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Abstract

Clustering algorithms based on non-negative matrix factorization (NMF) have garnered
significant attention in data mining due to their strong interpretability and computational
simplicity. However, traditional NMF often struggles to effectively capture and preserve
topological structure information between data during low-dimensional representation.
Therefore, this paper proposes an autoencoder-like sparse non-negative matrix factorization
with structure relationship preservation (ASNMF-SRP). Firstly, drawing on the principle
of autoencoders, a “decoder-encoder” co-optimization matrix factorization framework
is constructed to enhance the factorization stability and representation capability of the
coefficient matrix. Then, a preference-adjusted random walk strategy is introduced to
capture higher-order neighborhood relationships between samples, encoding multi-order
topological structure information of the data through an optimal graph regularization
term. Simultaneously, to mitigate the impact of noise and outliers, the l2,1-norm is used to
constrain the feature correlation between low-dimensional representations and the original
data, preserving feature relationships between data, and a sparse constraint is imposed
on the coefficient matrix via the inner product. Finally, clustering experiments conducted
on 8 public datasets demonstrate that ASNMF-SRP consistently exhibits favorable cluster-
ing performance.

Keywords: structure relationship preservation; autoencoder-like; sparse constraint; non-
negative matrix factorization; clustering

1. Introduction
Clustering aims to reveal intrinsic relationships between data through similarity

measurement, and it is widely applied in various fields such as marketing [1], gene ex-
pression [2], and pattern recognition [3]. However, with the continuous increase in data
scale, traditional clustering algorithms face challenges posed by the “curse of dimension-
ality”, including increased computational complexity, feature redundancy, and amplified
noise. Consequently, researchers have proposed a collaborative optimization paradigm
of “dimensionality reduction followed by clustering”. Matrix factorization, as a crucial
dimensionality reduction method, factorizes the original data matrix into low-rank subma-
trices to achieve the goal of “parts representing the whole”. Common matrix factorization
methods include Principal Component Analysis (PCA) [4], Singular Value Decomposition
(SVD) [5], and non-negative matrix factorization (NMF) [6]. Due to advantages such as
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non-negativity constraints, computational simplicity, and fast implementation, NMF is
frequently used in clustering analysis.

In recent years, to further enhance the performance of NMF, researchers have pro-
posed many improved NMF algorithms. For example, Hoyer et al. [7] proposed sparse
non-negative matrix factorization (SNMF), utilizing l1-norm to improve the sparsity of
NMF. Kong et al. [8] proposed robust non-negative matrix factorization (RNMF), replacing
the Frobenius norm with the l2,1-norm to enhance the algorithm’s robustness. Ding et al. [9]
proposed orthogonal non-negative matrix factorization (ONMF), reducing interference
from redundant information by imposing orthogonality constraints on the factorized sub-
matrices. These NMF algorithms primarily focus on the reconstruction error after matrix
factorization but overlook the spatial structural relationships within the original data. Stud-
ies have shown that introducing graph regularization techniques into NMF can not only
optimize reconstruction error but also further capture local geometric structures between
data [10]. Cai et al. [11] proposed the graph regularized non-negative matrix factorization
algorithm (GNMF), encoding topological information between data into the objective func-
tion to effectively improve clustering performance. Wu et al. [12] proposed robust manifold
non-negative matrix factorization (MNMEL21), which considers manifold learning of data
and employs the l2,1-norm to mitigate interference from noise and outliers. Li et al. [13]
proposed graph regularized non-negative low-rank matrix factorization (GNLMF), enhanc-
ing clustering accuracy on image data by capturing low-rank structures. Liu et al. [14]
proposed graph regularized discriminative non-negative matrix factorization (GDNMF),
which incorporates local geometric structure information between samples and data label
information to effectively improve clustering performance on image data. To enhance the
quality of graph learning, Huang et al. [15] proposed non-negative matrix factorization
with adaptive graph learning (NMFAN), dynamically adjusting graph structure learning
to effectively improve algorithm performance. Ren et al. [16] proposed semi-supervised
symmetric non-negative matrix factorization with graph quality improvement (S3NMFGC),
improving clustering performance by dynamically generating and adaptively updating
graph learning results. Mohammadi et al. [17] proposed a semi-supervised multi-view
clustering method based on adaptive symmetric NMF (SSA-SNMF), which improves the
performance of the algorithm by introducing a multi-constraint optimization strategy.

In the process of graph learning, the quality of the learned graph structure directly
affects the accuracy and robustness of clustering results. Currently, most graph learning
methods are based on measuring Euclidean distances between samples. As the complexity
of data internal structures increases, some samples may exhibit distant geometric distances,
yet their local neighborhood topologies might show highly similar characteristics. Therefore,
with the development of Graph Convolutional Neural Networks (GCNNs) [18], higher-
order topological relationships between samples have gained widespread attention among
researchers. Wang et al. [19] proposed a robust high-order graph learning algorithm for
multi-view clustering (RHGL), which improves clustering accuracy by learning high-order
graphs. Zhan et al. [20] proposed a multi-view clustering method with optimal high-order
graph embedding (Co-MSE), which enhances the quality of graph learning by modeling
high-order correlations. Additionally, Wang et al. [21] indicated that autoencoder-based
methods can not only reduce data dimensionality but also further learn latent information
between data points. Thus, from the perspective of “decoder-encoder” collaborative
optimization, although the aforementioned improved NMF-based algorithms enhance
clustering performance through different regularization terms, their objective functions
only include the “decoder” component. They lack an explicit “encoder” structure with
constraints on the coefficient matrix, thus preventing the coefficient matrix from fully
uncovering latent information in the raw data.
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Research indicates that introducing sparsity constraints into NMF can effectively en-
hance the clustering performance of algorithms [7,22]. Meng et al. [23] proposed sparse
and orthogonally constrained dual-graph regularized non-negative matrix factorization
(SODNMF), which incorporates dual-graph regularization, sparsity constraints, and or-
thogonality constraints into the objective function, significantly improving the algorithm’s
performance. Peng et al. [24] proposed logarithmic sparse non-negative matrix factor-
ization (LS-NMF), designing a llog-(pseudo) norm to achieve sparse constraints. Xiong
et al. [25] proposed dual-graph regularized sparse robust and adaptive non-negative matrix
factorization (DRGSNMF), adopting the L2,p-norm to construct a sparse regularization
term. Although the implementations of these algorithms differ, they all further enhance
algorithm performance through sparse constraints.

Features often exhibit complex correlations or complementarity, such as in consumer
behavior data. Therefore, in NMF, optimizing only the coefficient matrix may fail to
effectively preserve structural relationships between features. To address this, Shang
et al. [26] proposed dual-graph regularized non-negative matrix factorization (DNMF),
which enhances the algorithm’s generalization capability by incorporating learning of the
feature graph. Gu et al. [27] proposed a dual-graph regularized co-optimization clustering
algorithm (DRCC), simultaneously considering the learning of both sample and feature
graphs. Furthermore, to ensure the effective preservation of feature relationships from
the original data matrix during dimensionality reduction, Hedjam et al. [28] proposed
feature relationship-preserving non-negative matrix factorization (FR-NMF), and Salahian
et al. [29] proposed a deep autoencoder non-negative matrix factorization with contrastive
regularization and feature relationship preservation (DANMF-CRFR).

Therefore, this paper proposes an autoencoder-like sparse non-negative matrix factor-
ization with structure relationship preservation (ASNMF-SRP). This method incorporates
autoencoder principles into NMF, extending the constraints on the coefficient matrix from
implicit to explicit. Through these dual constraints, it not only enhances the decomposition
stability of the coefficient matrix but also further uncovers latent information in the raw
data. Simultaneously, it preserves topological information in the original data space using
higher-order graph regularization terms for both samples and features and incorporates
an optimization term for feature relationship preservation. Finally, sparse optimization
is applied to the coefficient matrix. Thus, ASNMF-SRP integrates autoencoder-like NMF,
higher-order graph regularization, feature relationship preservation, and sparse constraints
into a unified optimization framework.

The main contributions of the ASNMF-SRP algorithm are as follows:
(1) Optimization of the coefficient matrix. Firstly, this paper introduces an autoencoder-

like NMF, adding an explicit “encoder” structure to constrain the coefficient matrix. Then,
in the local structure learning process, a higher-order graph regularization method is
proposed, enabling the algorithm to progressively extend from first-order to higher-order
graph learning. Finally, an inner-product-based sparse constraint is introduced, preserving
high-order collaborative relationships between data at the element level.

(2) Optimization of the basis matrix. This paper proposes a robust feature relation-
ship preservation method, thereby establishing a topology-preserving relationship be-
tween the low-dimensional embedding space and the original high-dimensional data
feature structure.

(3) This paper demonstrates the feasibility of ASNMF-SRP through convergence analy-
sis, time complexity analysis, and other aspects. Simultaneously, in the experimental section,
comparative analysis of clustering results, visualization analysis of low-dimensional rep-
resentation data, parameter sensitivity analysis, and other experiments are conducted.
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Ultimately, the experimental results show that ASNMF-SRP exhibits excellent cluster-
ing performance.

The remaining work in this paper is organized as follows: Section 2 introduces some
foundational work related to ASNMF-SRP. Section 3 primarily describes the derivation of
the ASNMF-SRP algorithm, including the convergence and time complexity of submatrix
update iterations. Section 4 presents a series of experiments conducted on eight public
datasets. Section 5 provides a summary of the ASNMF-SRP algorithm.

2. Related Work
2.1. Non-Negative Matrix Factorization (NMF)

The objective of NMF is to factorize a given non-negative data matrix X =

(x1, x2, · · · , xn) ∈ Rm×n
+ into the product of two non-negative and low-rank matrices: a ba-

sis matrix U ∈ Rm×r
+ and a coefficient matrix V ∈ Rr×n

+ , i.e., X ≈ UV, where r ≪ min{m, n}.
During the factorization process, NMF optimizes the approximate representation by mini-
mizing the reconstruction error. Therefore, it employs the Frobenius norm to define the
objective function as follows:

min∥X−UV∥2
F, s.t. U ≥ 0, V ≥ 0 (1)

Here, ∥·∥F denotes the Frobenius norm of a matrix, which measures the reconstruction
error after matrix factorization. For the optimization problem in Equation (1), Lee et al. [30]
proposed an iterative algorithm based on multiplicative update rules, with the update
formulas given by the following:

Uij ← Uij

(
XVT)

ij(
UVVT)

ij
, Vij ← Vij

(
UTX

)
ij(

UTUV
)

ij
(2)

2.2. Robust Non-Negative Matrix Factorization (RNMF)

NMF measures reconstruction error based on Euclidean distance, making it highly
susceptible to noise and outliers. To further enhance the robustness of the matrix factoriza-
tion process, Kong et al. [8] proposed robust non-negative matrix factorization (RNMF),
which employs the l2,1-norm to assess the quality of data reconstruction. The objective
function of RNMF is as follows:

min∥X−UV∥2,1, s.t. U ≥ 0, V ≥ 0 (3)

The update formulas for the basis matrix U and coefficient matrix V in Equation (3)
are as follows:

Uij ← Uij

(
XG1VT)

ij(
UVG1VT)

ij
, Vij ← Vij

(
UTXG1

)
ij(

UTUVG1
)

ij
(4)

Here, G1 is a diagonal matrix with diagonal elements given by the following:

(G1)jj = 1/∥(X−UV)i∥2 (5)

2.3. Graph Regularized Non-Negative Matrix Factorization (GNMF)

The standard NMF achieves the goal of “representing the whole by parts” by minimiz-
ing the reconstruction error, but this approach overlooks the latent structural information
in the data. Therefore, Cai et al. [11] proposed graph regularized non-negative matrix
factorization (GNMF). GNMF improves upon NMF by encoding the local geometric struc-
ture among samples into the objective function for optimization, thereby enhancing the
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representation quality of samples in the low-dimensional space. The objective function of
GNMF is as follows:

min∥X−UV∥2
F + λTr

(
VLVT

)
, s.t. U ≥ 0, V ≥ 0 (6)

Here, λ is a non-negative regularization parameter that adjusts the strength of graph
learning. L is the Laplacian matrix, which satisfies L = D −W. In this context, W is
the similarity matrix reflecting the relationships between samples, and the degree matrix
D = diag(D11, D22, · · · , Dnn) is a diagonal matrix formed by the row sums of W, i.e.,
Dii = ∑j Wij. The update rules for GNMF are as follows:

Uij ← Uij

(
XVT)

ij(
UVVT)

ij
, Vij ← Vij

(
UTX + λWV

)
ij(

UTUV + λDV
)

ij
(7)

3. Methodology
3.1. Autoencoder-like Non-Negative Matrix Factorization

In clustering analysis, the coefficient matrix V of NMF serves as the clustering indicator
matrix. Therefore, the coefficient matrix V needs to effectively encode the structural features
of the original data to ensure the accuracy of subsequent clustering. Inspired by the non-
negative symmetric encoder-decoder method proposed by Sun et al. [31] in community
detection and the principle of autoencoders, this paper imposes an explicit constraint
on the coefficient matrix V, i.e., V ≈ f (X) = UTX. This approach not only improves
the factorization stability of the coefficient matrix but also further uncovers the latent
representations of the original data. The specific implementation process is as follows:

Linear Decoder:

g(v) = Uv→ X ≈ g(V) = UV→ ∥X−UV∥2
F (8)

Linear Encoder:

f (x) = UTx→ V ≈ f (X) = UTX→
∥∥∥V−UTX

∥∥∥2

F
(9)

In the “decoder-encoder” architecture, the coefficient matrix V acts as the encoder
matrix. From Equations (8) and (9), it can be seen that the “decoder” part corresponds to
standard NMF, aiming to minimize the reconstruction error between data, i.e., maximizing
the approximation X ≈ UV. The “encoder” part, on the other hand, transforms the data
matrix X into a distributed representation using the basis matrix U ∈ Rm×r

+ , thereby
imposing an explicit constraint on the coefficient matrix, i.e., V ≈ UTX.

By combining Equations (8) and (9), an autoencoder-like non-negative matrix factor-
ization framework is obtained, with the following objective function:
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Figure 1. Schematic diagram of autoencoder-like non-negative matrix factorization.

3.2. High-Order Graph Regularization

To further improve the quality of the data representation in the low-dimensional space,
this paper introduces graph regularization techniques based on Equation (10) to learn the
geometric structural information of the original high-dimensional space. Therefore, this
paper captures the neighborhood relationships between samples by constructing a nearest
neighbor graph. The first-order similarity matrix W1 is defined as follows:

(W1)ij =

{
1, xi ∈ Nk

(
xj
)

or xj ∈ Nk(xi)

0, otherwise
(11)

Here, Nk(xi) denotes the set of k-nearest data points to sample xi. xi and xj are the
i-th and j-th column samples of the original data matrix X = (x1, x2, · · · , xn) ∈ Rm×n

+ ,
respectively.

The coefficient matrix V = (v1, v2, · · · , vn) ∈ Rr×n
+ is the low-dimensional represen-

tation to be optimized. According to manifold learning and spectral graph theory, the
smoothness of this low-dimensional representation is given by the following:

Z = 1
2

n
∑

i,j=1

∥∥vi − vj
∥∥2
(W1)ij

=
n
∑

i=1
vivT

i (D1)ii −
n
∑

i,j=1
vivT

j (W1)ij

= Tr
(
VD1VT)− Tr

(
VW1VT)

= Tr
(
VL1VT)

(12)

Here, D1 is a diagonal matrix with (D1)ii = ∑j Wij. L1 is defined as the first-order
Laplacian matrix, which satisfies the equation L1 = D1 −W1.

In real-world scenarios, samples often exhibit complex structural relationships. For in-
stance, in online shopping, consumers from different regions may have no direct connection.
However, by analyzing behavioral data, it is possible to identify neighborhood relation-
ships where consumers share highly similar purchasing patterns. Such neighborhood
relationships provide a scientific basis for businesses to segment target customer groups
and implement precision marketing strategies. As shown in Figure 2, samples xi and xl are
both connected to samples 1, 2, and 3, indicating that xi and xl share the same neighborhood
structure. However, xi and xl are far apart and not within each other’s neighborhood sets.
From Equation (11), it follows that Wil = 0. Therefore, the first-order similarity matrix
can only capture the neighborhood relationships between samples but fails to consider the
similarity of their neighborhood structures. To further capture higher-order similarities be-
tween different neighborhood systems, this paper introduces a preference-adjusted random
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walk strategy. The random walk strategy [32,33] constructs sequences of sample points
and encodes multi-step reachability into a higher-order similarity matrix, thereby reflecting
higher-order structural information among samples. During the random walk process, the
transition probability matrix Pij represents the probability of transitioning from sample xi

to sample xj, defined as follows:

Pij =
aij

ki
(13)

Here, aij indicates the connection state between samples xi and xj: if xi and xj are
connected, then aij = 1; otherwise, aij = 0. ki represents the degree of sample xi. Since aij

takes values of 0 or 1, ki here denotes the number of samples connected to xi.

Figure 2. Example of associations between samples.

The transition probability matrix in Equation (13) is based on an equal-probability
assumption, which often fails to accurately reflect the topological heterogeneity among
samples when processing high-dimensional complex data. Therefore, this paper incorpo-
rates the Preferential Attachment (PA) model into Equation (13). By assigning connection
preference weights between sample points, the transition probability matrix is further
optimized to more realistically reflect higher-order neighborhood relationships among
samples. Thus, the new expression is as follows:

Pij =
PAsimScore

Max(PAsimScore)
×

aij

ki
(14)

Therefore, the d-th order similarity between samples xi and xj is as follows:

Sd
ij = Pik × Pkl × · · · × Pzj (15)

where d = 1, 2, · · · , n. In practical applications, the value of d should not be too large, as an
excessively large d may introduce noise interference, thereby affecting the quality of graph
learning. The average of the d-th order adjacency matrices is as follows:

W2 =
(

S1 + S2 + · · ·+ Sd
)

/d (16)

In Equation (16), W2 is referred to as the second-order similarity matrix, which aims
to capture higher-order neighborhood relationships between samples. The second-order
Laplacian matrix is defined as L2 = D2 −W2, where D2 is a diagonal matrix with entries
(D2)ii = ∑j Wij.

By considering both the first-order and second-order Laplacian matrices, the optimal
Laplacian matrix is now defined as follows:

L = ω1L1 + ω2L2 (17)
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where w1 and w2 are balancing parameters. Consequently, the optimal graph regularization
term is given by the following:

min
V≥0

Tr
(

VLVT
)

(18)

3.3. Feature Relationship Preservation

As data structures increase in complexity, feature information also plays a crucial role
in clustering analysis. For example, when enterprises identify target customer groups,
consumer characteristics, such as purchase frequency (x∗1), interests (x∗2), spending power
(x∗3), shopping preferences (x∗4), and brand loyalty (x∗5), are key dimensions. Therefore, when
high-dimensional data are transformed into low-dimensional representations, preserving
the intrinsic relationships between features becomes essential for effectively uncovering
the latent structure of customer groups. This is illustrated in Figure 3.

Figure 3. Example of feature relationship preservation in high-dimensional and low-dimensional
spaces.

In Figure 3, x∗i represents the i-th row vector of matrix X, corresponding to the i-
th feature information in the original high-dimensional data, where i = 1, 2, 3, 4, 5. u∗i
represents the i-th row vector of the basis matrix U. As shown in Figure 3, the feature
relationship between x∗i and u∗i remains consistent, which provides a theoretical basis
for enterprises to identify target customer groups. Therefore, incorporating the feature
relationships between data into the objective function for optimization can further preserve
the feature relationships among the data.(

XXT)
ij = ∑n

l=1 xilxjl represents the inner product between the i-th and j-th features

of X.
(
UUT)

ij = ∑n
l=1 uilujl represents the inner product between the i-th and j-th rows

of the basis matrix U. To maintain consistency between feature relationships in the low-
dimensional space and original data, we construct the feature preservation constraint term:

min
U≥0

∥∥∥XXT − β UUT
∥∥∥2

F
(19)

where β is a non-negative balance parameter.
Equation (19) defines the reconstruction error based on the Frobenius norm. Therefore,

when seeking to minimize the objective function value, Equation (19) is susceptible to
interference from noise and outliers. To address this, this paper employs the l2,1-norm to
further optimize Equation (19), thereby enhancing its robustness. The specific expression is
as follows:

min
U≥0

∥∥∥XXT − βUUT
∥∥∥

2,1
(20)

3.4. Sparsity of Coefficient Matrix

In the clustering process, the coefficient matrix V plays the role of a cluster indicator
matrix. Therefore, the state of the coefficient matrix V affects the accuracy of clustering
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results. Imposing sparse constraints on the coefficient matrix V can make the representation
of each sample in the low-dimensional space significantly correlated with only a few basis
vectors, thereby weakening the interference of irrelevant information on clustering results.
Common sparsity methods include: l0-norm, l1/2-norm, l1-norm, l2,1-norm, llog-(pseudo)
norm, etc. A detailed introduction is shown in Table 1, where vij represents the element in
the i-th row and j-th column of the coefficient matrix V ∈ Rr×n

+ .

Table 1. Introduction to five common sparsity methods.

No. Method Introduction to Sparsity Method

1 l0-norm [34] ∥V∥0 denotes the number of non-zero elements in V.
2 l1/2-norm [35] ∥V∥1/2 =

r
∑

i=1

n
∑

j=1

∣∣vij
∣∣1/2

3 l1-norm [22] ∥V∥1 =
r
∑

i=1

n
∑

j=1

∣∣vij
∣∣

4 l2,1-norm [36] ∥V∥2,1 =
n
∑

j=1

√
r
∑

i=1
v2

ij

5 llog-(pseudo) norm [24] ∥V∥log =
r
∑

i=1

n
∑

j=1
log
(
1 +

∣∣vij
∣∣)

The five common sparsity methods in Table 1 primarily impose element-wise regular-
ization on the coefficient matrix V but overlook the correlations within the internal structure
of V. This element-level separate optimization struggles to capture potential high-order
collaborative relationships in the sample space. Therefore, this paper proposes a sparse
constraint based on inner product penalty.

For the coefficient matrix V = (v1, v2, · · · , vn) ∈ Rr×n
+ , we have

VTV =


⟨v1, v1⟩ ⟨v1, v2⟩ · · · ⟨v1, vn⟩
⟨v2, v1⟩ ⟨v2, v2⟩ · · · ⟨v2, vn⟩

...
...

. . .
...

⟨vn, v1⟩ ⟨vn, v2⟩ · · · ⟨vn, vn⟩

 (21)

In Equation (21), the diagonal elements of VTV reflect autocorrelation, while the
off-diagonal elements reflect correlations between different vectors. Here, to avoid inter-
ference from autocorrelation, we remove the diagonal elements based on Equation (21)
and only retain the off-diagonal elements for sparsification. Thus, we can further obtain
the following:

n

∑
i=1

n

∑
j=1

〈
vi, vj

〉
−

n

∑
i=1
⟨vi, vi⟩ =

n

∑
i=1

n

∑
j = 1
j ̸= i

〈
vi, vj

〉
= Tr

(
VTV1n

)
− Tr

(
VTV

)
(22)

where 1n denotes an n× n matrix with all-one element.
Therefore, the sparse constraint term for the coefficient matrix V is as follows:

min
V≥0

(
Tr
(

VTV1n

)
− Tr

(
VTV

))
(23)
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3.5. Objective Function

From Equations (10), (18), (20) and (23), the objective function of ASNMF-SRP is
derived as follows:

min
U,V≥0

∥X−UV∥2
F +

∥∥V−UTX
∥∥2

F + αTr
(
VLVT)+ ∥∥XXT − βUUT∥∥

2,1

+λ
(
Tr
(
VTV1n

)
− Tr

(
VTV

)) (24)

where α, β, and λ are all non-negative regularization parameters. Figure 4 is a schematic
diagram of the ASNMF-SRP algorithm.

 

Figure 4. Schematic diagram of the ASNMF-SRP algorithm.

In the objective function Equation (24), each term plays an important role. The
first term (∥X−UV∥2

F) aims to focus on the reconstruction error of matrix factorization.

The second term (
∥∥V−UTX

∥∥2
F) represents an explicit constraint on the coefficient matrix,

thereby improving the factorization stability of the coefficient matrix. The third term
(Tr
(
VLVT)) encodes higher-order topological information between samples by constructing

the optimal Laplacian matrix. The fourth term (
∥∥XXT − βUUT∥∥

2,1) ensures that the feature
relationship structure of the original high-dimensional data can be preserved in the low-
dimensional space after dimensionality reduction. The fifth term (Tr

(
VTV1n

)
− Tr

(
VTV

)
)

imposes a structured sparse constraint on the coefficient matrix by introducing a sparse
regularization term in the form of inner product.

3.6. Optimization Algorithm

ASNMF-SRP employs multiplicative update rules to iteratively optimize the basis
matrix U and coefficient matrix V. The augmented Lagrangian function of the objective
function Equation (24) is as follows:

P(U, V) = ∥X−UV∥2
F +

∥∥V−UTX
∥∥2

F + αTr
(
VLVT)+ ∥∥XXT − βUUT∥∥

2,1
+λ
(
Tr
(
VTV1n

)
− Tr

(
VTV

))
− Tr

(
Λ1UT)− Tr

(
Λ2VT) (25)

where Λ1 ∈ Rm×r
+ and Λ2 ∈ Rr×n

+ denote the Lagrange multipliers for U and V, respectively.
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Expanding Equation (25) and omitting terms independent of U and V, we obtain
the following:

L(U, V) = Tr
(
VTUTUV− 2VTUTX

)
+ Tr

(
VTV− 2VTUTX + XTUUTX

)
+αTr

(
VLVT)+ Tr

(
β2UUTG2UUT − 2βUUTG2XXT)

+λ
(
Tr
(
VTV1n

)
− Tr

(
VTV

))
− Tr

(
Λ1UT)− Tr

(
Λ2VT) (26)

where G2 is a diagonal matrix whose diagonal elements are as follows:

(G2)jj = 1/
∥∥∥(XXT − βUUT

)
i

∥∥∥
2

(27)

Taking partial derivatives of L(U, V) with respect to U and V, respectively, gives
the following:

∂L
∂U = 2UVVT − 4XVT + 2XXTU + 2β2UUTG2U + 2β2G2UUTU
−2βXXTG2U− 2βG2XXTU−Λ1

(28)

∂L
∂V

= 2UTUV− 4UTX + 2V + 2αVL + 2λV1n − 2λV−Λ2 (29)

To ensure the non-negativity of the coefficient matrix V, the optimal Laplacian
matrix L in Equation (29) is factorized as L = L+ − L−, where L+ = (

∣∣L∣∣+L)/2 and
L− = (

∣∣L∣∣−L)/2.
Equation (29) can be rewritten as follows:

∂L
∂V

= 2UTUV− 4UTX + 2V + 2αVL+ − 2αVL− + 2λV1n − 2λV−Λ2 (30)

According to the KKT conditions (Λ1)ijUij = 0 and (Λ2)ijVij = 0, we derive the following:

(2UVVT − 4XVT + 2XXTU + 2β2UUTG2U + 2β2G2UUTU
−2βXXTG2U− 2βG2XXTU−Λ1)ijUij = 0

(31)

(
2UTUV− 4UTX + 2V + 2αVL+ − 2αVL− + 2λV1n − 2λV−Λ2

)
ij

Vij = 0 (32)

Therefore, we obtain the following:

(2UVVT − 4XVT + 2XXTU + 2β2UUTG2U + 2β2G2UUTU
−2βXXTG2U− 2βG2XXTU−Λ1)ijU2

ij = 0
(33)

(
2UTUV− 4UTX + 2V + 2αVL+ − 2αVL− + 2λV1n − 2λV−Λ2

)
ij

V2
ij = 0 (34)

From Equations (33) and (34), the update formulas for U and V are as follows:

Ut+1
ij ← Ut

ij

√√√√ (
2XVT + βXXTG2U + βG2XXTU

)
ij(

UVVT + XXTU + β2UUTG2U + β2G2UUTU
)

ij
(35)

Vt+1
ij ← Vt

ij

√√√√ (
2UTX + αVL− + λV

)
ij(

UTUV + V + αVL+ + λV1n
)

ij
(36)

3.7. Convergence Analysis

In this section, the convergence of U and V under the update rules in Equations (35)
and (36) in the ASNMF-SRP algorithm is proven using the auxiliary function method.
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Firstly, we prove that the coefficient matrix V is non-increasing under the update
rule in Equation (36). According to the objective function Equation (24), we can derive a
functional Fij

(
Vij
)

regarding the coefficient matrix V as follows:

Fij(Vij) = Tr(VTUTUV− 4VTUTX + VTV + αVL+VT − αVL−VT + λVTV1n − λVTV) (37)

Proposition 1. The constructed function G
(

Vij, Vt
ij

)
is an auxiliary function of Fij

(
Vij
)
.

G
(

Vij, Vt
ij

)
= ∑

ij

(
UTUVt)

ij

V2
ij

Vt
ij
− 4∑

ij

(
UTX

)
ijV

t
ij

(
1 + log

Vij

Vt
ij

)

+∑
ij

V2
ij + α∑

ij

(
VtL+

)
ij

V2
ij

Vt
ij
− α∑

ijl

(
L−jl Vt

ijV
t
il

)(
1 + log

VjlVil

Vt
jlV

t
il

)

+λ∑
ij

(
Vt1n

)
ij

V2
ij

Vt
ij
− λ∑

ij
Vt

ijV
t
ij

(
1 + log

VijVij

Vt
ijV

t
ij

) (38)

Proof. When Vij = Vt
ij, we have G

(
Vij, Vij

)
= Fij

(
Vij
)
. The following proves the case

G
(

Vij, Vt
ij

)
≥ Fij

(
Vij
)
.

When A and B are symmetric matrices, we have the following:

n
∑

i=1

m
∑

j=1

(
AStB

)
ijS

2
ij

St
ij

≥ Tr
(

STASB
)

,

∀ A ∈ Rn×n
+ , B ∈ Rm×m

+ , St ∈ Rn×m
+ , S ∈ Rn×m

+

(39)

From Equation (39), we obtain the following:

Tr
(

VTUTUV
)
≤∑

ij

(
UTUVt

)
ij

V2
ij

Vt
ij

(40)

Tr
(

VTV
)
≤∑

ij
V2

ij (41)

αTr
(

VL+VT
)
≤ α∑

ij

(
VtL+

)
ij

V2
ij

Vt
ij

(42)

λTr
(

VTV1n

)
≤ λ∑

ij

(
Vt1n

)
ij

V2
ij

Vt
ij

(43)

From x > 1 + log x(x > 0), we obtain the following:

−4Tr
(

VTUTX
)

= −4Tr
(

XTUV
)
≤ −4∑

ij

(
UTX

)
ij

Vt
ij

(
1 + log

Vij

Vt
ij

)
(44)

−αTr
(

VL−VT
)
≤ −α∑

ijl

(
L−jl Vt

ijV
t
il

)(
1 + log

VjlVil

Vt
jlV

t
il

)
(45)

−λTr
(

VTV
)
≤ −λ∑

ij
Vt

ijV
t
ij

(
1 + log

VijVij

Vt
ijV

t
ij

)
(46)
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From Equations (40)–(46), it follows that G
(

Vij, Vt
ij

)
≥ Fij

(
Vij
)
. Therefore, G

(
Vij, Vt

ij

)
is an auxiliary function of Fij

(
Vij
)
, and Proposition 1 is proven.

Let
∂G(V,Vt)

∂Vij
= 0, we obtain the following:

Vt+1
ij ← Vt

ij

√√√√ (
2UTX + αVL− + λV

)
ij(

UTUV + V + αVL+ + λV1n
)

ij
(47)

Thus, the coefficient matrix V in the ASNMF-SRP algorithm is non-increasing under
the update rule in Equation (36). Similarly, it can be proven that the basis matrix U is
non-increasing under the update rule in Equation (35). Therefore, U and V converge under
the update rules in Equations (35) and (36). The specific implementation of the ASNMF-SRP
algorithm is described in Algorithm 1.

Algorithm 1 ASNMF-SRP

Input: Initial matrix X = (x1, x2, · · · , xn) ∈ Rm×n
+ , number of classes r, neighborhood

parameter k, regularization parameters α, β and λ, balance parameters w1 and w2

parameter d, threshold ε, maximum iterations t.
Output: Basis matrix U and coefficient matrix V.
1. Initialization: t = 0, Randomly generate basis matrix U ∈ Rm×r and coefficient matrix
V ∈ Rr×n;
2. Obtain optimal Laplacian matrix L according to Equations (11)–(17);
3. For t = 1, 2, 3, · · · , maxIter

4. Ut+1
ij ← Ut

ij

√
(2XVT+βXXTG2U+βG2XXTU)ij

(UVVT+XXTU+β2UUTG2U+β2G2UUTU)ij
;

5. Vt+1
ij ← Vt

ij

√
(2UTX+αVL−+λV)ij

(UTUV+V+αVL++λV1n)ij
;

6. if
∥∥Ut −Ut−1

∥∥
∞ ≤ ε and

∥∥Vt − Vt−1
∥∥

∞ ≤ ε

Break and return (U,V);
7. End if
8. End for

□

3.8. Time Complexity Analysis

When inputting a data matrix X ∈ Rm×n, where m is the feature dimension of samples
and n is the number of samples, assume the number of classes for this dataset is r, and
r ≪ min{m, n}. After t iterations, the time complexity of ASNMF-SRP is as follows:

(1) The autoencoder-like NMF part: complexities for updating U and V are
O
(
tm2r + tmr2) and O

(
tm2r + tmr2);

(2) The higher-order graph regularization part: complexity is O
(

mn2 + med
)

, where e
denotes the average degree of nodes;

(3) The feature preservation part: complexity is O
(
tm2r + t

(
m2 + m

))
;

(4) The sparse constraint term: complexity is O
(
tn2r

)
.

Therefore, the overall time complexity of ASNMF-SRP is O(tm2r + t
(
m2 + m

)
+ tn2r

+mn2 + med).
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4. Experiments
In this section, clustering experiments will be conducted on 8 public datasets to

evaluate the clustering performance of the ASNMF-SRP algorithm. The experiments are
implemented in Python 3.11 with the computer environment being Intel(R) Core (TM)
i5-1135G7 @ 2.40 GHz 2.42 GHz, 16 GB RAM, and Windows 11 64-bit operating system.

4.1. Dataset

To verify the effectiveness of the algorithm, we selected 8 public datasets for com-
parative experiments. MSRA25 [37] dataset contains 1799 face images from 12 indi-
viduals. Semeion, Krvs, PenDigits, and Vehicle datasets are from the UCI Machine
Learning Repository (https://archive.ics.uci.edu (accessed on 23 March 2025)). Hitech
dataset is from the CLUTO toolkit (https://conservancy.umn.edu/items/4fbef165-f964-4
1ed-a239-86a8f931ffbe (accessed on 26 March 2025)). COIL20 (http://www.cs.columbia.
edu/CAVE/software/softlib/coil-20.php (accessed on 15 December 2024)) and COIL100
(http://www.kaggle.com/jessicali9530/coil100/downloads/coil100.zip/2 (accessed on
15 December 2024)) datasets record images of 20 and 100 objects, respectively. The basic
information of these 8 datasets is shown in Table 2.

Table 2. Introduction of the 8 datasets.

NO. Dataset Samples (n) Features (m) Classes (r) Data Type Image Size

1 MSRA25 1799 256 12 Face dataset 16 × 16
2 Semeion 1593 256 10 Digit images 16 × 16
3 COIL20 1440 1024 20 Object images 32 × 32
4 COIL100 7200 1024 100 Object images 32 × 32
5 Krvs 3196 36 2 Network detection —
6 Hitech 2301 2216 6 Technology news —
7 PenDigits 3498 16 10 Handwritten digits —
8 Vehicle 846 18 4 Vehicle contours —

4.2. Clustering Performance Evaluation Metrics

To compare the clustering performance of various algorithms, this paper selects four
commonly used clustering performance evaluation metrics. Among them, larger values
for these four clustering evaluation metrics indicate better clustering performance of the
corresponding algorithm.

4.2.1. Clustering Accuracy (ACC)

ACC =

n
∑

i=1
δ(map(si), ri)

n
(48)

where n is the total number of samples in the input data, ri is the true class label of the data,
si represents the result after clustering by the algorithm, and map(·) denotes the mapping
function. The expression δ(map(si), ri) in Equation (48) is as follows:

δ(map(si), ri) =

{
1, map(si) = ri

0, map(si) ̸= ri
(49)

From Equations (48) and (49), ACC is an evaluation metric used to measure the
consistency between clustering results and true labels, with a value range of [0, 1].

https://archive.ics.uci.edu
https://conservancy.umn.edu/items/4fbef165-f964-41ed-a239-86a8f931ffbe
https://conservancy.umn.edu/items/4fbef165-f964-41ed-a239-86a8f931ffbe
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.kaggle.com/jessicali9530/coil100/downloads/coil100.zip/2
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4.2.2. Adjusted Rand Index (ARI)

ARI =

∑ij

(
nij

2

)
−
[

∑i

(
xi

2

)
∑j

(
yi

2

)]
/

(
n
2

)

0.5

[
∑i

(
xi

2

)
+ ∑j

(
yi

2

)]
−
[

∑i

(
xi

2

)
∑j

(
yi

2

)]
/

(
n
2

) (50)

where xi represents the total number of samples in the i-th cluster after clustering, yi

represents the total number of samples in the true j-th class, and nij denotes the total
number of samples common to both the cluster xi and the true class yj. From Equation (50),
the value range of ARI is [−1, 1].

4.2.3. Normalized Mutual Information (NMI)

NMI(N, N∗) =
MI(N, N∗)

max(H(N), H(N∗))
(51)

where N∗ represents the data labels obtained through clustering, N represents the actual
data labels, and H(·) is defined as the entropy function.

The mutual information MI(·) expression is as follows:

MI(N, N∗) = ∑
ni∈N,n∗j ∈N∗

p
(

ni, n∗j
)

log
p
(

ni, n∗j
)

p(ni)p
(

n∗j
) (52)

where p(ni) and p
(

n∗j
)

represent the marginal probabilities of the true class and clustering

results, respectively, and p
(

ni, n∗j
)

is the joint probability of the true class ni and cluster n∗j .
From Equations (51) and (52), the value range of NMI is [0, 1].

4.2.4. Clustering Purity (PUR)

PUR =
r

∑
i=1

maxj

(
nj

i

)
n

(53)

where ni represents the total number of samples, r is the number of clusters, and nj
i repre-

sents the number of samples in cluster i that belong to the true class j. From Equation (53),
the value range of PUR is [0, 1].

4.3. Comparison Algorithms and Parameter Settings

The detailed descriptions of the 9 algorithms participating in the comparative experi-
ments are as follows:

(1) NMF [6] factorizes the original non-negative matrix into the product of two non-
negative low-rank submatrices to achieve the goal of representing the whole by parts.

(2) ONMF [9] imposes orthogonality constraints on the factorized submatrices based
on NMF.

(3) Hx-NMF [38] combines logarithm with NMF to improve the robustness of the
algorithm.

(4) EMMF [39] is an algorithm based on entropy minimization matrix factorization.
(5) GNMF [11] encodes the local geometric structure between data into the objective

function to improve the quality of low-dimensional representations.
(6) RMMMF [40] uses the l2,1-norm to enhance the algorithm’s robustness.
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(7) DRCC [27] jointly optimizes the local geometric structures of samples and features
by incorporating them into the objective function.

(8) FR-NMF [28] improves the clustering performance of the algorithm by introducing
a feature preservation term.

(9) LS-NMF [24] imposes sparse constraints on the basis matrix and coefficient matrix
using the llog-(pseudo) norm.

In the experimental process, we perform a grid search over the algorithm’s regulariza-
tion parameter in the range

{
10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103}.

During the experiments, the parameter values for the higher-order graph regulariza-
tion parameter α, feature relationship preservation regularization parameter β, and sparse
constraint regularization parameter λ in the ASNMF-SRP algorithm are shown in Table 3.

Table 3. Parameter values of ASNMF-SRP on different datasets.

No. Dataset Higher-Order Graph
Regularization α

Feature Relationship
Preservation β

Sparse
Constraint λ

1 MSRA25 1000 1000 0.001
2 Semeion 1 100 0.0001
3 COIL20 1000 1000 0.001
4 COIL100 1000 1000 0.001
5 Krvs 100 10 0.0001
6 Hitech 1000 10 0.0001
7 PenDigits 100 100 0.001
8 Vehicle 1 1 0.001

4.4. Results and Analysis

Due to fluctuations in the clustering results of various algorithms, to obtain representa-
tive clustering outcomes, each algorithm was executed 20 times on the 8 datasets during the
experiments. The mean and standard deviation were calculated as the final comparative
clustering results. Tables 4–7 present the specific values of ACC, ARI, NMI, and PUR for
these 10 algorithms on the 8 datasets, respectively. In the tables, bold numbers indicate the
optimal clustering results on that dataset, and the I-P (Improvement Percentage) column
shows the percentage by which the ASNMF-SRP algorithm improves over the best result
among the other 9 algorithms.

Table 4. ACC of 10 algorithms on 8 datasets (mean ± standard deviation).

Dataset
Algorithm

NMF ONMF Hx-
NMF EMMF GNMF RMNMF DRCC FR-

NMF
LS-

NMF
ASNMF-

SRP
I-P

MSRA25
0.50842 0.49375 0.52026 0.50592 0.53938 0.55550 0.28974 0.51659 0.54019 0.57904 4.24%
±0.023 ±0.026 ±0.029 ±0.018 ±0.032 ±0.034 ±0.029 ±0.022 ±0.022 ±0.045 --

Semeion
0.52508 0.56959 0.50807 0.51965 0.59209 0.27916 0.61601 0.53540 0.60251 0.68063 10.49%
±0.042 ±0.032 ±0.042 ±0.040 ±0.039 ±0.057 ±0.037 ±0.037 ±0.036 ±0.050 --

COIL20
0.66406 0.68531 0.65812 0.65142 0.76844 0.24385 0.79017 0.65028 0.77361 0.84174 6.53%
±0.029 ±0.028 ±0.030 ±0.019 ±0.013 ±0.094 ±0.034 ±0.026 ±0.014 ±0.012 --

COIL100
0.47026 0.49159 0.46877 0.47882 0.48738 0.41235 0.46099 0.47044 0.48306 0.64173 30.54%
±0.014 ±0.011 ±0.012 ±0.018 ±0.014 ±0.012 ±0.014 ±0.015 ±0.011 ±0.010 --

Krvs
0.51909 0.53742 0.52223 0.52137 0.53082 0.51810 0.55594 0.52552 0.53387 0.56813 2.19%
±0.003 ±0.012 ±0.002 ±0.003 ±0.012 ±0.007 ±0.004 ±0.023 ±0.015 ±0.003 --

Hitech
0.23385 0.23375 0.23403 0.23544 0.23105 0.26273 0.24087 0.22603 0.23268 0.25367 −3.45%
±0.002 ±0.005 ±0.008 ±0.004 ±0.004 ±0.001 ±0.004 ±0.007 ±0.002 ±0.002 --

PenDigits 0.66216 0.70729 0.68092 0.66630 0.67973 0.65183 0.73119 0.66791 0.68533 0.80442 10.02%
±0.036 ±0.048 ±0.040 ±0.038 ±0.053 ±0.037 ±0.043 ±0.034 ±0.052 ±0.032 --

Vehicle
0.38794 0.43777 0.40142 0.39096 0.44397 0.35916 0.41194 0.43570 0.44368 0.45236 1.89%
±0.019 ±0.002 ±0.026 ±0.021 ±0.008 ±0.003 ±0.017 ±0.023 ±0.009 ±0.002 --
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Table 5. ARI of 10 algorithms on 8 datasets (mean ± standard deviation).

Dataset
Algorithm

NMF ONMF Hx-
NMF EMMF GNMF RMNMF DRCC FR-

NMF
LS-

NMF
ASNMF-

SRP
I-P

MSRA25
0.34575 0.32933 0.35734 0.33482 0.40605 0.40058 0.12013 0.35562 0.40596 0.44662 9.99%
±0.026 ±0.027 ±0.027 ±0.020 ±0.037 ±0.034 ±0.023 ±0.019 ±0.034 ±0.052 --

Semeion
0.31198 0.35051 0.30655 0.31134 0.44280 0.11855 0.41651 0.31943 0.45921 0.48809 6.29%
±0.033 ±0.024 ±0.031 ±0.030 ±0.032 ±0.047 ±0.026 ±0.029 ±0.030 ±0.034 --

COIL20
0.57989 0.62582 0.57627 0.57069 0.74160 0.16450 0.73372 0.56682 0.74234 0.80244 8.10%
±0.026 ±0.023 ±0.034 ±0.026 ±0.018 ±0.093 ±0.036 ±0.024 ±0.016 ±0.007 --

COIL100
0.39584 0.44157 0.39549 0.40697 0.42371 0.30329 0.39167 0.39709 0.42067 0.53573 21.32%
±0.016 ±0.014 ±0.017 ±0.019 ±0.010 ±0.015 ±0.016 ±0.012 ±0.011 ±0.016 --

Krvs
0.00107 0.00579 0.00158 0.00147 0.00393 −0.00038 0.01201 0.00410 0.00505 0.01814 51.04%
±0.000 ±0.004 ±0.000 ±0.000 ±0.003 ±0.001 ±0.002 ±0.006 ±0.005 ±0.002 --

Hitech
−0.00095 0.00092 0.00021 0.00034 −0.00041 0.00016 0.00252 0.00066 −0.00049 0.00689 173.41%
±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.000 --

PenDigits 0.52361 0.55428 0.52352 0.52329 0.54137 0.50238 0.57474 0.52889 0.55809 0.68487 19.16%
±0.029 ±0.040 ±0.037 ±0.022 ±0.045 ±0.049 ±0.037 ±0.024 ±0.039 ±0.035 --

Vehicle
0.08169 0.12462 0.09207 0.08322 0.13103 0.06364 0.09691 0.11321 0.13221 0.12014 −9.13%
±0.013 ±0.003 ±0.018 ±0.018 ±0.009 ±0.004 ±0.014 ±0.012 ±0.007 ±0.001 --

Table 6. NMI of 10 algorithms on 8 datasets (mean ± standard deviation).

Dataset
Algorithm

NMF ONMF Hx-
NMF EMMF GNMF RMNMF DRCC FR-

NMF
LS-

NMF
ASNMF-

SRP
I-P

MSRA25
0.56935 0.56296 0.57773 0.55467 0.65111 0.60295 0.23745 0.57715 0.64613 0.71512 9.83%
±0.021 ±0.028 ±0.023 ±0.021 ±0.031 ±0.029 ±0.033 ±0.017 ±0.031 ±0.026 --

Semeion
0.44162 0.48847 0.44312 0.44938 0.60790 0.20171 0.54014 0.44938 0.61489 0.63282 2.92%
±0.025 ±0.020 ±0.026 ±0.023 ±0.020 ±0.074 ±0.018 ±0.022 ±0.019 ±0.021 --

COIL20
0.76112 0.79591 0.76067 0.75423 0.88538 0.31375 0.89131 0.75546 0.88500 0.91529 2.69%
±0.015 ±0.010 ±0.018 ±0.017 ±0.012 ±0.131 ±0.011 ±0.015 ±0.012 ±0.006 --

COIL100
0.75258 0.76835 0.75400 0.75646 0.77226 0.70061 0.74641 0.73117 0.76948 0.83835 8.56%
±0.005 ±0.005 ±0.006 ±0.006 ±0.004 ±0.009 ±0.006 ±0.005 ±0.004 ±0.003

Krvs
0.00060 0.00397 0.00091 0.00094 0.00265 0.00203 0.00818 0.00592 0.00352 0.01250 52.81%
±0.000 ±0.003 ±0.000 ±0.000 ±0.002 ±0.003 ±0.001 ±0.006 ±0.003 ±0.001 --

Hitech
0.00799 0.00989 0.00854 0.01049 0.00865 0.00558 0.01203 0.00786 0.00799 0.01935 60.85%
±0.001 ±0.002 ±0.002 ±0.001 ±0.002 ±0.001 ±0.002 ±0.002 ±0.002 ±0.000 --

PenDigits 0.68251 0.69332 0.66576 0.67684 0.69751 0.64294 0.69615 0.68480 0.70953 0.80120 12.92%
±0.022 ±0.019 ±0.026 ±0.018 ±0.027 ±0.043 ±0.016 ±0.021 ±0.018 ±0.021 --

Vehicle
0.11678 0.19000 0.13648 0.12714 0.19062 0.08408 0.14858 0.16404 0.19181 0.18544 −3.32%
±0.014 ±0.006 ±0.019 ±0.018 ±0.015 ±0.005 ±0.019 ±0.018 ±0.013 ±0.000 --

Table 7. PUR of 10 algorithms on 8 datasets (mean ± standard deviation).

Dataset
Algorithm

NMF ONMF Hx-
NMF EMMF GNMF RMNMF DRCC FR-

NMF
LS-

NMF
ASNMF-

SRP
I-P

MSRA25
0.52985 0.52176 0.53755 0.52287 0.56587 0.57918 0.30698 0.53849 0.56651 0.61479 6.15%
±0.021 ±0.023 ±0.025 ±0.020 ±0.026 ±0.027 ±0.030 ±0.017 ±0.025 ±0.035 --

Semeion
0.53763 0.58804 0.53431 0.53807 0.63726 0.28738 0.63625 0.54862 0.64369 0.69739 8.34%
±0.036 ±0.025 ±0.030 ±0.031 ±0.024 ±0.061 ±0.027 ±0.028 ±0.026 ±0.031 --

COIL20
0.69135 0.71340 0.68628 0.67997 0.80715 0.24903 0.82802 0.67753 0.80892 0.86455 4.41%
±0.024 ±0.023 ±0.021 ±0.021 ±0.017 ±0.095 ±0.017 ±0.023 ±0.018 ±0.011 --

COIL100
0.52663 0.54705 0.52816 0.53379 0.54654 0.47951 0.51849 0.51637 0.54247 0.69599 27.23%
±0.013 ±0.010 ±0.011 ±0.013 ±0.012 ±0.012 ±0.012 ±0.012 ±0.009 ±0.006 --

Krvs
0.52245 0.53742 0.52289 0.52261 0.53137 0.52237 0.55594 0.53360 0.53387 0.56813 2.19%
±0.000 ±0.012 ±0.001 ±0.000 ±0.011 ±0.000 ±0.004 ±0.016 ±0.015 ±0.003 --

Hitech
0.26693 0.27034 0.26758 0.27017 0.26877 0.26380 0.27099 0.26788 0.26606 0.28525 5.26%
±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.001 ±0.004 ±0.005 ±0.003 ±0.001 --

PenDigits 0.69262 0.72340 0.69447 0.69118 0.70675 0.67226 0.73872 0.69626 0.71256 0.81095 9.78%
±0.026 ±0.031 ±0.031 ±0.026 ±0.035 ±0.035 ±0.029 ±0.024 ±0.035 ±0.023 --

Vehicle
0.39285 0.43777 0.40573 0.39681 0.44397 0.37145 0.41832 0.43853 0.44368 0.45236 1.89%
±0.015 ±0.002 ±0.020 ±0.018 ±0.008 ±0.005 ±0.020 ±0.022 ±0.009 ±0.002 --

By comparing the data in Tables 4–7, it can be seen that ASNMF-SRP exhibits excellent
clustering performance. The specific data analysis is as follows:
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(1) On image datasets (MSRA25, Semeion, COIL20, and COIL100), the values of all
four clustering evaluation metrics for ASNMF-SRP are higher than those of the other
nine algorithms. This indicates that ASNMF-SRP holds certain advantages in handling
clustering problems related to images.

(2) On non-image datasets (Krvs, Hitech, PenDigits, and Vehicle), ASNMF-SRP fails to
achieve optimal values in ACC on the Hitech dataset and in ARI and NMI on the Vehicle
dataset. However, in most cases, ASNMF-SRP demonstrates optimal performance.

(3) FR-NMF incorporates an additional feature relationship preservation term com-
pared to NMF. According to the data in Tables 4–7, FR-NMF outperforms NMF in clustering
performance on some datasets. ASNMF-SRP not only includes feature relationship preser-
vation but also incorporates components such as autoencoder-like NMF, higher-order
graph regularization, and sparse constraints. The data in Tables 4–7 show that ASNMF-SRP
achieves higher values across all four clustering evaluation metrics on these eight datasets
compared to NMF and FR-NMF. This demonstrates that through the synergistic effects of
various regularization terms, ASNMF-SRP not only enhances clustering performance but
also improves generalization capability.

This paper employs the t-SNE method to project the low-dimensional representation
matrices obtained by the ten algorithms on the MSRA25, COIL20, and Hitech datasets into
a two-dimensional space for visualization.

From Figures 5–7, it can be observed that on the MSRA25, COIL20, and Hitech datasets,
the low-rank representation matrix obtained after dimensionality reduction using the
ASNMF-SRP algorithm exhibits stronger discriminative power. Therefore, the ASNMF-SRP
algorithm demonstrates excellent clustering performance.

       

(a) NMF  (b) ONMF  (c) Hx-NMF  (d) EMMF 

       

(e) GNMF  (f) RMNMF  (g) DRCC  (h) FR-NMF 

 

   

 

  (i) LS-NMF  (j) ASNMF-SRP   

Figure 5. Visual comparison of low-dimensional representation matrices of various algorithms on the
MSRA25 dataset.
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(a) NMF (b) ONMF (c) Hx-NMF (d) EMMF

(e) GNMF (f) RMNMF (g) DRCC (h) FR-NMF

(i) LS-NMF (j) ASNMF-SRP

Figure 6. Visual comparison of low-dimensional representation matrices of various algorithms on the
COIL20 dataset.

       

(a) NMF  (b) ONMF  (c) Hx-NMF    (d) EMMF 

       

(e) GNMF  (f) RMNMF  (g) DRCC  (h) FR-NMF 

 

   

 

  (i) LS-NMF  (j) ASNMF-SRP   

Figure 7. Visual comparison of low-dimensional representation matrices of various algorithms on the
Hitech dataset.



Entropy 2025, 27, 875 20 of 27

4.5. Analysis of the Impact of Autoencoder-like NMF on Clustering Performance

Unlike traditional NMF, the objective function of ASNMF-SRP includes a “decoder-
encoder” module. To investigate the influence of this autoencoder-like NMF architecture
on clustering performance, we removed the “encoder” part in Equation (24), causing
ASNMF-SRP to degenerate into ASNMF-SRP-1. The objective function of ASNMF-SRP-1 is
as follows:

min
U,V≥0

∥X−UV∥2
F + αTr

(
VLVT

)
+
∥∥∥XXT − βUUT

∥∥∥
2,1

+ λ
(

Tr
(

VTV1n

)
− Tr

(
VTV

))
(54)

From Table 8, it can be seen that the clustering performance of ASNMF-SRP is sig-
nificantly better than that of ASNMF-SRP-1. On the clustering evaluation metrics ACC,
ARI, NMI, and PUR, it shows average improvements of 12.03%, 17.02%, 10.81%, and
10.56%, respectively. This indicates that introducing an NMF component with a structure
similar to an autoencoder has a positive effect on ASNMF-SRP, effectively enhancing its
clustering performance.

Table 8. Clustering results of ASNMF-SRP and ASNMF-SRP-1 (mean ± standard deviation).

Dataset
ACC ARI NMI PUR

ASNMF-
SRP-1

ASNMF-
SRP

ASNMF-
SRP-1

ASNMF-
SRP

ASNMF-
SRP-1

ASNMF-
SRP

ASNMF-
SRP-1

ASNMF-
SRP

MSRA25
0.49680 0.57904 0.33356 0.44662 0.55612 0.71512 0.51656 0.61479
±0.021 ±0.045 ±0.016 ±0.052 ±0.019 ±0.026 ±0.019 ±0.035

Semeion
0.64724 0.68063 0.48198 0.48809 0.64292 0.63282 0.68908 0.69739
±0.010 ±0.050 ±0.007 ±0.034 ±0.010 ±0.021 ±0.011 ±0.031

COIL20
0.80552 0.84174 0.76313 0.80244 0.88651 0.91529 0.83587 0.86455
±0.015 ±0.012 ±0.017 ±0.007 ±0.008 ±0.006 ±0.013 ±0.011

COIL100
0.48007 0.64173 0.40311 0.53573 0.73255 0.83835 0.52556 0.69599
±0.009 ±0.010 ±0.011 ±0.016 ±0.005 ±0.003 ±0.007 ±0.006

Krvs
0.52839 0.56813 0.00393 0.01814 0.00396 0.01250 0.53339 0.56813
±0.017 ±0.003 ±0.004 ±0.002 ±0.004 ±0.001 ±0.012 ±0.003

Hitech
0.23301 0.25367 0.00014 0.00689 0.00893 0.01935 0.26847 0.28525
±0.005 ±0.002 ±0.001 ±0.000 ±0.001 ±0.000 ±0.003 ±0.001

PenDigits 0.66533 0.80442 0.53130 0.68487 0.68684 0.80120 0.69495 0.81095
±0.040 ±0.032 ±0.030 ±0.035 ±0.020 ±0.021 ±0.026 ±0.023

Vehicle
0.44746 0.45236 0.13445 0.12014 0.20032 0.18544 0.44888 0.45236
±0.004 ±0.002 ±0.003 ±0.001 ±0.008 ±0.000 ±0.006 ±0.002

4.6. Analysis of the Impact of Higher-Order Graph Regularization on Clustering Performance

To further examine the influence of higher-order neighborhood relationships among
samples on clustering performance, we set w2 = 0 in Equation (17), thereby reducing
ASNMF-SRP to ASNMF-SRP-2. At this point, the objective function of ASNMF-SRP-2 is
as follows:

min
U,V≥0

∥X−UV∥2
F +

∥∥V−UTX
∥∥2

F + αTr
(
VL1VT)+ ∥∥XXT − βUUT∥∥

2,1

+λ
(
Tr
(
VTV1n

)
− Tr

(
VTV

)) (55)

From Table 9, it can be observed that ASNMF-SRP exhibits superior clustering perfor-
mance over ASNMF-SRP-2 on most datasets, indicating its stronger generalization ability.
This also suggests that higher-order neighborhood relationships among samples can influ-
ence the clustering performance of the algorithm. However, on a few datasets (e.g., Krvs),
ASNMF-SRP does not perform well. Therefore, future work should further explore how to
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design an optimal Laplacian matrix to effectively encode multi-order topological structure
information, thereby improving the algorithm’s universality.

Table 9. Clustering results of ASNMF-SRP and ASNMF-SRP-2 (mean ± standard deviation).

Dataset
ACC ARI NMI PUR

ASNMF-
SRP-2

ASNMF-
SRP

ASNMF-
SRP-2

ASNMF-
SRP

ASNMF-
SRP-2

ASNMF-
SRP

ASNMF-
SRP-2

ASNMF-
SRP

MSRA25
0.57518 0.57904 0.44437 0.44662 0.72012 0.71512 0.61354 0.61479
±0.032 ±0.045 ±0.038 ±0.052 ±0.019 ±0.026 ±0.025 ±0.035

Semeion
0.67803 0.68063 0.48380 0.48809 0.62883 0.63282 0.69567 0.69739
±0.044 ±0.050 ±0.029 ±0.034 ±0.018 ±0.021 ±0.025 ±0.031

COIL20
0.83865 0.84174 0.80155 0.80244 0.91285 0.91529 0.86194 0.86455
±0.013 ±0.012 ±0.008 ±0.007 ±0.004 ±0.006 ±0.013 ±0.011

COIL100
0.63818 0.64173 0.54346 0.53573 0.83103 0.83835 0.69085 0.69599
±0.007 ±0.010 ±0.014 ±0.016 ±0.003 ±0.003 ±0.004 ±0.006

Krvs
0.56884 0.56813 0.01850 0.01814 0.01274 0.01250 0.56884 0.56813
±0.000 ±0.003 ±0.000 ±0.002 ±0.000 ±0.001 ±0.000 ±0.003

Hitech
0.24744 0.25367 0.00424 0.00689 0.01893 0.01935 0.27912 0.28525
±0.001 ±0.002 ±0.001 ±0.000 ±0.000 ±0.000 ±0.001 ±0.001

PenDigits 0.79936 0.80442 0.67517 0.68487 0.79476 0.80120 0.80499 0.81095
±0.029 ±0.032 ±0.028 ±0.035 ±0.017 ±0.021 ±0.022 ±0.023

Vehicle
0.45219 0.45236 0.12018 0.12014 0.18540 0.18544 0.45219 0.45236
±0.001 ±0.002 ±0.001 ±0.001 ±0.001 ±0.000 ±0.001 ±0.002

4.7. Robustness Analysis of ASNMF-SRP

To evaluate the robustness of ASNMF-SRP, we added salt-and-pepper noise with
intensities of 10%, 20%, 30%, and 40% to the MSRA25, COIL20, and COIL100 datasets. To
further compare the contributions of Equations (19) and (20) to the robustness of ASNMF-
SRP, we conducted comparative experiments between ASNMF-SRP and ASNMF-SRP-3.
The objective function of ASNMF-SRP-3 is as follows:

min
U,V≥0

∥X−UV∥2
F +

∥∥V−UTX
∥∥2

F + αTr
(
VLVT)+ ∥∥XXT − βUUT∥∥2

F

+λ
(
Tr
(
VTV1n

)
− Tr

(
VTV

)) (56)

From Figure 8, it can be seen that as the noise intensity increases, the clustering
evaluation metric values of both ASNMF-SRP and ASNMF-SRP-3 show a declining trend.
However, the clustering evaluation metric values of ASNMF-SRP are consistently higher
than those of ASNMF-SRP-3. Therefore, adopting the l2,1-norm to measure reconstruction
errors in the “feature relationship preservation” component can enhance the robustness of
ASNMF-SRP.

4.8. Parameter Sensitivity Analysis

ASNMF-SRP has three hyperparameters: the higher-order graph regularization coeffi-
cient α, the balance parameter for feature relationship preservation β, and the regulariza-
tion parameter for sparse constraint λ. In the parameter sensitivity analysis experiment,
the value ranges for α and β were set to

{
100, 101, 102, 103}, and the range for λ was{

10−4, 10−3}. The parameter sensitivity concerning α, β, and λ is shown in Figure 9.



Entropy 2025, 27, 875 22 of 27

       

(a) MSRA25 

       

(b) COIL20 

       

(c) COIL100 

Figure 8. Comparison of clustering results between ASNMF-SRP and ASNMF-SRP-3 under different
noise intensities.

From Figure 9, we can obtain the following:
(1) On the MSRA25, COIL20, COIL100, and Hitech datasets, ASNMF-SRP demon-

strates favorable clustering performance when the higher-order regularization parameter
α = 1000; on the Semeion and Vehicle datasets, ASNMF-SRP exhibits good clustering
performance when parameter α takes smaller values.

(2) With parameters α and β determined, different values of the sparse constraint
regularization parameter λ significantly affect the clustering performance of the ASNMF-
SRP algorithm. For example, on the COIL100 dataset, when λ = 0.0001, the clustering
results of ASNMF-SRP overall outperform those when λ = 0.001.

(3) α and λ jointly constrain the coefficient matrix V, where α preserves the manifold
structure of samples while λ balances the strength of sparsity, both optimizing the coefficient
matrix through synergistic effects. Simultaneously, α and β collaboratively optimize the
local geometric structure of data in both sample space and feature space. In parameter
settings, the values of α and β are generally greater than that of λ to enhance manifold
structure preservation capability, while the value of λ is kept relatively small to ensure
appropriate sparse constraint intensity.
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(a) MSRA25 

       

(b) Semeion 

       

(c) COIL20 

       

(d) COIL100 

       

(e) Krvs 

       

(f) Hitech 

       

(g) PenDigits 

Figure 9. Cont.
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(h) Vehicle 

Figure 9. Parameter sensitivity analysis of ASNMF-SRP on various datasets.

4.9. Empirical Convergence

This section will experimentally analyze the convergence of the ASNMF-SRP algorithm
on 8 datasets to further verify the accuracy of the theoretical analysis in Section 3.7. In the
empirical convergence experiment, the values of hyperparameters α, β, and λ in ASNMF-
SRP remain consistent with those in Table 3.

From Figure 10, it can be observed that the ASNMF-SRP algorithm achieves conver-
gence on all eight datasets. Specifically, on the MSRA25, Semeion, COIL20, COIL100, Krvs,
Hitech, and PenDigits datasets, the ASNMF-SRP algorithm exhibits a relatively fast con-
vergence rate during the initial iterations, with its corresponding objective function value
rapidly decreasing, ultimately achieving convergence within 20 iterations. On the Vehicle
dataset, the ASNMF-SRP algorithm shows a rapid decline in the objective function value
during the initial iterations, but subsequently, the rate of decrease slows down, ultimately
achieving convergence around 40 iterations.

     

(a) MSRA25  (b) Semeion  (c) COIL20 

     

(d) COIL100  (e) Krvs  (f) Hitech 

   

 

(g) PenDigits  (h) Vehicle   

Figure 10. Convergence curves of ASNMF-SRP on various datasets.
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5. Conclusions
This paper proposes an autoencoder-like sparse non-negative matrix factorization

with structure relationship preservation (ASNMF-SRP). By integrating the principle of
autoencoders, the algorithm enhances the optimization of the coefficient matrix through a
linear “decoder-encoder” approach, which not only improves the factorization stability of
the coefficient matrix but also further uncovers the latent representations of the original data.
In the structural learning of the sample space, ASNMF-SRP effectively captures higher-
order topological information between samples by constructing the optimal Laplacian
matrix. In feature relationship learning, ASNMF-SRP employs the l2,1-norm to define
the reconstruction error of feature correlations between the basis matrix and the original
data matrix, ensuring consistency in feature relationships between the low-dimensional
space and the original high-dimensional space. Furthermore, a sparse constraint based
on inner product representation is imposed on the coefficient matrix, further enhancing
the clustering performance of ASNMF-SRP. Finally, comparative experiments between
ASNMF-SRP and nine other advanced clustering algorithms demonstrate, as evidenced
by the data in Tables 4–7, that ASNMF-SRP achieves favorable clustering performance.
In future research work, we will conduct in-depth exploration from the following three
aspects: (1) To further optimize the construction process of high-order graph regularization,
enhancing the model’s capability to represent complex structures; (2) to extend ASNMF-
SRP into a deep NMF framework, enabling better exploration of latent features in data;
and (3) to design a multi-view extension model for ASNMF-SRP, thereby broadening the
applicability of the algorithm.
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