotoxin, ENN activity, also in association with DON, is poorly understood. This study aims to explore enniatin B (ENB) activity, alone or combined with DON, on bread wheat and on Fusarium development. Pure ENB, DON, and ENB+DON (10 mg kg−1) were used to assess the impacts on seed germination, seedling growth, cell death induction (trypan blue staining), chlorophyll content, and oxidative stress induction (malondialdehyde quantification). The effect on FG and FA growth was tested using ENB, DON, and ENB+DON (10, 50, and 100 mg kg−1). Synergistic activity in the reduction of seed germination, growth, and chlorophyll degradation was observed. Conversely, antagonistic interaction in cell death and oxidative stress induction was found, with DON counteracting cellular stress produced by ENB. Fusarium species responded to mycotoxins in opposite directions. ENB inhibited FG development, while DON promoted FA growth. These results highlight the potential role of ENB in cell death control, as well as in fungal competition. Full article
Show Figures

Graphical abstract

12 pages, 2430 KiB  
Article
Natural Thiols, but Not Thioethers, Attenuate Patulin-Induced Endoplasmic Reticulum Stress in HepG2 Cells
by Hye Mi Kim, Hwa Young Choi, Gun Hee Cho, Ju Hee Im, Eun Young Hong and Hyang Sook Chun
Toxins 2021, 13(10), 727; https://doi.org/10.3390/toxins13100727 - 14 Oct 2021
Cited by 4 | Viewed by 2466
Abstract
Patulin, a mycotoxin, is known to have cytotoxic effects, but few studies have focused on the involvement of the endoplasmic reticulum (ER) stress response in patulin toxicity and the natural compounds that attenuate it in HepG2 cells. This study tested the ability of [...] Read more.
Patulin, a mycotoxin, is known to have cytotoxic effects, but few studies have focused on the involvement of the endoplasmic reticulum (ER) stress response in patulin toxicity and the natural compounds that attenuate it in HepG2 cells. This study tested the ability of patulin to induce ER stress, and that of four thiols and three thioethers to attenuate patulin-induced ER stress in HepG2 cells. Patulin dose-dependently inhibited cell proliferation (IC50, 8.43 μM). Additionally, patulin was found to increase the expression levels of ER stress-related genes and/or protein markers, including BiP, CHOP, and spliced XBP1, in HepG2 cells compared to the vehicle control, indicating its potential in ER stress induction. Patulin-induced cytotoxicity in HepG2 cells was reduced by naturally occurring thiol compounds (glutathione, L-acetyl-L-cysteine, cysteine, and captopril), but not by thioether compounds (sulforaphane, sulforaphene, and S-allyl-L-cysteine). Patulin-thiol co-treatment decreased CHOP expression and BiP and CHOP levels in HepG2 cells but did not alter BiP expression. Spliced XBP1 expression was decreased by patulin-thiol co-treatment. Thus, patulin induced ER stress in HepG2 cells and thiols, but not in thioethers, attenuated patulin-induced ER stress. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

12 pages, 1952 KiB  
Article
Increased Risk of Thrombocytopenia and Death in Patients with Bacteremia Caused by High Alpha Toxin-Producing Methicillin-Resistant Staphylococcus aureus
by Fatimah Alhurayri, Edith Porter, Rachid Douglas-Louis, Emi Minejima, Juliane Bubeck Wardenburg and Annie Wong-Beringer
Toxins 2021, 13(10), 726; https://doi.org/10.3390/toxins13100726 - 14 Oct 2021
Cited by 7 | Viewed by 2521
Abstract
Alpha toxin (Hla) is a major virulence factor of Staphylococcus aureus that targets platelets but clinical data on Hla pathogenesis in bacteremia (SAB) is limited. We examined the link between in vitro Hla activity and outcome. Study isolates obtained from 100 patients with [...] Read more.
Alpha toxin (Hla) is a major virulence factor of Staphylococcus aureus that targets platelets but clinical data on Hla pathogenesis in bacteremia (SAB) is limited. We examined the link between in vitro Hla activity and outcome. Study isolates obtained from 100 patients with SAB (50 survivors; 50 non-survivors) were assessed for in vitro Hla production by Western immunoblotting in a subset of isolates and Hla activity by hemolysis assay in all isolates. Relevant demographics, laboratory and clinical data were extracted from patients’ medical records to correlate Hla activity of the infecting isolates with outcome. Hla production strongly correlated with hemolytic activity (rs = 0.93) in vitro. A trend towards higher hemolytic activity was observed for MRSA compared to MSSA and with high-risk source infection. Significantly higher hemolytic activity was noted for MRSA strains isolated from patients who developed thrombocytopenia (median 52.48 vs. 16.55 HU/mL in normal platelet count, p = 0.012) and from non survivors (median 30.96 vs. 14.87 HU/mL in survivors, p = 0.014) but hemolytic activity of MSSA strains did not differ between patient groups. In vitro Hla activity of MRSA strains obtained from patients with bacteremia is significantly associated with increased risk for thrombocytopenia and death which supports future studies to evaluate feasibility of bedside phenotyping and therapeutic targeting. Full article
(This article belongs to the Collection Staphylococcus aureus Toxins)
Show Figures

Figure 1

48 pages, 725 KiB  
Review
Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains
by John F. Leslie, Antonio Moretti, Ákos Mesterházy, Maarten Ameye, Kris Audenaert, Pawan K. Singh, Florence Richard-Forget, Sofía N. Chulze, Emerson M. Del Ponte, Alemayehu Chala, Paola Battilani and Antonio F. Logrieco
Toxins 2021, 13(10), 725; https://doi.org/10.3390/toxins13100725 - 14 Oct 2021
Cited by 45 | Viewed by 6735
Abstract
Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and [...] Read more.
Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains. Full article
11 pages, 1276 KiB  
Article
Simultaneous Determination of Ergot Alkaloids in Swine and Dairy Feeds Using Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry
by Saranya Poapolathep, Narumol Klangkaew, Zhaowei Zhang, Mario Giorgi, Antonio Francesco Logrieco and Amnart Poapolathep
Toxins 2021, 13(10), 724; https://doi.org/10.3390/toxins13100724 - 13 Oct 2021
Cited by 10 | Viewed by 2838
Abstract
Ergot alkaloids (EAs) are mycotoxins mainly produced by the fungus Claviceps purpurea. EAs are known to affect the nervous system and to be vasoconstrictors in humans and animals. This work presents recent advances in swine and dairy feeds regarding 11 major EAs, [...] Read more.
Ergot alkaloids (EAs) are mycotoxins mainly produced by the fungus Claviceps purpurea. EAs are known to affect the nervous system and to be vasoconstrictors in humans and animals. This work presents recent advances in swine and dairy feeds regarding 11 major EAs, namely ergometrine, ergosine, ergotamine, ergocornine, ergocryptine, ergocristine, ergosinine, ergotaminine, ergocorninine, ergocryptinine, and ergocristinine. A reliable, sensitive, and accurate multiple mycotoxin method, based on extraction with a Mycosep 150 multifunctional column prior to analysis using UHPLC-MS/MS, was validated using samples of swine feed (100) and dairy feed (100) for the 11 targeted EAs. Based on the obtained validation results, this method showed good performance recovery and inter-day and intra-day precision that are in accordance with standard criteria to ensure reliable occurrence data on EA contaminants. More than 49% of the swine feed samples were contaminated with EAs, especially ergocryptine(-ine) (40%) and ergosine (-ine) and ergotamine (-ine) (37%). However, many of the 11 EAs were not detectable in any swine feed samples. In addition, there were contaminated (positive) dairy feed samples, especially for ergocryptine (-ine) (50%), ergosine (-ine) (48%), ergotamine (-ine), and ergocristine (-ine) (49%). The mycotoxin levels in the feed samples in this study almost complied with the European Union regulations. Full article
(This article belongs to the Special Issue Application of Novel Methods for Mycotoxins Analysis)
Show Figures

Figure 1

14 pages, 2048 KiB  
Article
Pyrrolizidine Alkaloid-Induced Hepatotoxicity Associated with the Formation of Reactive Metabolite-Derived Pyrrole–Protein Adducts
by Jiang Ma, Mi Li, Na Li, Wood Yee Chan and Ge Lin
Toxins 2021, 13(10), 723; https://doi.org/10.3390/toxins13100723 - 13 Oct 2021
Cited by 10 | Viewed by 3205
Abstract
Pyrrolizidine alkaloids (PAs) with 1,2-unsaturated necine base are hepatotoxic phytotoxins. Acute PA intoxication is initiated by the formation of adducts between PA-derived reactive pyrrolic metabolites with cellular proteins. The present study aimed to investigate the correlation between the formation of hepatic pyrrole–protein adducts [...] Read more.
Pyrrolizidine alkaloids (PAs) with 1,2-unsaturated necine base are hepatotoxic phytotoxins. Acute PA intoxication is initiated by the formation of adducts between PA-derived reactive pyrrolic metabolites with cellular proteins. The present study aimed to investigate the correlation between the formation of hepatic pyrrole–protein adducts and occurrence of PA-induced liver injury (PA-ILI), and to further explore the use of such adducts for rapidly screening the hepatotoxic potency of natural products which contain PAs. Aqueous extracts of Crotalaria sessiliflora (containing one PA: monocrotaline) and Gynura japonica (containing two PAs: senecionine and seneciphylline) were orally administered to rats at different doses for 24 h to investigate PA-ILI. Serum alanine aminotransferase (ALT) activity, hepatic glutathione (GSH) level, and liver histological changes of the treated rats were evaluated to assess the severity of PA-ILI. The levels of pyrrole–protein adducts formed in the rats’ livers were determined by a well-established spectrophotometric method. The biological and histological results showed a dose-dependent hepatotoxicity with significantly different toxic severity among groups of rats treated with herbal extracts containing different PAs. Both serum ALT activity and the amount of hepatic pyrrole–protein adducts increased in a dose-dependent manner. Moreover, the elevation of ALT activity correlated well with the formation of hepatic pyrrole–protein adducts, regardless of the structures of different PAs. The findings revealed that the formation of hepatic pyrrole–protein adducts—which directly correlated with the elevation of serum ALT activity—was a common insult leading to PA-ILI, suggesting a potential for using pyrrole–protein adducts to screen hepatotoxicity and rank PA-containing natural products, which generally contain multiple PAs with different structures. Full article
(This article belongs to the Special Issue Toxicity and Therapeutic Potential of Plant Alkaloid)
Show Figures

Figure 1

13 pages, 1789 KiB  
Article
Expression, Purification and Refolding of a Human NaV1.7 Voltage Sensing Domain with Native-like Toxin Binding Properties
by Ryan V. Schroder, Leah S. Cohen, Ping Wang, Joekeem D. Arizala and Sébastien F. Poget
Toxins 2021, 13(10), 722; https://doi.org/10.3390/toxins13100722 - 12 Oct 2021
Viewed by 3130
Abstract
The voltage-gated sodium channel NaV1.7 is an important target for drug development due to its role in pain perception. Recombinant expression of full-length channels and their use for biophysical characterization of interactions with potential drug candidates is challenging due to the [...] Read more.
The voltage-gated sodium channel NaV1.7 is an important target for drug development due to its role in pain perception. Recombinant expression of full-length channels and their use for biophysical characterization of interactions with potential drug candidates is challenging due to the protein size and complexity. To overcome this issue, we developed a protocol for the recombinant expression in E. coli and refolding into lipids of the isolated voltage sensing domain (VSD) of repeat II of NaV1.7, obtaining yields of about 2 mg of refolded VSD from 1 L bacterial cell culture. This VSD is known to be involved in the binding of a number of gating-modifier toxins, including the tarantula toxins ProTx-II and GpTx-I. Binding studies using microscale thermophoresis showed that recombinant refolded VSD binds both of these toxins with dissociation constants in the high nM range, and their relative binding affinities reflect the relative IC50 values of these toxins for full-channel inhibition. Additionally, we expressed mutant VSDs incorporating single amino acid substitutions that had previously been shown to affect the activity of ProTx-II on full channel. We found decreases in GpTx-I binding affinity for these mutants, consistent with a similar binding mechanism for GpTx-I as compared to that of ProTx-II. Therefore, this recombinant VSD captures many of the native interactions between NaV1.7 and tarantula gating-modifier toxins and represents a valuable tool for elucidating details of toxin binding and specificity that could help in the design of non-addictive pain medication acting through NaV1.7 inhibition. Full article
(This article belongs to the Special Issue Advances in Structure-Based Drug Design of Venom Peptides)
Show Figures

Graphical abstract

8 pages, 9084 KiB  
Article
Cathepsin Release from Lysosomes Promotes Endocytosis of Clostridium perfringens Iota-Toxin
by Masahiro Nagahama, Keiko Kobayashi and Masaya Takehara
Toxins 2021, 13(10), 721; https://doi.org/10.3390/toxins13100721 - 12 Oct 2021
Cited by 4 | Viewed by 2283
Abstract
Iota-toxin from Clostridium perfringens type E is a binary toxin composed of two independent proteins: actin-ADP-ribosylating enzyme component, iota-a (Ia), and binding component, iota-b (Ib). Ib binds to target cell receptors and mediates the internalization of Ia into the cytoplasm. Extracellular lysosomal enzyme [...] Read more.
Iota-toxin from Clostridium perfringens type E is a binary toxin composed of two independent proteins: actin-ADP-ribosylating enzyme component, iota-a (Ia), and binding component, iota-b (Ib). Ib binds to target cell receptors and mediates the internalization of Ia into the cytoplasm. Extracellular lysosomal enzyme acid sphingomyelinase (ASMase) was previously shown to facilitate the internalization of iota-toxin. In this study, we investigated how lysosomal cathepsin promotes the internalization of iota-toxin into target cells. Cysteine protease inhibitor E64 prevented the cytotoxicity caused by iota-toxin, but aspartate protease inhibitor pepstatin-A and serine protease inhibitor AEBSF did not. Knockdown of lysosomal cysteine protease cathepsins B and L decreased the toxin-induced cytotoxicity. E64 suppressed the Ib-induced ASMase activity in extracellular fluid, showing that the proteases play a role in ASMase activation. These results indicate that cathepsin B and L facilitate entry of iota-toxin via activation of ASMase. Full article
Show Figures

Figure 1

17 pages, 2125 KiB  
Article
Exploration on the Enhancement of Detoxification Ability of Zearalenone and Its Degradation Products of Aspergillus niger FS10 under Directional Stress of Zearalenone
by Jian Ji, Jian Yu, Yang Yang, Xiao Yuan, Jia Yang, Yinzhi Zhang, Jiadi Sun and Xiulan Sun
Toxins 2021, 13(10), 720; https://doi.org/10.3390/toxins13100720 - 12 Oct 2021
Cited by 11 | Viewed by 2730
Abstract
Zearalenone (ZEN) is one of the most common mycotoxin contaminants in food. For food safety, an efficient and environmental-friendly approach to ZEN degradation is significant. In this study, an Aspergillus niger strain, FS10, was stimulated with 1.0 μg/mL ZEN for 24 h, repeating [...] Read more.
Zearalenone (ZEN) is one of the most common mycotoxin contaminants in food. For food safety, an efficient and environmental-friendly approach to ZEN degradation is significant. In this study, an Aspergillus niger strain, FS10, was stimulated with 1.0 μg/mL ZEN for 24 h, repeating 5 times to obtain a stressed strain, Zearalenone-Stressed-FS10 (ZEN-S-FS10), with high degradation efficiency. The results show that the degradation rate of ZEN-S-FS10 to ZEN can be stabilized above 95%. Through metabolomics analysis of the metabolome difference of FS10 before and after ZEN stimulation, it was found that the change of metabolic profile may be the main reason for the increase in the degradation rate of ZEN. The optimization results of degradation conditions of ZEN-S-FS10 show that the degradation efficiency is the highest with a concentration of 104 CFU/mL and a period of 28 h. Finally, we analyzed the degradation products by UPLC-q-TOF, which shows that ZEN was degraded into two low-toxicity products: C18H22O8S (Zearalenone 4-sulfate) and C18H22O5 ((E)-Zearalenone). This provides a wide range of possibilities for the industrial application of this strain. Full article
Show Figures

Figure 1

18 pages, 1690 KiB  
Review
Immunotoxins Immunotherapy against Hepatocellular Carcinoma: A Promising Prospect
by Mohammad Heiat, Hamid Hashemi Yeganeh, Seyed Moayed Alavian and Ehsan Rezaie
Toxins 2021, 13(10), 719; https://doi.org/10.3390/toxins13100719 - 11 Oct 2021
Cited by 14 | Viewed by 3507
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Therefore, fighting against such cancer is reasonable. Chemotherapy drugs are sometimes inefficient and often accompanied by undesirable side effects for patients. On the other hand, the emergence of chemoresistant HCC [...] Read more.
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Therefore, fighting against such cancer is reasonable. Chemotherapy drugs are sometimes inefficient and often accompanied by undesirable side effects for patients. On the other hand, the emergence of chemoresistant HCC emphasizes the need for a new high-efficiency treatment strategy. Immunotoxins are armed and rigorous targeting agents that can purposefully kill cancer cells. Unlike traditional chemotherapeutics, immunotoxins because of targeted toxicity, insignificant cross-resistance, easy production, and other favorable properties can be ideal candidates against HCC. In this review, the characteristics of proper HCC-specific biomarkers for immunotoxin targeting were dissected. After that, the first to last immunotoxins developed for the treatment of liver cancer were discussed. So, by reviewing the strengths and weaknesses of these immunotoxins, we attempted to provide keynotes for designing an optimal immunotoxin against HCC. Full article
(This article belongs to the Special Issue Immunotoxin and beyond—Past, Present and Future Perspectives)
Show Figures

Figure 1

12 pages, 2990 KiB  
Article
Glycosyltransferase FvCpsA Regulates Fumonisin Biosynthesis and Virulence in Fusarium verticillioides
by Qi Deng, Hanxiang Wu, Qin Gu, Guangfei Tang and Wende Liu
Toxins 2021, 13(10), 718; https://doi.org/10.3390/toxins13100718 - 11 Oct 2021
Cited by 10 | Viewed by 2676
Abstract
Fusarium verticillioides is the major maize pathogen associated with ear rot and stalk rot worldwide. Fumonisin B1 (FB1) produced by F. verticillioides, poses a serious threat to human and animal health. However, our understanding of FB1 synthesis and virulence mechanism in this [...] Read more.
Fusarium verticillioides is the major maize pathogen associated with ear rot and stalk rot worldwide. Fumonisin B1 (FB1) produced by F. verticillioides, poses a serious threat to human and animal health. However, our understanding of FB1 synthesis and virulence mechanism in this fungus is still very limited. Glycosylation catalyzed by glycosyltransferases (GTs) has been identified as contributing to fungal infection and secondary metabolism synthesis. In this study, a family 2 glycosyltransferase, FvCpsA, was identified and characterized in F. verticillioides. ΔFvcpsA exhibited significant defects in vegetative growth. Moreover, ΔFvcpsA also increased resistance to osmotic and cell wall stress agents. In addition, expression levels of FUM genes involved in FB1 production were greatly up-regulated in ΔFvcpsA. HPLC (high performance liquid chromatography) analysis revealed that ΔFvcpsA significantly increased FB1 production. Interestingly, we found that the deletion of FvCPSA showed penetration defects on cellophane membrane, and thus led to obvious defects in pathogenicity. Characterization of FvCpsA domain experiments showed that conserved DXD and QXXRW domains were vital for the biological functions of FvCpsA. Taken together, our results indicate that FvCpsA is critical for fungal growth, FB1 biosynthesis and virulence in F. verticillioides. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

12 pages, 3196 KiB  
Article
The Responsiveness of Bee Venom Phospholipase A2 on Regulatory T Cells Correlates with the CD11c+CD206+Population in Human Peripheral Blood Mononuclear Cells
by Heejin Jo, Hyunjung Baek, Seon-Young Park, Bonhyuk Goo, Woo-Sang Jung, Hyunsu Bae and Sang-Soo Nam
Toxins 2021, 13(10), 717; https://doi.org/10.3390/toxins13100717 - 10 Oct 2021
Cited by 4 | Viewed by 2257
Abstract
Bee venom phospholipase A2 (bvPLA2) has been reported to have therapeutic effects such as neuroprotection, anti-inflammation, anti-nociception, anti-cancer properties, caused by increasing regulatory T cells (Tregs). The mechanism of Tregs modulation by bvPLA2 has been demonstrated by binding with the mannose receptor, CD206 [...] Read more.
Bee venom phospholipase A2 (bvPLA2) has been reported to have therapeutic effects such as neuroprotection, anti-inflammation, anti-nociception, anti-cancer properties, caused by increasing regulatory T cells (Tregs). The mechanism of Tregs modulation by bvPLA2 has been demonstrated by binding with the mannose receptor, CD206 in experimental models of several diseases. However, it remains unknown whether this mechanism can also be applied in human blood. In this study, we collected peripheral blood samples from healthy donors and analyzed the percentages of monocyte-derived dendritic cells with CD206 (CD206+ DCs) before expansion, the proportion of Tregs, and the subpopulations after expansion treated with bvPLA2 or PBS using flow cytometry and the correlations among them. The percentage of Tregs tended to be higher in the bvPLA2 group than in the control group. There were significant positive correlations between the CD206 population in hPBMC and the proportions of Tregs treated with bvPLA2, especially in the Treg fold change comparing the increase ratio of Tregs in bvPLA2 and in PBS. These findings indicate that bvPLA2 increased the proportion of Tregs in healthy human peripheral blood and the number of CD206+ DCs could be a predictor of the bvPLA2 response of different individuals. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

20 pages, 2189 KiB  
Communication
Investigation of the Occurrence of Cyanotoxins in Lake Karaoun (Lebanon) by Mass Spectrometry, Bioassays and Molecular Methods
by Noura Alice Hammoud, Sevasti-Kiriaki Zervou, Triantafyllos Kaloudis, Christophoros Christophoridis, Aikaterina Paraskevopoulou, Theodoros M. Triantis, Kamal Slim, Joanna Szpunar, Ali Fadel, Ryszard Lobinski and Anastasia Hiskia
Toxins 2021, 13(10), 716; https://doi.org/10.3390/toxins13100716 - 10 Oct 2021
Cited by 7 | Viewed by 4032
Abstract
Lake Karaoun is the largest artificial lake in Lebanon and serves multiple purposes. Recently, intensive cyanobacterial blooms have been reported in the lake, raising safety and aesthetic concerns related to the presence of cyanotoxins and cyanobacterial taste and odor (T&O) compounds, respectively. Here, [...] Read more.
Lake Karaoun is the largest artificial lake in Lebanon and serves multiple purposes. Recently, intensive cyanobacterial blooms have been reported in the lake, raising safety and aesthetic concerns related to the presence of cyanotoxins and cyanobacterial taste and odor (T&O) compounds, respectively. Here, we communicate for the first time results from a recent investigation by LC-MS/MS covering multiple cyanotoxins (microcystins (MCs), anatoxin-a, cylindrospermopsin, nodularin) in water and fish collected between 2019 and 2020. Eleven MCs were identified reaching concentrations of 211 and 199 μg/L for MC-LR and MC-YR, respectively. Cylindrospermopsin, anatoxin-a and nodularin were not detected. The determination of the total MCs was also carried out by ELISA and Protein Phosphatase Inhibition Assay yielding comparable results. Molecular detection of cyanobacteria (16S rRNA) and biosynthetic genes of toxins were carried out by qPCR. Untargeted screening analysis by GC-MS showed the presence of T&O compounds, such as β-cyclocitral, β-ionone, nonanal and dimethylsulfides that contribute to unpleasant odors in water. The determination of volatile organic compounds (VOCs) showed the presence of anthropogenic pollutants, mostly dichloromethane and toluene. The findings are important to develop future monitoring schemes in order to assess the risks from cyanobacterial blooms with regard to the lake’s ecosystem and its uses. Full article
Show Figures

Graphical abstract

11 pages, 1769 KiB  
Article
Assessment of Citrinin in Spices and Infant Cereals Using Immunoaffinity Column Clean-Up with HPLC-Fluorescence Detection
by Christopher Mair, Michael Norris, Carol Donnelly, Dave Leeman, Phyllis Brown, Elaine Marley, Claire Milligan and Naomi Mackay
Toxins 2021, 13(10), 715; https://doi.org/10.3390/toxins13100715 - 10 Oct 2021
Cited by 5 | Viewed by 2335
Abstract
Historically, the analysis of citrinin has mainly been performed on cereals such as red yeast rice; however, in recent years, more complex and abnormal commodities such as spices and infant foods are becoming more widely assessed. The aim of this study was to [...] Read more.
Historically, the analysis of citrinin has mainly been performed on cereals such as red yeast rice; however, in recent years, more complex and abnormal commodities such as spices and infant foods are becoming more widely assessed. The aim of this study was to develop and validate clean-up methods for spices and cereal-based infant foods using a citrinin immunoaffinity column before HPLC analysis with fluorescence detection. Each method developed was validated with a representative matrix, spiked at various citrinin concentrations, based around European Union (EU) regulations set for ochratoxin A (OTA), with recoveries >80% and % RSD < 9% in all cases. The limit of detection (LOD) and the limit of quantification (LOQ) were established at 1 and 3 µg/kg for spices and 0.1 and 0.25 µg/kg for infant cereals, respectively. These methods were then tested across a variety of spices and infant food products to establish efficacy with high recoveries >75% and % RSD < 5% across all matrices assessed. Therefore, these methods proved suitable for providing effective clean-up of spices and infant cereals, enabling reliable quantification of citrinin detected. Samples such as nutmeg and infant multigrain porridge had higher levels of citrinin contamination than anticipated, indicating that citrinin could be a concern for public health. This highlighted the need for close monitoring of citrinin contamination in these commodities, which may become regulated in the future. Full article
(This article belongs to the Special Issue Detection and Prevention Technologies for Toxins)
Show Figures

Figure 1

14 pages, 2008 KiB  
Article
Effects of Deoxynivalenol and Fumonisins Fed in Combination to Beef Cattle: Immunotoxicity and Gene Expression
by Heaven L. Roberts, Massimo Bionaz, Duo Jiang, Barbara Doupovec, Johannes Faas, Charles T. Estill, Dian Schatzmayr and Jennifer M. Duringer
Toxins 2021, 13(10), 714; https://doi.org/10.3390/toxins13100714 - 10 Oct 2021
Cited by 10 | Viewed by 2775
Abstract
We evaluated the effects of a treatment diet contaminated with 1.7 mg deoxynivalenol and 3.5 mg fumonisins (B1, B2 and B3) per kg ration on immune status and peripheral blood gene expression profiles in finishing-stage Angus steers. The mycotoxin treatment diet was fed [...] Read more.
We evaluated the effects of a treatment diet contaminated with 1.7 mg deoxynivalenol and 3.5 mg fumonisins (B1, B2 and B3) per kg ration on immune status and peripheral blood gene expression profiles in finishing-stage Angus steers. The mycotoxin treatment diet was fed for a period of 21 days followed by a two-week washout period during which time all animals consumed the control diet. Whole-blood leukocyte differentials were performed weekly throughout the experimental and washout period. Comparative profiles of CD4+ and CD8+ T cells, along with bactericidal capacity of circulating neutrophils and monocytes were evaluated at 0, 7, 14, 21 and 35 days. Peripheral blood gene expression was measured at 0, 7, 21 and 35 days via RNA sequencing. Significant increases in the percentage of CD4CD8+ T cells were observed in treatment-fed steers after two weeks of treatment and were associated with decreased CD4:CD8 T-cell ratios at this same timepoint (p ≤ 0.10). No significant differences were observed as an effect of treatment in terms of bactericidal capacity at any timepoint. Dietary treatments induced major changes in transcripts associated with endocrine, metabolic and infectious diseases; protein digestion and absorption; and environmental information processing (inhibition of signaling and processing), as evaluated by dynamic impact analysis. DAVID analysis also suggested treatment effects on oxygen transport, extra-cellular signaling, cell membrane structure and immune system function. These results indicate that finishing-stage beef cattle are susceptible to the immunotoxic and transcript-inhibitory effects of deoxynivalenol and fumonisins at levels which may be realistically encountered in feedlot situations. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Health and Performance in Animals)
Show Figures

Figure 1

16 pages, 2273 KiB  
Review
Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens
by Arthur Bienvenu, Eric Martinez and Matteo Bonazzi
Toxins 2021, 13(10), 713; https://doi.org/10.3390/toxins13100713 - 9 Oct 2021
Cited by 5 | Viewed by 3079
Abstract
Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these [...] Read more.
Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria. Full article
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Biological Transformation of Zearalenone by Some Bacterial Isolates Associated with Ruminant and Food Samples
by Sharif Zada, Sadia Alam, Samha Al Ayoubi, Qismat Shakeela, Sobia Nisa, Zeeshan Niaz, Ibrar Khan, Waqas Ahmed, Yamin Bibi, Shehzad Ahmed and Abdul Qayyum
Toxins 2021, 13(10), 712; https://doi.org/10.3390/toxins13100712 - 9 Oct 2021
Cited by 11 | Viewed by 2660
Abstract
Zearalenone (ZEA) is a secondary metabolite produced by Fusarium spp., the filamentous fungi. Food and feed contamination with zearalenone has adverse effects on health and economy. ZEA degradation through microorganisms is providing a promising preventive measure. The current study includes isolation of 47 [...] Read more.
Zearalenone (ZEA) is a secondary metabolite produced by Fusarium spp., the filamentous fungi. Food and feed contamination with zearalenone has adverse effects on health and economy. ZEA degradation through microorganisms is providing a promising preventive measure. The current study includes isolation of 47 bacterial strains from 100 different food and rumen samples. Seventeen isolates showed maximum activity of ZEA reduction. A bacterial isolate, RS-5, reduced ZEA concentration up to 78.3% through ELISA analysis and 74.3% as determined through HPLC. Ten of the most efficient strains were further selected for comparison of their biodegradation activity in different conditions such as incubation period, and different growth media. The samples were analyzed after 24 h, 48 h, and 72 h of incubation. De Man Rogosa Sharp (MRS) broth, Tryptic soy broth, and nutrient broth were used as different carbon sources for comparison of activity through ELISA. The mean degradation % ± SD through ELISA and HPLC were 70.77% ± 3.935 and 69.11% ± 2.768, respectively. Optimum reducing activity was detected at 72 h of incubation, and MRS broth is a suitable medium. Phylogenetic analysis based on 16S rRNA gene nucleotide sequences confirmed that one of the bacterial isolate RS-5 bacterial isolates with higher mycotoxin degradation is identified as Bacillus subtilis isolated from rumen sample. B05 (FSL-8) bacterial isolate of yogurt belongs to the genus Lactobacillus with 99.66% similarity with Lactobacillus delbrukii. Similarly, three other bacterial isolates, D05, H05 and F04 (FS-17, FSL-2 and FS-20), were found to be the sub-species/strains Pseudomonas gessardii of genus Pseudomonas based on their similarity level of (99.2%, 96% and 96.88%) and positioning in the phylogenetic tree. Promising detoxification results were revealed through GC-MS analysis of RS-5 and FSL-8 activity. Full article
(This article belongs to the Special Issue Mycotoxins: Toxicity and Biological Detoxification)
Show Figures

Figure 1

27 pages, 766 KiB  
Review
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review
by Leticia Diez-Quijada, Maria del Monte Benítez-González, María Puerto, Angeles Jos and Ana M. Cameán
Toxins 2021, 13(10), 711; https://doi.org/10.3390/toxins13100711 - 8 Oct 2021
Cited by 23 | Viewed by 3045
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, [...] Read more.
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity. Full article
Show Figures

Figure 1

11 pages, 2743 KiB  
Article
Aflatoxin B1 Toxicity in Zebrafish Larva (Danio rerio): Protective Role of Hericium erinaceus
by Davide Di Paola, Carmelo Iaria, Fabiano Capparucci, Marika Cordaro, Rosalia Crupi, Rosalba Siracusa, Ramona D’Amico, Roberta Fusco, Daniela Impellizzeri, Salvatore Cuzzocrea, Nunziacarla Spanò, Enrico Gugliandolo and Alessio Filippo Peritore
Toxins 2021, 13(10), 710; https://doi.org/10.3390/toxins13100710 - 8 Oct 2021
Cited by 29 | Viewed by 3683
Abstract
Aflatoxin B1 (AFB1), a secondary metabolite produced by fungi of the genus Aspergillus, has been found among various foods as well as in fish feed. However, the effects of AFB1 on fish development and its associated toxic mechanism are still unclear. In the [...] Read more.
Aflatoxin B1 (AFB1), a secondary metabolite produced by fungi of the genus Aspergillus, has been found among various foods as well as in fish feed. However, the effects of AFB1 on fish development and its associated toxic mechanism are still unclear. In the present study, we confirmed the morphological alterations in zebrafish embryos and larvae after exposure to different AFB1 doses as well as the oxidative stress pathway that is involved. Furthermore, we evaluated the potentially protective effect of Hericium erinaceus extract, one of the most characterized fungal extracts, with a focus on the nervous system. Treating the embryos 6 h post fertilization (hpf) with AFB1 at 50 and 100 ng/mL significantly increased oxidative stress and induced malformations in six-day post-fertilization (dpf) zebrafish larvae. The evaluation of lethal and developmental endpoints such as hatching, edema, malformations, abnormal heart rate, and survival rate were evaluated after 96 h of exposure. Hericium inhibited the morphological alterations of the larvae as well as the increase in oxidative stress and lipid peroxidation. In conclusion: our study suggests that a natural extract such as Hericium may play a partial role in promoting antioxidant defense systems and may contrast lipid peroxidation in fish development by counteracting the AFB1 toxicity mechanism. Full article
(This article belongs to the Special Issue Mycotoxins in Feeds and Their Effects on Fish)
Show Figures

Figure 1

12 pages, 9593 KiB  
Article
Toward Revealing Microcystin Distribution in Mouse Liver Tissue Using MALDI-MS Imaging
by Daria Kucheriavaia, Dušan Veličković, Nicholas Peraino, Apurva Lad, David J. Kennedy, Steven T. Haller, Judy A. Westrick and Dragan Isailovic
Toxins 2021, 13(10), 709; https://doi.org/10.3390/toxins13100709 - 8 Oct 2021
Cited by 5 | Viewed by 2933
Abstract
Cyanotoxins can be found in water and air during cyanobacterial harmful algal blooms (cHABs) in lakes and rivers. Therefore, it is very important to monitor their potential uptake by animals and humans as well as their health effects and distribution in affected organs. [...] Read more.
Cyanotoxins can be found in water and air during cyanobacterial harmful algal blooms (cHABs) in lakes and rivers. Therefore, it is very important to monitor their potential uptake by animals and humans as well as their health effects and distribution in affected organs. Herein, the distribution of hepatotoxic peptide microcystin-LR (MC-LR) is investigated in liver tissues of mice gavaged with this most common MC congener. Preliminary matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging experiments performed using a non-automated MALDI matrix deposition device and a MALDI-time-of-flight (TOF) mass spectrometer yielded ambiguous results in terms of MC-LR distribution in liver samples obtained from MC-LR-gavaged mice. The tissue preparation for MALDI-MS imaging was improved by using an automated sprayer for matrix deposition, and liver sections were imaged using an Nd:YAG MALDI laser coupled to a 15 Tesla Fourier-transform ion cyclotron resonance (FT-ICR)-mass spectrometer. MALDI-FT-ICR-MS imaging provided unambiguous detection of protonated MC-LR (calculated m/z 995.5560, z = +1) and the sodium adduct of MC-LR (m/z 1017.5380, z = +1) in liver sections from gavaged mice with great mass accuracy and ultra-high mass resolution. Since both covalently bound and free MC-LR can be found in liver of mice exposed to this toxin, the present results indicate that the distribution of free microcystins in tissue sections from affected organs, such as liver, can be monitored with high-resolution MALDI-MS imaging. Full article
(This article belongs to the Special Issue Occurrence, Detection and Mitigation of Microbial Toxins)
Show Figures

Figure 1

13 pages, 2553 KiB  
Article
Full Neutralization of Centruroides sculpturatus Scorpion Venom by Combining Two Human Antibody Fragments
by Lidia Riaño-Umbarila, José Alberto Romero-Moreno, Luis M. Ledezma-Candanoza, Timoteo Olamendi-Portugal, Lourival D. Possani and Baltazar Becerril
Toxins 2021, 13(10), 708; https://doi.org/10.3390/toxins13100708 - 6 Oct 2021
Cited by 7 | Viewed by 2696
Abstract
A fundamental issue of the characterization of single-chain variable fragments (scFvs), capable of neutralizing scorpion toxins, is their cross-neutralizing ability. This aspect is very important in Mexico because all scorpions dangerous to humans belong to the Centruroides genus, where toxin sequences show high [...] Read more.
A fundamental issue of the characterization of single-chain variable fragments (scFvs), capable of neutralizing scorpion toxins, is their cross-neutralizing ability. This aspect is very important in Mexico because all scorpions dangerous to humans belong to the Centruroides genus, where toxin sequences show high identity. Among toxin-neutralizing antibodies that were generated in a previous study, scFv 10FG2 showed a broad cross-reactivity against several Centruroides toxins, while the one of scFv LR is more limited. Both neutralizing scFvs recognize independent epitopes of the toxins. In the present work, the neutralization capacity of these two scFvs against two medically important toxins of the venom of Centruroides sculpturatus Ewing was evaluated. The results showed that these toxins are recognized by both scFvs with affinities between 1.8 × 10−9 and 6.1 × 10−11 M. For this reason, their ability to neutralize the venom was evaluated in mice, where scFv 10FG2 showed a better protective capacity. A combination of both scFvs at a molar ratio of 1:5:5 (toxins: scFv 10FG2: scFv LR) neutralized the venom without the appearance of any signs of intoxication. These results indicate a complementary activity of these two scFvs during venom neutralization. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop