Previous Issue
Volume 27, July
 
 
entropy-logo

Journal Browser

Journal Browser

Entropy, Volume 27, Issue 8 (August 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 594 KiB  
Article
Information-Theoretic Cost–Benefit Analysis of Hybrid Decision Workflows in Finance
by Philip Beaucamp, Harvey Maylor and Min Chen
Entropy 2025, 27(8), 780; https://doi.org/10.3390/e27080780 - 23 Jul 2025
Abstract
Analyzing and leveraging data effectively has been an advantageous strategy in the management workflows of many contemporary organizations. In business and finance, data-informed decision workflows are nowadays essential for enabling development and growth. However, there is yet a theoretical or quantitative approach for [...] Read more.
Analyzing and leveraging data effectively has been an advantageous strategy in the management workflows of many contemporary organizations. In business and finance, data-informed decision workflows are nowadays essential for enabling development and growth. However, there is yet a theoretical or quantitative approach for analyzing the cost–benefit of the processes in such workflows, e.g., in determining the trade-offs between machine- and human-centric processes and quantifying biases. The aim of this work is to translate an information-theoretic concept and measure for cost–benefit analysis to a methodology that is relevant to the analysis of hybrid decision workflows in business and finance. We propose to combine an information-theoretic approach (i.e., information-theoretic cost–benefit analysis) and an engineering approach (e.g., workflow decomposition), which enables us to utilize information-theoretic measures to estimate the cost–benefit of individual processes quantitatively. We provide three case studies to demonstrate the feasibility of the proposed methodology, including (i) the use of a statistical and computational algorithm, (ii) incomplete information and humans’ soft knowledge, and (iii) cognitive biases in a committee meeting. While this is an early application of information-theoretic cost–benefit analysis to business and financial workflows, it is a significant step towards the development of a systematic, quantitative, and computer-assisted approach for optimizing data-informed decision workflows. Full article
Show Figures

Figure 1

26 pages, 412 KiB  
Article
Entropy and Stability: Reduced Hamiltonian Formalism of Non-Barotropic Flows and Instability Constraints
by Asher Yahalom
Entropy 2025, 27(8), 779; https://doi.org/10.3390/e27080779 - 23 Jul 2025
Abstract
A reduced representation of a dynamical system helps us to understand what the true degrees of freedom of that system are and thus what the possible instabilities are. Here we extend previous work on barotropic flows to the more general non-barotropic flow case [...] Read more.
A reduced representation of a dynamical system helps us to understand what the true degrees of freedom of that system are and thus what the possible instabilities are. Here we extend previous work on barotropic flows to the more general non-barotropic flow case and study the implications for variational analysis and conserved quantities of topological significance such as circulation and helicity. In particular we introduce a four-function Eulerian variational principle of non-barotropic flows, which has not been described before. Also new conserved quantities of non-barotropic flows related to the topological velocity field, topological circulation and topological helicity, including a local version of topological helicity, are introduced. The variational formalism given in terms of a Lagrangian density allows us to introduce canonical momenta and hence a Hamiltonian formalism. Full article
(This article belongs to the Special Issue Unstable Hamiltonian Systems and Scattering Theory)
Show Figures

Figure 1

14 pages, 536 KiB  
Article
Joint Optimization and Performance Analysis of Analog Shannon–Kotel’nikov Mapping for OFDM with Carrier Frequency Offset
by Jingwen Lin, Qiwang Chen, Yu Hua and Chen Chen
Entropy 2025, 27(8), 778; https://doi.org/10.3390/e27080778 - 23 Jul 2025
Abstract
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between [...] Read more.
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between the transmitter’s and receiver’s local oscillators often exists in actual scenarios; thus, in this paper the performance of AJSCC-OFDM with CFO is analyzed and the S-K mapping is optimized. A joint optimization strategy is developed to maximize the signal-to-distortion ratio (SDR) subject to CFO constraints. Considering that the optimized AJSCC-OFDM strategies will change the amplitude distribution of encoded symbol, the peak-to-average power ratio (PAPR) characteristics under different AJSCC parameters are also analyzed. Full article
(This article belongs to the Special Issue Next-Generation Channel Coding: Theory and Applications)
10 pages, 2135 KiB  
Article
High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications
by Siva Shankar Alla, Blake Kourosh Emad and Sundeep Mukherjee
Entropy 2025, 27(8), 777; https://doi.org/10.3390/e27080777 - 23 Jul 2025
Abstract
Refractory high-entropy alloys (HEAs) are promising candidates for next-generation nuclear applications, particularly fusion reactors, due to their excellent high-temperature mechanical properties and irradiation resistance. Here, the microstructure and mechanical behavior were investigated for an equimolar WTaTiVZr HEA, designed from a palette of low-activation [...] Read more.
Refractory high-entropy alloys (HEAs) are promising candidates for next-generation nuclear applications, particularly fusion reactors, due to their excellent high-temperature mechanical properties and irradiation resistance. Here, the microstructure and mechanical behavior were investigated for an equimolar WTaTiVZr HEA, designed from a palette of low-activation elements. The as-cast alloy exhibited a dendritic microstructure composed of W-Ta rich dendrites and Zr-Ti-V rich inter-dendritic regions, both possessing a body-centered cubic (BCC) crystal structure. Room temperature bulk compression tests showed ultra-high strength of around 1.6 GPa and plastic strain ~6%, with fracture surfaces showing cleavage facets. The alloy also demonstrated excellent high-temperature strength of ~650 MPa at 500 °C. Scratch-based fracture toughness was ~38 MPa√m for the as-cast WTaTiVZr HEA compared to ~25 MPa√m for commercially used pure tungsten. This higher value of fracture toughness indicates superior damage tolerance relative to commercially used pure tungsten. These results highlight the alloy’s potential as a low-activation structural material for high-temperature plasma-facing components (PFCs) in fusion reactors. Full article
(This article belongs to the Special Issue Recent Advances in High Entropy Alloys)
Show Figures

Figure 1

20 pages, 5416 KiB  
Article
A Novel One-Dimensional Chaotic System for Image Encryption Through the Three-Strand Structure of DNA
by Yingjie Su, Han Xia, Ziyu Chen, Han Chen and Linqing Huang
Entropy 2025, 27(8), 776; https://doi.org/10.3390/e27080776 - 23 Jul 2025
Abstract
Digital images have been widely applied in fields such as mobile devices, the Internet of Things, and medical imaging. Although significant progress has been made in image encryption technology, it still faces many challenges, such as attackers using powerful computing resources and advanced [...] Read more.
Digital images have been widely applied in fields such as mobile devices, the Internet of Things, and medical imaging. Although significant progress has been made in image encryption technology, it still faces many challenges, such as attackers using powerful computing resources and advanced algorithms to crack encryption systems. To address these challenges, this paper proposes a novel image encryption algorithm based on one-dimensional sawtooth wave chaotic system (1D-SAW) and the three-strand structure of DNA. Firstly, a new 1D-SAW chaotic system was designed. By introducing nonlinear terms and periodic disturbances, this system is capable of generating chaotic sequences with high randomness and initial value sensitivity. Secondly, a new diffusion rule based on the three-strand structure of DNA is proposed. Compared with the traditional DNA encoding and XOR operation, this rule further enhances the complexity and anti-attack ability of the encryption process. Finally, the security and randomness of the 1D-SAW and image encryption algorithms were verified through various tests. Results show that this method exhibits better performance in resisting statistical attacks and differential attacks. Full article
(This article belongs to the Topic Recent Trends in Nonlinear, Chaotic and Complex Systems)
Show Figures

Figure 1

19 pages, 782 KiB  
Article
On the Rate-Distortion Theory for Task-Specific Semantic Communication
by Jingxuan Chai, Huixiang Zhu, Yong Xiao, Guangming Shi and Ping Zhang
Entropy 2025, 27(8), 775; https://doi.org/10.3390/e27080775 - 23 Jul 2025
Abstract
Semantic communication has attracted considerable interest due to its potential to support emerging human-centric services, such as holographic communications, extended reality (XR), and human-machine interactions. Different from traditional communication systems that focus on minimizing the symbol-level distortion (e.g., bit error rate, signal-to-noise ratio, [...] Read more.
Semantic communication has attracted considerable interest due to its potential to support emerging human-centric services, such as holographic communications, extended reality (XR), and human-machine interactions. Different from traditional communication systems that focus on minimizing the symbol-level distortion (e.g., bit error rate, signal-to-noise ratio, etc.), semantic communication targets at delivering the intended meaning at the destination user which is often quantified by various statistical divergences, often referred to as the semantic distances. Currently, there still lacks a unified framework to quantify the rate-distortion tradeoff for semantic communication with different task-specific semantic distance measures. To tackle this problem, we propose the task-specific rate-distortion theory for semantic communication where different task-specific statistic divergence metrics can be considered. To investigate the impact of different semantic distance measures on the achievable rate, we consider two popular tasks, classification and signal generation. We present the closed-form expressions of the semantic rate-distortion functions for these two different tasks and compare their performance under various scenarios. Extensive experimental results are presented to verify our theoretical results. Full article
(This article belongs to the Special Issue Semantic Information Theory)
Show Figures

Figure 1

20 pages, 3409 KiB  
Article
Order Lot Sizing: Insights from Lattice Gas-Type Model
by Margarita Miguelina Mieras, Tania Daiana Tobares, Fabricio Orlando Sanchez-Varretti and Antonio José Ramirez-Pastor
Entropy 2025, 27(8), 774; https://doi.org/10.3390/e27080774 - 23 Jul 2025
Abstract
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the [...] Read more.
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the inherently probabilistic and dynamic nature of decision-making across multiple periods. Drawing on structural parallels between inventory decisions and adsorption phenomena in physical systems, we constructed a mapping that represented order placements as particles on a lattice, governed by an energy function analogous to thermodynamic potentials. This formulation allowed us to employ analytical tools from statistical mechanics to identify optimal ordering strategies via the minimization of a free energy functional. Our approach not only sheds new light on the structural characteristics of optimal planning but also introduces the concept of configurational entropy as a measure of decision variability and robustness. Numerical simulations and analytical approximations demonstrate the efficacy of the lattice gas model in capturing key features of the problem and suggest promising avenues for extending the framework to more complex settings, including multi-item systems and time-varying demand. This work represents a significant step toward bridging physical sciences with supply chain optimization, offering a robust theoretical foundation for both future research and practical applications. Full article
(This article belongs to the Special Issue Statistical Mechanics of Lattice Gases)
Show Figures

Figure 1

24 pages, 1492 KiB  
Article
Feature Ranking on Small Samples: A Bayes-Based Approach
by Aleksandra Vatian, Natalia Gusarova and Ivan Tomilov
Entropy 2025, 27(8), 773; https://doi.org/10.3390/e27080773 - 22 Jul 2025
Abstract
In the modern world, there is a need to provide a better understanding of the importance or relevance of the available descriptive features for predicting target attributes to solve the feature ranking problem. Among the published works, the vast majority are devoted to [...] Read more.
In the modern world, there is a need to provide a better understanding of the importance or relevance of the available descriptive features for predicting target attributes to solve the feature ranking problem. Among the published works, the vast majority are devoted to the problems of feature selection and extraction, and not the problems of their ranking. In this paper, we propose a novel method based on the Bayesian approach that allows us to not only to build a methodically justified way of ranking features on small datasets, but also to methodically solve the problem of benchmarking the results obtained by various ranking algorithms. The proposed method is also model-free, since no restrictions are imposed on the model. We carry out an experimental comparison of our proposed method with the classical frequency method. For this, we use two synthetic datasets and two public medical datasets. As a result, we show that the proposed ranking method has a high level of self-consistency (stability) already at the level of 50 samples, which is greatly improved compared to classical logistic regression and SHAP ranking. All the experiments performed confirm our theoretical conclusions: with the growth of the sample, an increasing trend of mutual consistency is observed, and our method demonstrates at least comparable results, and often results superior to other methods in the values of self-consistency and monotonicity. The proposed method can be applied to a wide class of rankings of influence factors on small samples, including industrial tasks, forensics, psychology, etc. Full article
(This article belongs to the Section Multidisciplinary Applications)
32 pages, 1575 KiB  
Article
Entropy Accumulation Under Post-Quantum Cryptographic Assumptions
by Ilya Merkulov and Rotem Arnon
Entropy 2025, 27(8), 772; https://doi.org/10.3390/e27080772 - 22 Jul 2025
Abstract
In device-independent (DI) quantum protocols, security statements are agnostic to the internal workings of the quantum devices—they rely solely on classical interactions with the devices and specific assumptions. Traditionally, such protocols are set in a non-local scenario, where two non-communicating devices exhibit Bell [...] Read more.
In device-independent (DI) quantum protocols, security statements are agnostic to the internal workings of the quantum devices—they rely solely on classical interactions with the devices and specific assumptions. Traditionally, such protocols are set in a non-local scenario, where two non-communicating devices exhibit Bell inequality violations. Recently, a new class of DI protocols has emerged that requires only a single device. In this setting, the assumption of no communication is replaced by a computational one: the device cannot solve certain post-quantum cryptographic problems. Protocols developed in this single-device computational setting—such as for randomness certification—have relied on ad hoc techniques, making their guarantees difficult to compare and generalize. In this work, we introduce a modular proof framework inspired by techniques from the non-local DI literature. Our approach combines tools from quantum information theory, including entropic uncertainty relations and the entropy accumulation theorem, to yield both conceptual clarity and quantitative security guarantees. This framework provides a foundation for systematically analyzing DI protocols in the single-device setting under computational assumptions. It enables the design and security proof of future protocols for DI randomness generation, expansion, amplification, and key distribution, grounded in post-quantum cryptographic hardness. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

Previous Issue
Back to TopTop