Previous Issue
Volume 22, July-2
ijms-logo

Journal Browser

Journal Browser

Int. J. Mol. Sci., Volume 22, Issue 15 (August-1 2021) – 143 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Article
Transcriptomic Analysis of the Photosynthetic, Respiration and Aerenchyma Adaptation Strategies in Bermudagrass (Cynodon dactylon) under Different Submergence Stress
Int. J. Mol. Sci. 2021, 22(15), 7905; https://doi.org/10.3390/ijms22157905 (registering DOI) - 23 Jul 2021
Abstract
Submergence impedes photosynthesis and respiration but facilitates aerenchyma formation in bermudagrass. Still, the regulatory genes underlying these physiological responses are unclear in the literature. To identify differentially expressed genes (DEGs) related to these physiological mechanisms, we studied the expression of DEGs in aboveground [...] Read more.
Submergence impedes photosynthesis and respiration but facilitates aerenchyma formation in bermudagrass. Still, the regulatory genes underlying these physiological responses are unclear in the literature. To identify differentially expressed genes (DEGs) related to these physiological mechanisms, we studied the expression of DEGs in aboveground and underground tissues of bermudagrass after a 7 d treatment under control (CK), shallow submergence (SS), and deep submergence (DS). Results show that compared with CK, 12276 and 12559 DEGs were identified under SS and DS, respectively. Among them, the DEGs closely related to the metabolism of chlorophyll biosynthesis, light-harvesting, protein complex, and carbon fixation were down-regulated in SS and DS. Meanwhile, a large number of DEGs involved in starch and sucrose hydrolase activities, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation were down-regulated in aboveground tissues of bermudagrass in SS and DS. Whereas in underground tissues of bermudagrass these DEGs were all up-regulated under SS, only beta-fructofuranosidase and α-amylase related genes were up-regulated under DS. In addition, we found that DEGs associated with ethylene signaling, Ca2+-ROS signaling, and cell wall modification were also up-regulated during aerenchyma formation in underground tissues of bermudagrass under SS and DS. These results provide the basis for further exploration of the regulatory and functional genes related to the adaptability of bermudagrass to submergence. Full article
(This article belongs to the Section Molecular Plant Sciences)
Article
Hepatic LKB1 Reduces the Progression of Non-Alcoholic Fatty Liver Disease via Genomic Androgen Receptor Signaling
Int. J. Mol. Sci. 2021, 22(15), 7904; https://doi.org/10.3390/ijms22157904 (registering DOI) - 23 Jul 2021
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) increases in males aged >45 years, which indicates that androgens are associated with the development and/or progression of NAFLD, although excess dietary intake is the primary causative factor. However, it is uncertain how androgens are [...] Read more.
The incidence of non-alcoholic fatty liver disease (NAFLD) increases in males aged >45 years, which indicates that androgens are associated with the development and/or progression of NAFLD, although excess dietary intake is the primary causative factor. However, it is uncertain how androgens are involved in the metabolic process of NAFLD, which is associated with the state of steatosis in hepatocytes. To investigate whether androgen receptor (AR) signaling influences NAFLD development, the state of steatosis was monitored in mouse livers and hepatocytes with or without androgens. As a result, hepatic lipid droplets, expression of AR, and phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) increased in the presence of testosterone. Concurrently, the expression of LKB1, an upstream regulator of AMPK, was increased by testosterone treatment. We observed that the fluctuation of AMPK-ACC signaling, which plays an important role in lipogenesis, depends on the presence of testosterone and AR. Additionally, we demonstrated that testosterone bound AR was recruited to the promoter of the LKB1 gene and induced LKB1 expression. Our study highlights a novel mechanism by which testosterone modulates NAFLD development by inducing the mRNA expression of LKB1. Full article
(This article belongs to the Special Issue Steroid Hormones and Sex Difference in Diseases)
Article
Bull Sperm Capacitation Is Accompanied by Redox Modifications of Proteins
Int. J. Mol. Sci. 2021, 22(15), 7903; https://doi.org/10.3390/ijms22157903 (registering DOI) - 23 Jul 2021
Abstract
The ability to fertilise an egg is acquired by the mammalian sperm during the complex biochemical process called capacitation. Capacitation is accompanied by the production of reactive oxygen species (ROS), but the mechanism of redox regulation during capacitation has not been elucidated. This [...] Read more.
The ability to fertilise an egg is acquired by the mammalian sperm during the complex biochemical process called capacitation. Capacitation is accompanied by the production of reactive oxygen species (ROS), but the mechanism of redox regulation during capacitation has not been elucidated. This study aimed to verify whether capacitation coincides with reversible oxidative post-translational modifications of proteins (oxPTMs). Flow cytometry, fluorescence microscopy and Western blot analyses were used to verify the sperm capacitation process. A fluorescent gel-based redox proteomic approach allowed us to observe changes in the level of reversible oxPTMs manifested by the reduction or oxidation of susceptible cysteines in sperm proteins. Sperm capacitation was accompanied with redox modifications of 48 protein spots corresponding to 22 proteins involved in the production of ROS (SOD, DLD), playing a role in downstream redox signal transfer (GAPDHS and GST) related to the cAMP/PKA pathway (ROPN1L, SPA17), acrosome exocytosis (ACRB, sperm acrosome associated protein 9, IZUMO4), actin polymerisation (CAPZB) and hyperactivation (TUBB4B, TUB1A). The results demonstrated that sperm capacitation is accompanied by altered levels of oxPTMs of a group of redox responsive proteins, filling gaps in our knowledge concerning sperm capacitation. Full article
(This article belongs to the Special Issue Physiology of Gametes and Fertilization)
Show Figures

Figure 1

Article
Thrombin-Binding Aptamer with Inversion of Polarity Sites (IPS): Effect on DNAzyme Activity and Anticoagulant Properties
Int. J. Mol. Sci. 2021, 22(15), 7902; https://doi.org/10.3390/ijms22157902 (registering DOI) - 23 Jul 2021
Abstract
In this work we examined the properties of thrombin-binding aptamer (TBA) modified by the introduction of inversion of polarity sites (IPS) in order to assess the effect of modification on the activation of TBA to serve as DNAzyme with peroxidase-like activity. Two oligonucleotides [...] Read more.
In this work we examined the properties of thrombin-binding aptamer (TBA) modified by the introduction of inversion of polarity sites (IPS) in order to assess the effect of modification on the activation of TBA to serve as DNAzyme with peroxidase-like activity. Two oligonucleotides were designed to possess one (IPS1) or three (IPS2) inversion sites. TBA typically forms antiparallel G-quadruplexes with two G-tetrads, which exhibits very low DNAzyme peroxidise activity. DNAzyme activity is generally attributed to parallel G-quadruplexes. Hence, inversion of polarity was introduced in the TBA molecule to force the change of G-quadruplex topology. All oligonucleotides were characterized using circular dichroism and UV-Vis melting profiles. Next, the activity of the DNAzymes formed by studied oligonucleotides and hemin was investigated. The enhancement of peroxidase activity was observed when inversion of polarity was introduced. DNAzyme based on IPS2 showed the highest peroxidase activity in the presence of K+ or NH4+ ions. This proves that inversion of polarity can be used to convert a low-activity DNAzyme into a DNAzyme with high activity. Since TBA is known for its anticoagulant properties, the relevant experiments with IPS1 and IPS2 oligonucleotides were performed. Both IPS1 and IPS2 retain some anticoagulant activity in comparison to TBA in the reaction with fibrinogen. Additionally, the introduction of inversion of polarity makes these oligonucleotides more resistant to nucleases. Full article
Article
Chitosan Micro-Grooved Membranes with Increased Asymmetry for the Improvement of the Schwann Cell Response in Nerve Regeneration
Int. J. Mol. Sci. 2021, 22(15), 7901; https://doi.org/10.3390/ijms22157901 (registering DOI) - 23 Jul 2021
Abstract
Peripheral nerve injuries are a common condition in which a nerve is damaged, affecting more than one million people every year. There are still no efficient therapeutic treatments for these injuries. Artificial scaffolds can offer new opportunities for nerve regeneration applications; in this [...] Read more.
Peripheral nerve injuries are a common condition in which a nerve is damaged, affecting more than one million people every year. There are still no efficient therapeutic treatments for these injuries. Artificial scaffolds can offer new opportunities for nerve regeneration applications; in this framework, chitosan is emerging as a promising biomaterial. Here, we set up a simple and effective method for the production of micro-structured chitosan films by solvent casting, with high fidelity in the micro-pattern reproducibility. Three types of chitosan directional micro-grooved patterns, presenting different levels of symmetricity, were developed for application in nerve regenerative medicine: gratings (GR), isosceles triangles (ISO) and scalene triangles (SCA). The directional patterns were tested with a Schwann cell line. The most asymmetric topography (SCA), although it polarized the cell shaping less efficiently, promoted higher cell proliferation and a faster cell migration, both individually and collectively, with a higher directional persistence of motion. Overall, the use of micro-structured asymmetrical directional topographies may be exploited to enhance the nerve regeneration process mediated by chitosan scaffolds. Full article
Review
Tying Small Changes to Large Outcomes: The Cautious Promise in Incorporating the Microbiome into Immunotherapy
Int. J. Mol. Sci. 2021, 22(15), 7900; https://doi.org/10.3390/ijms22157900 (registering DOI) - 23 Jul 2021
Abstract
The role of the microbiome in immunology is a rapidly burgeoning topic of study. Given the increasing use of immune checkpoint inhibitor (ICI) therapy in cancers, along with the recognition that carcinogenesis has been linked to dysregulations of the immune system, much attention [...] Read more.
The role of the microbiome in immunology is a rapidly burgeoning topic of study. Given the increasing use of immune checkpoint inhibitor (ICI) therapy in cancers, along with the recognition that carcinogenesis has been linked to dysregulations of the immune system, much attention is now directed at potentiation of ICI efficacy, as well as minimizing the incidence of treatment-associated immune-related adverse events (irAEs). We provide an overview of the major research establishing links between the microbiome to tumorigenesis, chemotherapy and radiation potentiation, and ICI efficacy and irAE development. Full article
(This article belongs to the Special Issue Immune Responses in Cancer Immunology and Immunotherapy)
Article
Human Placental Transcriptome Reveals Critical Alterations in Inflammation and Energy Metabolism with Fetal Sex Differences in Spontaneous Preterm Birth
Int. J. Mol. Sci. 2021, 22(15), 7899; https://doi.org/10.3390/ijms22157899 (registering DOI) - 23 Jul 2021
Abstract
A well-functioning placenta is crucial for normal gestation and regulates the nutrient, gas, and waste exchanges between the maternal and fetal circulations and is an important endocrine organ producing hormones that regulate both the maternal and fetal physiologies during pregnancy. Placental insufficiency is [...] Read more.
A well-functioning placenta is crucial for normal gestation and regulates the nutrient, gas, and waste exchanges between the maternal and fetal circulations and is an important endocrine organ producing hormones that regulate both the maternal and fetal physiologies during pregnancy. Placental insufficiency is implicated in spontaneous preterm birth (SPTB). We proposed that deficits in the capacity of the placenta to maintain bioenergetic and metabolic stability during pregnancy may ultimately result in SPTB. To explore our hypothesis, we performed a RNA-seq study in male and female placentas from women with SPTB (<36 weeks gestation) compared to normal pregnancies (≥38 weeks gestation) to assess the alterations in the gene expression profiles. We focused exclusively on Black women (cases and controls), who are at the highest risk of SPTB. Six hundred and seventy differentially expressed genes were identified in male SPTB placentas. Among them, 313 and 357 transcripts were increased and decreased, respectively. In contrast, only 61 differentially expressed genes were identified in female SPTB placenta. The ingenuity pathway analysis showed alterations in the genes and canonical pathways critical for regulating inflammation, oxidative stress, detoxification, mitochondrial function, energy metabolism, and the extracellular matrix. Many upstream regulators and master regulators important for nutrient-sensing and metabolism were also altered in SPTB placentas, including the PI3K complex, TGFB1/SMADs, SMARCA4, TP63, CDKN2A, BRCA1, and NFAT. The transcriptome was integrated with published human placental metabolome to assess the interactions of altered genes and metabolites. Collectively, significant and biologically relevant alterations in the transcriptome were identified in SPTB placentas with fetal sex disparities. Altered energy metabolism, mitochondrial function, inflammation, and detoxification may underly the mechanisms of placental dysfunction in SPTB. Full article
(This article belongs to the Special Issue Placental Related Disorders of Pregnancy)
Article
Fibroblast Growth Factor 21 Response in a Preclinical Alcohol Model of Acute-on-Chronic Liver Injury
Int. J. Mol. Sci. 2021, 22(15), 7898; https://doi.org/10.3390/ijms22157898 (registering DOI) - 23 Jul 2021
Abstract
Background and Aims: Fibroblast growth factor (FGF) 21 has recently been shown to play a potential role in bile acid metabolism. We aimed to investigate the FGF21 response in an ethanol-induced acute-on-chronic liver injury (ACLI) model in Abcb4−/− mice with deficiency of [...] Read more.
Background and Aims: Fibroblast growth factor (FGF) 21 has recently been shown to play a potential role in bile acid metabolism. We aimed to investigate the FGF21 response in an ethanol-induced acute-on-chronic liver injury (ACLI) model in Abcb4−/− mice with deficiency of the hepatobiliary phospholipid transporter. Methods: Total RNA was extracted from wild-type (WT, C57BL/6J) and Abcb4/ (KO) mice, which were either fed a control diet (WT-Cont and KO-Cont groups; n = 28/group) or ethanol diet, followed by an acute ethanol binge (WT-EtOH and KO-EtOH groups; n = 28/group). A total of 58 human subjects were recruited into the study, including patients with alcohol-associated liver disease (AALD; n = 31) and healthy controls (n = 27). The hepatic and ileal expressions of genes involved in bile acid metabolism, plasma FGF levels, and bile acid and its precursors 7α- and 27-hydroxycholesterol (7α- and 27-OHC) concentrations were determined. Primary mouse hepatocytes were isolated for cell culture experiments. Results: Alcohol feeding significantly induced plasma FGF21 and decreased hepatic Cyp7a1 levels. Hepatic expression levels of Fibroblast growth factor receptor 1 (Fgfr1), Fgfr4, Farnesoid X-activated receptor (Fxr), and Small heterodimer partner (Shp) and plasma FGF15/FGF19 levels did not differ with alcohol challenge. Exogenous FGF21 treatment suppressed Cyp7a1 in a dose-dependent manner in vitro. AALD patients showed markedly higher FGF21 and lower 7α-OHC plasma levels while FGF19 did not differ. Conclusions: The simultaneous upregulation of FGF21 and downregulation of Cyp7a1 expressions upon chronic plus binge alcohol feeding together with the invariant plasma FGF15 and hepatic Shp and Fxr levels suggest the presence of a direct regulatory mechanism of FGF21 on bile acid homeostasis through inhibition of CYP7A1 by an FGF15-independent pathway in this ACLI model. Lay Summary: Alcohol challenge results in the upregulation of FGF21 and repression of Cyp7a1 expressions while circulating FGF15 and hepatic Shp and Fxr levels remain constant both in healthy and pre-injured livers, suggesting the presence of an alternative FGF15-independent regulatory mechanism of FGF21 on bile acid homeostasis through the inhibition of Cyp7a1. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Review
Genomic Variability in the Survival Motor Neuron Genes (SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development
Int. J. Mol. Sci. 2021, 22(15), 7896; https://doi.org/10.3390/ijms22157896 (registering DOI) - 23 Jul 2021
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but [...] Read more.
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy. Full article
(This article belongs to the Special Issue Genetics of Spinal Muscular Atrophy)
Show Figures

Figure 1

Article
SmSPL6 Induces Phenolic Acid Biosynthesis and Affects Root Development in Salvia miltiorrhiza
Int. J. Mol. Sci. 2021, 22(15), 7895; https://doi.org/10.3390/ijms22157895 (registering DOI) - 23 Jul 2021
Abstract
Salvia miltiorrhiza is a renowned model medicinal plant species for which 15 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family genes have been identified; however, the specific functions of SmSPLs have not been well characterized as of yet. For this study, the expression patterns of [...] Read more.
Salvia miltiorrhiza is a renowned model medicinal plant species for which 15 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family genes have been identified; however, the specific functions of SmSPLs have not been well characterized as of yet. For this study, the expression patterns of SmSPL6 were determined through its responses to treatments of exogenous hormones, including indole acetic acid (IAA), gibberellic acid (GA3), methyl jasmonic acid (MeJA), and abscisic acid (ABA). To characterize its functionality, we obtained SmSPL6-ovexpressed transgenic S. miltiorrhiza plants and found that overexpressed SmSPL6 promoted the accumulation of phenolic acids and repressed the biosynthesis of anthocyanin. Meanwhile, the root lengths of the SmSPL6-overexpressed lines were significantly longer than the control; however, both the fresh weights and lateral root numbers decreased. Further investigations indicated that SmSPL6 regulated the biosynthesis of phenolic acid by directly binding to the promoter regions of the enzyme genes Sm4CL9 and SmCYP98A14 and activated their expression. We concluded that SmSPL6 regulates not only the biosynthesis of phenolic acids, but also the development of roots in S. miltiorrhiza. Full article
(This article belongs to the Section Molecular Plant Sciences)
Review
Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword
Int. J. Mol. Sci. 2021, 22(15), 7894; https://doi.org/10.3390/ijms22157894 (registering DOI) - 23 Jul 2021
Abstract
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review [...] Read more.
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis. Full article
Review
The Role of Supplementation with Natural Compounds in Post-Stroke Patients
Int. J. Mol. Sci. 2021, 22(15), 7893; https://doi.org/10.3390/ijms22157893 (registering DOI) - 23 Jul 2021
Abstract
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, [...] Read more.
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke. Full article
(This article belongs to the Special Issue Role of Natural Compounds in Neurological Diseases)
Article
Antimicrobial Properties of Palladium and Platinum Nanoparticles: A New Tool for Combating Food-Borne Pathogens
Int. J. Mol. Sci. 2021, 22(15), 7892; https://doi.org/10.3390/ijms22157892 (registering DOI) - 23 Jul 2021
Abstract
Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use [...] Read more.
Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use in the food industry. In this study, common food-borne pathogens Salmonella enterica Infantis, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus were tested. Both NPs reduced viable cells with the log10 CFU reduction of 0.3–2.4 (PdNPs) and 0.8–2.0 (PtNPs), average inhibitory rates of 55.2–99% for PdNPs and of 83.8–99% for PtNPs. However, both NPs seemed to be less effective for biofilm formation and its reduction. The most effective concentrations were evaluated to be 22.25–44.5 mg/L for PdNPs and 50.5–101 mg/L for PtNPs. Furthermore, the interactions of tested NPs with bacterial cell were visualized by transmission electron microscopy (TEM). TEM visualization confirmed that NPs entered bacteria and caused direct damage of the cell walls, which resulted in bacterial disruption. The in vitro cytotoxicity of individual NPs was determined in primary human renal tubular epithelial cells (HRTECs), human keratinocytes (HaCat), human dermal fibroblasts (HDFs), human epithelial kidney cells (HEK 293), and primary human coronary artery endothelial cells (HCAECs). Due to their antimicrobial properties on bacterial cells and no acute cytotoxicity, both types of NPs could potentially fight food-borne pathogens. Full article
(This article belongs to the Special Issue Nanoparticles: From Synthesis to Applications)
Article
Recombinant Baculovirus: A Flexible Drug Screening Platform for Chikungunya Virus
Int. J. Mol. Sci. 2021, 22(15), 7891; https://doi.org/10.3390/ijms22157891 (registering DOI) - 23 Jul 2021
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted infectious agent that causes an endemic or epidemic outbreak(s) of Chikungunya fever that is reported in almost all countries. This virus is an intense global threat, due to its high rate of contagion and the lack of [...] Read more.
Chikungunya virus (CHIKV) is a mosquito-transmitted infectious agent that causes an endemic or epidemic outbreak(s) of Chikungunya fever that is reported in almost all countries. This virus is an intense global threat, due to its high rate of contagion and the lack of effective remedies. In this study, we developed two baculovirus expression vector system (BEVS)-based approaches for the screening of anti-CHIKV drugs in Spodoptera frugiperda insect (Sf21) cells and U-2OS cells. First, structural protein of CHIKV was co-expressed through BEVS and thereby induced cell fusion in Sf21 cells. We used an internal ribosome entry site (IRES) to co-express the green fluorescent protein (EGFP) for identifying these fusion events. The EGFP-positive Sf21 cells fused with each other and with uninfected cells to form syncytia. We identified that ursolic acid has potential anti-CHIKV activity in vitro, by using this approach. Second, BacMam virus-based gene delivery has been successfully applied for the transient expression of non-structural proteins with a subgenomic promoter-EGFP (SP-EGFP) cassette in U-2OS cells to act as an in vitro CHIKV replicon system. Our BacMam-based screening system has identified that the potential effects of baicalin and baicalein phytocompounds can inhibit the replicon activity of CHIKV in U-2OS cells. In conclusion, our results suggested that BEVS can be a potential tool for screening drugs against CHIKV. Full article
(This article belongs to the Section Molecular Pharmacology)
Article
Ozone in Medicine. The Low-Dose Ozone Concept and Its Basic Biochemical Mechanisms of Action in Chronic Inflammatory Diseases
Int. J. Mol. Sci. 2021, 22(15), 7890; https://doi.org/10.3390/ijms22157890 (registering DOI) - 23 Jul 2021
Abstract
Low-dose ozone acts as a bioregulator in chronic inflammatory diseases, biochemically characterized by high oxidative stress and a blocked regulation. During systemic applications, “Ozone peroxides” are able to replace H2O2 in its specific function of regulation, restore redox signaling, and [...] Read more.
Low-dose ozone acts as a bioregulator in chronic inflammatory diseases, biochemically characterized by high oxidative stress and a blocked regulation. During systemic applications, “Ozone peroxides” are able to replace H2O2 in its specific function of regulation, restore redox signaling, and improve the antioxidant capacity. Two different mechanisms have to be understood. Firstly, there is the direct mechanism, used in topical treatments, mostly via radical reactions. In systemic treatments, the indirect, ionic mechanism is to be discussed: “ozone peroxide” will be directly reduced by the glutathione system, informing the nuclear factors to start the regulation. The GSH/GSSG balance outlines the ozone dose and concentration limiting factor. Antioxidants are regulated, and in the case of inflammatory diseases up-regulated; cytokines are modulated, here downregulated. Rheumatoid arthritis RA as a model for chronic inflammation: RA, in preclinical and clinical trials, reflects the pharmacology of ozone in a typical manner: SOD (superoxide dismutase), CAT (catalase) and finally GSH (reduced glutathione) increase, followed by a significant reduction of oxidative stress. Inflammatory cytokines are downregulated. Accordingly, the clinical status improves. The pharmacological background investigated in a remarkable number of cell experiments, preclinical and clinical trials is well documented and published in internationally peer reviewed journals. This should encourage clinicians to set up clinical trials with chronic inflammatory diseases integrating medical ozone as a complement. Full article
Article
CD147-Cyclophilin a Interactions Promote Proliferation and Survival of Cutaneous T-Cell Lymphoma
Int. J. Mol. Sci. 2021, 22(15), 7889; https://doi.org/10.3390/ijms22157889 (registering DOI) - 23 Jul 2021
Abstract
CD147, a transmembrane glycoprotein that belongs to the immunoglobulin superfamily, and cyclophilin A (CypA), one of the binding partners of CD147, are overexpressed in tumor cells and associated with the progression of several malignancies, including both solid and hematological malignancies. However, CD147 and [...] Read more.
CD147, a transmembrane glycoprotein that belongs to the immunoglobulin superfamily, and cyclophilin A (CypA), one of the binding partners of CD147, are overexpressed in tumor cells and associated with the progression of several malignancies, including both solid and hematological malignancies. However, CD147 and CypA involvement in cutaneous T-cell lymphoma (CTCL) has not been reported. In this study, we examined CD147 and CypA expression and function using clinical samples of mycosis fungoides (MF) and Sézary syndrome (SS) and CTCL cell lines. CD147 and CypA were overexpressed by tumor cells of MF/SS, and CypA was also expressed by epidermal keratinocytes in MF/SS lesional skin. Serum CypA levels were increased and correlated with disease severity markers in MF/SS patients. Anti-CD147 antibody and/or anti-CypA antibody suppressed the proliferation of CTCL cell lines, both in vitro and in vivo, via downregulation of phosphorylated extracellular-regulated kinase 1/2 and Akt. These results suggest that CD147-CypA interactions can contribute to the proliferation of MF/SS tumor cells in both a autocrine and paracrine manner, and that the disruption of CD147-CypA interactions could be a new therapeutic strategy for the treatment of MF/SS. Full article
(This article belongs to the Special Issue Pathogenesis and Treatment of Cutaneous Lymphoma)
Review
Differences in MPS I and MPS II Disease Manifestations
Int. J. Mol. Sci. 2021, 22(15), 7888; https://doi.org/10.3390/ijms22157888 (registering DOI) - 23 Jul 2021
Abstract
Mucopolysaccharidosis (MPS) type I and II are two closely related lysosomal storage diseases associated with disrupted glycosaminoglycan catabolism. In MPS II, the first step of degradation of heparan sulfate (HS) and dermatan sulfate (DS) is blocked by a deficiency in the lysosomal enzyme [...] Read more.
Mucopolysaccharidosis (MPS) type I and II are two closely related lysosomal storage diseases associated with disrupted glycosaminoglycan catabolism. In MPS II, the first step of degradation of heparan sulfate (HS) and dermatan sulfate (DS) is blocked by a deficiency in the lysosomal enzyme iduronate 2-sulfatase (IDS), while, in MPS I, blockage of the second step is caused by a deficiency in iduronidase (IDUA). The subsequent accumulation of HS and DS causes lysosomal hypertrophy and an increase in the number of lysosomes in cells, and impacts cellular functions, like cell adhesion, endocytosis, intracellular trafficking of different molecules, intracellular ionic balance, and inflammation. Characteristic phenotypical manifestations of both MPS I and II include skeletal disease, reflected in short stature, inguinal and umbilical hernias, hydrocephalus, hearing loss, coarse facial features, protruded abdomen with hepatosplenomegaly, and neurological involvement with varying functional concerns. However, a few manifestations are disease-specific, including corneal clouding in MPS I, epidermal manifestations in MPS II, and differences in the severity and nature of behavioral concerns. These phenotypic differences appear to be related to different ratios between DS and HS, and their sulfation levels. MPS I is characterized by higher DS/HS levels and lower sulfation levels, while HS levels dominate over DS levels in MPS II and sulfation levels are higher. The high presence of DS in the cornea and its involvement in the arrangement of collagen fibrils potentially causes corneal clouding to be prevalent in MPS I, but not in MPS II. The differences in neurological involvement may be due to the increased HS levels in MPS II, because of the involvement of HS in neuronal development. Current treatment options for patients with MPS II are often restricted to enzyme replacement therapy (ERT). While ERT has beneficial effects on respiratory and cardiopulmonary function and extends the lifespan of the patients, it does not significantly affect CNS manifestations, probably because the enzyme cannot pass the blood–brain barrier at sufficient levels. Many experimental therapies, therefore, aim at delivery of IDS to the CNS in an attempt to prevent neurocognitive decline in the patients. Full article
(This article belongs to the Special Issue Mucopolysaccharidoses: Diagnosis, Treatment, and Management 2.0)
Review
Dysregulation of Astrocyte–Neuronal Communication in Alzheimer’s Disease
Int. J. Mol. Sci. 2021, 22(15), 7887; https://doi.org/10.3390/ijms22157887 (registering DOI) - 23 Jul 2021
Abstract
Recent studies implicate astrocytes in Alzheimer’s disease (AD); however, their role in pathogenesis is poorly understood. Astrocytes have well-established functions in supportive functions such as extracellular ionic homeostasis, structural support, and neurovascular coupling. However, emerging research on astrocytic function in the healthy brain [...] Read more.
Recent studies implicate astrocytes in Alzheimer’s disease (AD); however, their role in pathogenesis is poorly understood. Astrocytes have well-established functions in supportive functions such as extracellular ionic homeostasis, structural support, and neurovascular coupling. However, emerging research on astrocytic function in the healthy brain also indicates their role in regulating synaptic plasticity and neuronal excitability via the release of neuroactive substances named gliotransmitters. Here, we review how this “active” role of astrocytes at synapses could contribute to synaptic and neuronal network dysfunction and cognitive impairment in AD. Full article
Show Figures

Figure 1

Article
Cold Atmospheric Plasma Changes the Amino Acid Composition of Solutions and Influences the Anti-Tumor Effect on Melanoma Cells
Int. J. Mol. Sci. 2021, 22(15), 7886; https://doi.org/10.3390/ijms22157886 (registering DOI) - 23 Jul 2021
Abstract
Cold Atmospheric Plasma (CAP) is an ionized gas near room temperature. Its anti-tumor effect can be transmitted either by direct treatment or mediated by a plasma-treated solution (PTS), such as treated standard cell culture medium, which contains different amino acids, inorganic salts, vitamins [...] Read more.
Cold Atmospheric Plasma (CAP) is an ionized gas near room temperature. Its anti-tumor effect can be transmitted either by direct treatment or mediated by a plasma-treated solution (PTS), such as treated standard cell culture medium, which contains different amino acids, inorganic salts, vitamins and other substances. Despite extensive research, the active components in PTS and its molecular or cellular mechanisms are not yet fully understood. The purpose of this study was the measurement of the reactive species in PTS and their effect on tumor cells using different plasma modes and treatment durations. The PTS analysis yielded mode- and dose-dependent differences in the production of reactive oxygen and nitrogen species (RONS), and in the decomposition and modification of the amino acids Tyrosine (Tyr) and Tryptophan (Trp). The Trp metabolites Formylkynurenine (FKyn) and Kynurenine (Kyn) were produced in PTS with the 4 kHz (oxygen) mode, inducing apoptosis in Mel Im melanoma cells. Nitrated derivatives of Trp and Tyr were formed in the 8 kHz (nitrogen) mode, elevating the p16 mRNA expression and senescence-associated ß-Galactosidase staining. In conclusion, the plasma mode has a strong impact on the composition of the active components in PTS and affects its anti-tumor mechanism. These findings are of decisive importance for the development of plasma devices and the effectiveness of tumor treatment. Full article
(This article belongs to the Section Molecular Oncology)
Review
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners
Int. J. Mol. Sci. 2021, 22(15), 7885; https://doi.org/10.3390/ijms22157885 (registering DOI) - 23 Jul 2021
Abstract
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, [...] Read more.
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the “lock-and-key” concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of “silymarin applications” lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects. Full article
(This article belongs to the Special Issue Flavonoids)
Show Figures

Graphical abstract

Review
Moving beyond PARP Inhibition: Current State and Future Perspectives in Breast Cancer
Int. J. Mol. Sci. 2021, 22(15), 7884; https://doi.org/10.3390/ijms22157884 (registering DOI) - 23 Jul 2021
Abstract
Breast cancer is the most frequent and lethal tumor in women and finding the best therapeutic strategy for each patient is an important challenge. PARP inhibitors (PARPis) are the first, clinically approved drugs designed to exploit synthetic lethality in tumors harboring BRCA1/2 mutations. [...] Read more.
Breast cancer is the most frequent and lethal tumor in women and finding the best therapeutic strategy for each patient is an important challenge. PARP inhibitors (PARPis) are the first, clinically approved drugs designed to exploit synthetic lethality in tumors harboring BRCA1/2 mutations. Recent evidence indicates that PARPis have the potential to be used both in monotherapy and combination strategies in breast cancer treatment. In this review, we show the mechanism of action of PARPis and discuss the latest clinical applications in different breast cancer treatment settings, including the use as neoadjuvant and adjuvant approaches. Furthermore, as a class, PARPis show many similarities but also certain critical differences which can have essential clinical implications. Finally, we report the current knowledge about the resistance mechanisms to PARPis. A systematic PubMed search, using the entry terms “PARP inhibitors” and “breast cancer”, was performed to identify all published clinical trials (Phase I-II-III) and ongoing trials (ClinicalTrials.gov), that have been reported and discussed in this review. Full article
(This article belongs to the Special Issue Targeted Cancer Therapy and Mechanisms of Resistance)
Article
Effect of Polyphosphorylation on Behavior of Protein Disordered Regions
Int. J. Mol. Sci. 2021, 22(15), 7883; https://doi.org/10.3390/ijms22157883 (registering DOI) - 23 Jul 2021
Abstract
Proteins interact with many charged biological macromolecules (polyelectrolytes), including inorganic polyphosphates. Recently a new protein post-translational modification, polyphosphorylation, or a covalent binding of polyphosphate chain to lysine, was demonstrated in human and yeast. Herein, we performed the first molecular modeling study of a [...] Read more.
Proteins interact with many charged biological macromolecules (polyelectrolytes), including inorganic polyphosphates. Recently a new protein post-translational modification, polyphosphorylation, or a covalent binding of polyphosphate chain to lysine, was demonstrated in human and yeast. Herein, we performed the first molecular modeling study of a possible effect of polyphosphorylation on behavior of the modified protein using replica exchange molecular dynamics simulations in atomistic force field with explicit water. Human endoplasmin (GRP-94), a member of heat shock protein 90 family, was selected as a model protein. Intrinsically disordered region in N-terminal domain serving as a charged linker between domains and containing a polyacidic serine and lysine-rich motif, was selected as a potent polyphosphorylation site according to literature data. Polyphosphorylation, depending on exact modification site, has been shown to influence on the disordered loop flexibility and induce its further expanding, as well as induce changes in interaction with ordered part of the molecule. As a result, polyphosphorylation in N-terminal domain might affect interaction of HSP90 with client proteins since these chaperones play a key role in protein folding. Full article
(This article belongs to the Special Issue Advances in Modelling and Simulations of Anionic Molecules)
Show Figures

Figure 1

Article
Tumor Promoting Effect of BMP Signaling in Endometrial Cancer
Int. J. Mol. Sci. 2021, 22(15), 7882; https://doi.org/10.3390/ijms22157882 (registering DOI) - 23 Jul 2021
Abstract
The effects of bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, in endometrial cancer (EC) have yet to be determined. In this study, we analyzed the TCGA and MSK-IMPACT datasets and investigated the effects of BMP2 and of TWSG1, [...] Read more.
The effects of bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, in endometrial cancer (EC) have yet to be determined. In this study, we analyzed the TCGA and MSK-IMPACT datasets and investigated the effects of BMP2 and of TWSG1, a BMP antagonist, on Ishikawa EC cells. Frequent ACVR1 mutations and high mRNA expressions of BMP ligands and receptors were observed in EC patients of the TCGA and MSK-IMPACT datasets. Ishikawa cells secreted higher amounts of BMP2 compared with ovarian cancer cell lines. Exogenous BMP2 stimulation enhanced EC cell sphere formation via c-KIT induction. BMP2 also induced EMT of EC cells, and promoted migration by induction of SLUG. The BMP receptor kinase inhibitor LDN193189 augmented the growth inhibitory effects of carboplatin. Analyses of mRNAs of several BMP antagonists revealed that TWSG1 mRNA was abundantly expressed in Ishikawa cells. TWSG1 suppressed BMP7-induced, but not BMP2-induced, EC cell sphere formation and migration. Our results suggest that BMP signaling promotes EC tumorigenesis, and that TWSG1 antagonizes BMP7 in EC. BMP signaling inhibitors, in combination with chemotherapy, might be useful in the treatment of EC patients. Full article
(This article belongs to the Special Issue Advances in Gynecological Cancers)
Review
TGF-Beta as a Master Regulator of Diabetic Nephropathy
Int. J. Mol. Sci. 2021, 22(15), 7881; https://doi.org/10.3390/ijms22157881 (registering DOI) - 23 Jul 2021
Abstract
Diabetic nephropathy (DN) is one of the most common complications in diabetes mellitus and the leading cause of end-stage renal disease. TGF-β is a pleiotropic cytokine and has been recognized as a key mediator of DN. However, anti-TGF-β treatment for DN remains controversial [...] Read more.
Diabetic nephropathy (DN) is one of the most common complications in diabetes mellitus and the leading cause of end-stage renal disease. TGF-β is a pleiotropic cytokine and has been recognized as a key mediator of DN. However, anti-TGF-β treatment for DN remains controversial due to the diverse role of TGF-β1 in DN. Thus, understanding the regulatory role and mechanisms of TGF-β in the pathogenesis of DN is the initial step towards the development of anti-TGF-β treatment for DN. In this review, we first discuss the diverse roles and signaling mechanisms of TGF-β in DN by focusing on the latent versus active TGF-β1, the TGF-β receptors, and the downstream individual Smad signaling molecules including Smad2, Smad3, Smad4, and Smad7. Then, we dissect the regulatory mechanisms of TGF-β/Smad signaling in the development of DN by emphasizing Smad-dependent non-coding RNAs including microRNAs and long-non-coding RNAs. Finally, the potential therapeutic strategies for DN by targeting TGF-β signaling with various therapeutic approaches are discussed. Full article
(This article belongs to the Special Issue Novel Aspects in Kidney Disease in Diabetes)
Article
Microfabrication of a Chamber for High-Resolution, In Situ Imaging of the Whole Root for Plant–Microbe Interactions
Int. J. Mol. Sci. 2021, 22(15), 7880; https://doi.org/10.3390/ijms22157880 (registering DOI) - 23 Jul 2021
Abstract
Fabricated ecosystems (EcoFABs) offer an innovative approach to in situ examination of microbial establishment patterns around plant roots using nondestructive, high-resolution microscopy. Previously high-resolution imaging was challenging because the roots were not constrained to a fixed distance from the objective. Here, we describe [...] Read more.
Fabricated ecosystems (EcoFABs) offer an innovative approach to in situ examination of microbial establishment patterns around plant roots using nondestructive, high-resolution microscopy. Previously high-resolution imaging was challenging because the roots were not constrained to a fixed distance from the objective. Here, we describe a new ‘Imaging EcoFAB’ and the use of this device to image the entire root system of growing Brachypodium distachyon at high resolutions (20×, 40×) over a 3-week period. The device is capable of investigating root–microbe interactions of multimember communities. We examined nine strains of Pseudomonas simiae with different fluorescent constructs to B. distachyon and individual cells on root hairs were visible. Succession in the rhizosphere using two different strains of P. simiae was examined, where the second addition was shown to be able to establish in the root tissue. The device was suitable for imaging with different solid media at high magnification, allowing for the imaging of fungal establishment in the rhizosphere. Overall, the Imaging EcoFAB could improve our ability to investigate the spatiotemporal dynamics of the rhizosphere, including studies of fluorescently-tagged, multimember, synthetic communities. Full article
Show Figures

Figure 1

Review
Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents
Int. J. Mol. Sci. 2021, 22(15), 7879; https://doi.org/10.3390/ijms22157879 (registering DOI) - 23 Jul 2021
Abstract
The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and [...] Read more.
The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized. Full article
(This article belongs to the Special Issue Radiation-Induced Damage to DNA 2.0)
Show Figures

Figure 1

Review
Current Approaches for Advancement in Understanding the Molecular Mechanisms of Mycotoxin Biosynthesis
Int. J. Mol. Sci. 2021, 22(15), 7878; https://doi.org/10.3390/ijms22157878 (registering DOI) - 23 Jul 2021
Abstract
Filamentous fungi are able to synthesise a remarkable range of secondary metabolites, which play various key roles in the interaction between fungi and the rest of the biosphere, determining their ecological fitness. Many of them can have a beneficial activity to be exploited, [...] Read more.
Filamentous fungi are able to synthesise a remarkable range of secondary metabolites, which play various key roles in the interaction between fungi and the rest of the biosphere, determining their ecological fitness. Many of them can have a beneficial activity to be exploited, as well as negative impact on human and animal health, as in the case of mycotoxins contaminating large quantities of food, feed, and agricultural products worldwide and posing serious health and economic risks. The elucidation of the molecular aspects of mycotoxin biosynthesis has been greatly sped up over the past decade due to the advent of next-generation sequencing technologies, which greatly reduced the cost of genome sequencing and related omic analyses. Here, we briefly highlight the recent progress in the use and integration of omic approaches for the study of mycotoxins biosynthesis. Particular attention has been paid to genomics and transcriptomic approaches for the identification and characterisation of biosynthetic gene clusters of mycotoxins and the understanding of the regulatory pathways activated in response to physiological and environmental factors leading to their production. The latest innovations in genome-editing technology have also provided a more powerful tool for the complete explanation of regulatory and biosynthesis pathways. Finally, we address the crucial issue of the interpretation of the combined omics data on the biology of the mycotoxigenic fungi. They are rapidly expanding and require the development of resources for more efficient integration, as well as the completeness and the availability of intertwined data for the research community. Full article
Review
Engineering Climate-Change-Resilient Crops: New Tools and Approaches
Int. J. Mol. Sci. 2021, 22(15), 7877; https://doi.org/10.3390/ijms22157877 (registering DOI) - 23 Jul 2021
Abstract
Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect [...] Read more.
Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops. Full article
(This article belongs to the Special Issue Novel Approaches to Improve Abiotic Stress Tolerance in Crop Plants)
Show Figures

Graphical abstract

Article
Males and Females Have Distinct Molecular Events in the Articular Cartilage During Knee Osteoarthritis
Int. J. Mol. Sci. 2021, 22(15), 7876; https://doi.org/10.3390/ijms22157876 (registering DOI) - 23 Jul 2021
Abstract
Osteoarthritis (OA) is a major public health challenge that imposes a remarkable burden on the affected individuals and the healthcare system. Based on the clinical observation, males and females have different prevalence rates and severity levels of OA. Thus, sex-based differences may play [...] Read more.
Osteoarthritis (OA) is a major public health challenge that imposes a remarkable burden on the affected individuals and the healthcare system. Based on the clinical observation, males and females have different prevalence rates and severity levels of OA. Thus, sex-based differences may play essential roles in OA’s prognosis and treatment outcomes. To date, the comprehensive understanding of the relationship between sex and OA is still largely lacking. In the current study, we analyzed a published transcriptome dataset of knee articular cartilage (GSE114007) from 18 healthy (five females, 13 males) and 20 OA (11 females, nine males) donors to provide a slight insight into this important but complex issue. First, comparing female healthy cartilage samples with those of males revealed 36 differential expression genes (DEGs), indicating the fundamental sex-related differences at the molecular level. Meanwhile, 923 DEGs were distinguished between OA and healthy female cartilage, which can be enriched to 15 Reactome pathways. On the other hand, when comparing OA and healthy male cartilage, there are only 419 DEGs were identified, and only six pathways were enriched against the Reactome database. The different signaling response to OA in the male and female cartilage was further enforced by recognizing 50 genes with significantly different OA-responsive expression fold changes in males and females. Particularly, 14 Reactome pathways, such as “Extracellular matrix organization”, “Collagen biosynthesis and modifying enzymes”, “Dissolution of fibrin clot”, and “Platelet Aggregation (Plug formation)”, can be noted from these 50 sex-dependent OA-responsive genes. Overall, the current study explores the Sex as a Biological Variable (SABV) at the transcriptomic level in the knee articular cartilage in both healthy status and OA event, which could help predict the differential OA prognosis and treatment outcome of males and female patients. Full article
(This article belongs to the Special Issue Osteoarthritis: From Molecular Pathways to Therapeutic Advances)
Article
Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy
Int. J. Mol. Sci. 2021, 22(15), 7875; https://doi.org/10.3390/ijms22157875 (registering DOI) - 23 Jul 2021
Abstract
The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA [...] Read more.
The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop