Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = wearable electrochemical sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 - 1 Aug 2025
Viewed by 262
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

43 pages, 19225 KiB  
Review
Recent Progress in Flexible Wearable Sensors Utilizing Conductive Hydrogels for Sports Applications: Characteristics, Mechanisms, and Modification Strategies
by Jie Wu, Jingya Hong, Xing Gao, Yutong Wang, Wenyan Wang, Hongchao Zhang, Jaeyoung Park, Weiquan Shi and Wei Guo
Gels 2025, 11(8), 589; https://doi.org/10.3390/gels11080589 - 30 Jul 2025
Viewed by 153
Abstract
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently [...] Read more.
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently required to resolve. Consequently, this paper comprehensively reviews the recent advancements in conductive hydrogel-based flexible wearable sensors for sports applications. The paper examines the conductivity, self-adhesion, self-repair, and biocompatibility of conductive hydrogels, along with detailed analyses of their working principles in resistance, capacitance, piezoelectric, and battery-based sensing mechanisms. Additionally, the paper summarizes innovative strategies to enhance sensor performance through polymer blending, polyelectrolyte doping, inorganic salt doping, and nanomaterial integration. Furthermore, the paper highlights the latest applications of conductive hydrogel flexible wearable sensors in human motion monitoring, electrophysiological signal detection, and electrochemical biosignal monitoring. Finally, the paper provides an in-depth discussion of the advantages and limitations of existing technologies, offering valuable insights and new perspectives for future research directions. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

33 pages, 8681 KiB  
Review
AI-Empowered Electrochemical Sensors for Biomedical Applications: Technological Advances and Future Challenges
by Yafeng Liu, Xiaohui Liu, Xuemei Wang and Hui Jiang
Biosensors 2025, 15(8), 487; https://doi.org/10.3390/bios15080487 - 28 Jul 2025
Viewed by 291
Abstract
Biomarkers play a pivotal role in disease diagnosis, therapeutic efficacy evaluation, prognostic assessment, and drug screening. However, the trace concentrations of these markers in complex physiological environments pose significant challenges to efficient detection. It is necessary to avoid interference from non-specific signals, which [...] Read more.
Biomarkers play a pivotal role in disease diagnosis, therapeutic efficacy evaluation, prognostic assessment, and drug screening. However, the trace concentrations of these markers in complex physiological environments pose significant challenges to efficient detection. It is necessary to avoid interference from non-specific signals, which may lead to misjudgment of other substances as biomarkers and affect the accuracy of detection results. With the rapid advancements in electrochemical technologies and artificial intelligence (AI) algorithms, intelligent electrochemical biosensors have emerged as a promising approach for biomedical detection, offering speed, specificity, high sensitivity, and accuracy. This review focuses on elaborating the latest applications of AI-empowered electrochemical biosensors in the biomedical field, including disease diagnosis, treatment monitoring, drug development, and wearable devices. AI algorithms can further improve the accuracy, sensitivity, and repeatability of electrochemical sensors through the screening and performance prediction of sensor materials, as well as the feature extraction and noise reduction suppression of sensing signals. Even in complex physiological microenvironments, they can effectively address common issues such as electrode fouling, poor signal-to-noise ratio, chemical interference, and matrix effects. This work may provide novel insights for the development of next-generation intelligent biosensors for precision medicine. Full article
Show Figures

Figure 1

20 pages, 3332 KiB  
Review
Nafion in Biomedicine and Healthcare
by Antonios Kelarakis
Polymers 2025, 17(15), 2054; https://doi.org/10.3390/polym17152054 - 28 Jul 2025
Viewed by 347
Abstract
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited [...] Read more.
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited in complex biological conditions owing to its structural robustness, responsive functionality and intrinsic biocompatibility. These characteristics have enabled its transition into the biomedical and healthcare sectors, where it is currently being explored for a diverse and expanding range of applications. To that end, Nafion has been systematically investigated as a key component in bioelectronic systems for energy harvest, sensors, wearable electronics, tissue engineering, lab-on-a-chip platforms, implants, controlled drug delivery systems and antimicrobial surface coatings. This review examines the distinctive structural and electrochemical characteristics that underpin Nafion’s performance in these biomedical contexts, provides an overview of recent advancements, emphasizes critical performance metrics and highlights the material’s growing potential to shape the future of biomedical technology. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

39 pages, 7688 KiB  
Review
Advances and Applications of Graphene-Enhanced Textiles: A 10-Year Review of Functionalization Strategies and Smart Fabric Technologies
by Patricia Rocio Durañona Aznar and Heitor Luiz Ornaghi Junior
Textiles 2025, 5(3), 28; https://doi.org/10.3390/textiles5030028 - 22 Jul 2025
Viewed by 379
Abstract
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten [...] Read more.
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten years, focusing on their functional properties and real-world applications. This article examines the main strategies used to incorporate graphene and its derivatives—such as graphene oxide and reduced graphene oxide—into textile substrates through coating, printing, or composite formation. The structural, electrical, thermal, mechanical, and electrochemical properties of these fabrics are discussed based on characterization techniques including microscopy, Raman spectroscopy, and cyclic voltammetry. Functional evaluations in wearable strain sensors, biosignal acquisition, electrothermal systems, and energy storage devices are highlighted to demonstrate the versatility of these materials. Although challenges remain in scalability, durability, and washability, recent developments in fabrication and encapsulation methods show significant potential to overcome these limitations. This review concludes by outlining the major opportunities and future directions for graphene-based textiles in areas such as personalized health monitoring, active thermal wear, and integrated wearable electronics. Full article
Show Figures

Figure 1

19 pages, 5087 KiB  
Review
Biosensors in Microbial Ecology: Revolutionizing Food Safety and Quality
by Gajanan A. Bodkhe, Vishal Kumar, Xingjie Li, Shichun Pei, Long Ma and Myunghee Kim
Microorganisms 2025, 13(7), 1706; https://doi.org/10.3390/microorganisms13071706 - 21 Jul 2025
Viewed by 528
Abstract
Microorganisms play a crucial role in food processes, safety, and quality through their dynamic interactions with other organisms. In recent years, biosensors have become essential tools for monitoring these processes in the dairy, meat, and fresh produce industries. This review highlights how microbial [...] Read more.
Microorganisms play a crucial role in food processes, safety, and quality through their dynamic interactions with other organisms. In recent years, biosensors have become essential tools for monitoring these processes in the dairy, meat, and fresh produce industries. This review highlights how microbial diversity, starter cultures, and interactions, such as competition and quorum sensing, shape food ecosystems. Diverse biosensor platforms, including electrochemical, optical, piezoelectric, thermal, field-effect transistor-based, and lateral flow assays, offer distinct advantages tailored to specific food matrices and microbial targets, enabling rapid and sensitive detection. Biosensors have been developed for detecting pathogens in real-time monitoring of fermentation and tracking spoilage. Control strategies, including bacteriocins, probiotics, and biofilm management, support food safety, while decontamination methods provide an additional layer of protection. The integration of new techniques, such as nanotechnology, CRISPR, and artificial intelligence, into Internet of Things systems is enhancing precision, particularly in addressing regional food safety challenges. However, their adoption is still hindered by complex food matrices, high costs, and the growing challenge of antimicrobial resistance. Looking ahead, intelligent systems and wearable sensors may help overcome these barriers. Although gaps in standardization and accessibility remain, biosensors are well-positioned to revolutionize food microbiology, linking ecological insights to practical solutions and paving the way for safer, high-quality food worldwide. Full article
(This article belongs to the Special Issue Feature Papers in Food Microbiology)
Show Figures

Figure 1

17 pages, 992 KiB  
Article
Improving Vulnerability Management for Security-by-Design of Medical Devices
by Emanuele Raso, Francesca Nanni, Francesco Lestini, Lorenzo Bracciale, Giorgia Panico, Giuseppe Bianchi, Giancarlo Orengo, Gaetano Marrocco and Pierpaolo Loreti
Sensors 2025, 25(14), 4418; https://doi.org/10.3390/s25144418 - 16 Jul 2025
Viewed by 502
Abstract
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and [...] Read more.
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and more personalized care plans. Their growing presence reflects a broader shift toward smart connected healthcare systems aimed at delivering immediate and actionable insights to both patients and medical professionals. At the same time, the healthcare industry is increasingly targeted by cyberattacks, primarily due to the high value of medical information; in addition, the growing integration of ICT technologies into medical devices has introduced new vulnerabilities that were previously absent in this sector. To mitigate these risks, new international guidelines advocate the adoption of best practices for secure software development, emphasizing a security-by-design approach in the design and implementation of such devices. However, the vast and fragmented nature of the information required to effectively support these development processes poses a challenge for the numerous stakeholders involved. In this paper, we demonstrate how key features of the Malware Information Sharing Platform (MISP) can be leveraged to systematically collect and structure vulnerability-related information for medical devices. We propose tailored structures, objects, and taxonomies specific to medical devices, facilitating a standardized data representation that enhances the security-by-design development of these devices. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

20 pages, 1303 KiB  
Review
The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management
by Tahereh Jamshidnejad-Tosaramandani, Soheila Kashanian, Kobra Omidfar and Helgi B. Schiöth
Biosensors 2025, 15(7), 451; https://doi.org/10.3390/bios15070451 - 14 Jul 2025
Viewed by 453
Abstract
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent [...] Read more.
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent advancements in enzymatic and non-enzymatic wearable biosensors, with a specific focus on the pivotal role of nanomaterials in enhancing sensor performance. In enzymatic sensors, nanomaterials serve as high-surface-area supports for glucose oxidase (GOx) immobilization and facilitate direct electron transfer (DET), thereby improving sensitivity, selectivity, and miniaturization. Meanwhile, non-enzymatic sensors leverage metal and metal oxide nanostructures as catalytic sites to mimic enzymatic activity, offering improved stability and durability. Both categories benefit from the integration of carbon-based materials, metal nanoparticles, conductive polymers, and hybrid composites, enabling the development of flexible, skin-compatible biosensing systems with wireless communication capabilities. The review critically evaluates sensor performance parameters, including sensitivity, limit of detection, and linear range. Finally, current limitations and future perspectives are discussed. These include the development of multifunctional sensors, closed-loop therapeutic systems, and strategies for enhancing the stability and cost-efficiency of biosensors for broader clinical adoption. Full article
Show Figures

Graphical abstract

26 pages, 11510 KiB  
Article
Beyond Color: Phenomic and Physiological Tomato Harvest Maturity Assessment in an NFT Hydroponic Growing System
by Dugan Um, Chandana Koram, Prasad Nethala, Prashant Reddy Kasu, Shawana Tabassum, A. K. M. Sarwar Inam and Elvis D. Sangmen
Agronomy 2025, 15(7), 1524; https://doi.org/10.3390/agronomy15071524 - 23 Jun 2025
Viewed by 533
Abstract
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture [...] Read more.
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture (CEA) systems, where maximizing fruit quality and nutrient density is essential for both the yield and consumer health. To address that challenge, this study introduces a novel, multimodal harvest readiness framework tailored to nutrient film technology (NFT)-based smart farms. The proposed approach integrates plant-level stress diagnostics and fruit-level phenotyping using wearable biosensors, AI-assisted computer vision, and non-invasive physiological sensing. Key physiological markers—including the volatile organic compound (VOC) methanol, phytohormones salicylic acid (SA) and indole-3-acetic acid (IAA), and nutrients nitrate and ammonium concentrations—are combined with phenomic traits such as fruit color (a*), size, chlorophyll index (rGb), and water status. The innovation lies in a four-stage decision-making pipeline that filters physiologically stressed plants before selecting ripened fruits based on internal and external quality indicators. Experimental validation across four plant conditions (control, water-stressed, light-stressed, and wounded) demonstrated the efficacy of VOC and hormone sensors in identifying optimal harvest candidates. Additionally, the integration of low-cost electrochemical ion sensors provides scalable nutrient monitoring within NFT systems. This research delivers a robust, sensor-driven framework for autonomous, data-informed harvesting decisions in smart indoor agriculture. By fusing real-time physiological feedback with AI-enhanced phenotyping, the system advances precision harvest timing, improves fruit nutritional quality, and sets the foundation for resilient, feedback-controlled farming platforms suited to meeting global food security and sustainability demands. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

48 pages, 6397 KiB  
Review
Advancements in Electrochromic Technology for Multifunctional Flexible Devices
by Alice Marciel, Joel Borges, Luiz Pereira, Rui F. Silva and Manuel Graça
Materials 2025, 18(13), 2964; https://doi.org/10.3390/ma18132964 - 23 Jun 2025
Viewed by 673
Abstract
The design and investigation of electrochromic devices have advanced significantly, including distinct applications such as self-charged smart windows, aerospace interactive windows, low power flexible and ecofriendly displays, automatic dimming rearview, wearable smart textiles, military and civilian camouflage systems, electrochromic sensors, among others. Although [...] Read more.
The design and investigation of electrochromic devices have advanced significantly, including distinct applications such as self-charged smart windows, aerospace interactive windows, low power flexible and ecofriendly displays, automatic dimming rearview, wearable smart textiles, military and civilian camouflage systems, electrochromic sensors, among others. Although significant progress has been made in related fields, achieving the full potential of electrochromic devices to meet the standards of maturity and practical applications remains a persistent challenge. Electrochromic devices are typically multilayered structures that can be designed as either rigid or flexible systems, depending on the type of substrate employed. Conventional electrochromic devices comprise layered structures that include transparent electrodes, electrochromic materials, ionic conductors, and ion storage materials. On the other hand, multifunctional systems integrate bifunctional materials or distinct functional layers to simultaneously achieve optical modulation and additional capabilities such as energy storage. The development of advanced materials, comprehensive electrochemical kinetic analysis, the optimization and advancement of process techniques and deposition methods, and innovative device designs are active areas of extensive global research. This review focuses on the recent advances in multifunctional electrochromic materials and devices with particular emphasis on the integration of electrochromic technology with other functional technologies. It further identifies current challenges, proposes potential solutions, and outlines future research directions focused on advancing this technology in both niche and scalable applications. Full article
Show Figures

Figure 1

17 pages, 8128 KiB  
Article
Tuning Polymer–Metal Interfaces via Solvent-Engineered Electroless Nickel Coatings on Functional Fibres
by Chenyao Wang, Heng Zhai, Xuzhao Liu, David Lewis, Yuhao Huang, Ling Ai, Xinyi Guan, Hugh Gong, Xuqing Liu and Anura Fernando
Polymers 2025, 17(12), 1693; https://doi.org/10.3390/polym17121693 - 18 Jun 2025
Viewed by 439
Abstract
Electroless nickel deposition (ELD) on polymer substrates enables the fabrication of flexible, conductive fibres for wearable and functional textiles. However, achieving uniform, low-defect coatings on synthetic fibres such as nylon-6,6 remains challenging due to their chemical inertness, hydrophobicity, and poor interfacial compatibility with [...] Read more.
Electroless nickel deposition (ELD) on polymer substrates enables the fabrication of flexible, conductive fibres for wearable and functional textiles. However, achieving uniform, low-defect coatings on synthetic fibres such as nylon-6,6 remains challenging due to their chemical inertness, hydrophobicity, and poor interfacial compatibility with metal coatings. This study presents a solvent-assisted approach using dimethyl sulfoxide (DMSO) in a conventional aqueous ELD bath to control both polymer–metal interfacial chemistry and nickel coating microstructure. The modified surface supports dense catalytic sites, triggering spatially uniform Ni nucleation. The combination of scanning electron microscopy and transmission electron microscopy confirms the difference in coarse grains with fully aqueous baths to a nanocrystalline shell with DMSO-modified baths. This refined microstructure relieves residual stress and anchors firmly to the swollen polymer, delivering +7 °C higher onset decomposition temperature and 45% lower creep strain at 50 °C compared with aqueous controls. The fabric strain sensor fabricated by 1 wt.% DMSO-modified ELD shows a remarkable sensitivity against strain, demonstrating a 1400% resistance change under 200% stain. Electrochemical impedance and polarisation tests confirm a two-fold rise in charge transfer resistance and negligible corrosion current drift after accelerated ageing. By clarifying how a polar aprotic co-solvent couples polymer swelling with metal growth kinetics, the study introduces a scalable strategy for tuning polymer–metal interfaces and advances solvent-assisted ELD as a route to mechanically robust, thermally stable, and corrosion-resistant conductive textiles. Full article
(This article belongs to the Special Issue Polymer Modification for Soft Matter and Flexible Devices)
Show Figures

Figure 1

15 pages, 3820 KiB  
Article
Gold Nanoparticle-Enhanced Molecularly Imprinted Polymer Electrode for Non-Enzymatic Lactate Sensing
by Christopher Animashaun, Abdellatif Ait Lahcen and Gymama Slaughter
Biosensors 2025, 15(6), 384; https://doi.org/10.3390/bios15060384 - 13 Jun 2025
Cited by 1 | Viewed by 904
Abstract
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited [...] Read more.
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited AuNPs enhance catalytic activity and signal amplification. The PEDOT-based MIP layer, electropolymerized via cyclic voltammetry, imparts molecular specificity by creating lactate-specific binding sites. Cyclic voltammetry confirmed successful molecular imprinting and enhanced interfacial electron transfer. The resulting LIG/AuNPs/MIP biosensor demonstrated a wide linear detection range from 0.1 µM to 2500 µM, with a sensitivity of 22.42 µA/log(µM) and a low limit of detection (0.035 µM). The sensor showed excellent selectivity against common electroactive interferents such as glucose and uric acid, long-term stability, and accurate recovery in artificial saliva (>95.7%), indicating strong potential for practical application. This enzyme-free platform offers a robust and scalable strategy for continuous lactate monitoring, particularly suited for wearable devices in sports performance monitoring and critical care diagnostics. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Figure 1

36 pages, 3955 KiB  
Review
Electrochemical Microneedles for Real-Time Monitoring in Interstitial Fluid: Emerging Technologies and Future Directions
by Suhyeon Cha, Min Yu Choi, Min Jung Kim, Sang Baek Sim, Izzati Haizan and Jin-Ha Choi
Biosensors 2025, 15(6), 380; https://doi.org/10.3390/bios15060380 - 12 Jun 2025
Viewed by 1389
Abstract
Conventional blood-based detection methods for biomarkers and analytes face significant limitations, including complex processing, variability in blood components, and the inability to provide continuous monitoring. These challenges hinder the early diagnosis and effective management of various health conditions. Electrochemical microneedles (MNs) have emerged [...] Read more.
Conventional blood-based detection methods for biomarkers and analytes face significant limitations, including complex processing, variability in blood components, and the inability to provide continuous monitoring. These challenges hinder the early diagnosis and effective management of various health conditions. Electrochemical microneedles (MNs) have emerged as a minimally invasive and highly efficient platform to overcome these barriers, enabling continuous molecular monitoring by directly accessing the interstitial fluid. Electrochemical MNs offer several advantages, including reduced patient discomfort, real-time data acquisition, enhanced specificity, and potential applications in wearable, long-term monitoring. In this review, we first analyze material selection and fabrication techniques to optimize sensor performance, stability, and biocompatibility. We then examine diverse detection strategies utilized in electrochemical MNs, including enzyme-based, aptamer-based, and antibody-based sensing mechanisms, each offering unique benefits in sensitivity and selectivity. Finally, we highlight the integration of electrochemical MN technology with multi-target detection, AI-driven analytics, and theragnostic capabilities. This convergence offers strong potential for smart healthcare and precision medicine. Through these technological innovations, electrochemical MNs are expected to play an important role in advancing continuous, noninvasive health monitoring and personalized medical care. Full article
Show Figures

Figure 1

28 pages, 3162 KiB  
Review
Advancements in Chemiresistive and Electrochemical Sensing Materials for Detecting Volatile Organic Compounds in Potato and Tomato Plants
by Toshiou Baba, Lorenzo Gabriel Janairo, Novelyn Maging, Hoshea Sophia Tañedo, Ronnie Concepcion, Jeremy Jay Magdaong, Jose Paolo Bantang, Jesson Del-amen and Alvin Culaba
AgriEngineering 2025, 7(6), 166; https://doi.org/10.3390/agriengineering7060166 - 2 Jun 2025
Cited by 2 | Viewed by 998
Abstract
Tomatoes (Solanum lycopersicum) and potatoes (Solanum tuberosum) are vital staple crops. They are prone to diseases from pathogens like Ralstonia and Fusarium, which cause significant agricultural losses. Detecting volatile organic compounds (VOCs) emitted by plants under stress offers [...] Read more.
Tomatoes (Solanum lycopersicum) and potatoes (Solanum tuberosum) are vital staple crops. They are prone to diseases from pathogens like Ralstonia and Fusarium, which cause significant agricultural losses. Detecting volatile organic compounds (VOCs) emitted by plants under stress offers a promising approach for advanced monitoring of crop health. This study examines sensing materials for wearable plant sensors targeting VOCs as biomarkers under abiotic and biotic stress. Key questions addressed include the specific VOC emission profiles of potato and tomato cultivars, how materials and sensing mechanisms influence sensor performance, and material considerations for agricultural use. The analysis reveals cultivar-specific VOC profiles under stress, challenging the identification of universal biomarkers for specific diseases. Through a literature review, this study reviews VOC responses to fungi, bacteria, and viruses, and compares non-composite and hybrid chemiresistive and electrochemical sensors based on sensitivity, selectivity, detection limits, response time, robustness, cost-effectiveness, and biocompatibility. A superstructure bridging materials science, plant pathology, AI, data science, and manufacturing is proposed, emphasizing three strategies: sensitivity, flexibility, and sustainability. This study identifies recent research trends that involve developing biodegradable wearable sensors for precision agriculture, leveraging flexible biocompatible materials, multi-parameter monitoring, self-healing properties, 3D-printed designs, advanced nanomaterials, and energy-harvesting technologies. Full article
(This article belongs to the Special Issue AI and Material Science Synergy for Advanced Plant-Wearable Sensors)
Show Figures

Graphical abstract

11 pages, 2359 KiB  
Article
String-Shaped Electrodes for Aβ42 Detection Towards Early Diagnosis of Alzheimer’s Disease
by Bianca Seufert, Sylvia Thomas and Arash Takshi
Chemosensors 2025, 13(6), 199; https://doi.org/10.3390/chemosensors13060199 - 1 Jun 2025
Viewed by 736
Abstract
Alzheimer’s disease (AD) affects a significant portion of humanity’s elderly population across the globe. Recent studies have identified Amyloid-Beta 42 (Aβ42) as a key biomarker for AD. In this research, we examined the feasibility of using string-shaped electrodes to develop a [...] Read more.
Alzheimer’s disease (AD) affects a significant portion of humanity’s elderly population across the globe. Recent studies have identified Amyloid-Beta 42 (Aβ42) as a key biomarker for AD. In this research, we examined the feasibility of using string-shaped electrodes to develop a potentially wearable biosensor for the early detection of AD. Two types of flexible electrochemical electrodes were fabricated using a commercial thread (25% cotton-75% polyester) and an electrospun nanofiber-based string. Decorating the strings with either gold or SiC nanoparticles, several different electrodes were tested to explore their responses to Aβ42. Our results show that the nanofiber-based electrode decorated with gold nanoparticles had the highest sensitivity of 1.71 µA/pg.cm and the best limit of detection (LoD) of 8.36 pg/mL. These findings highlight the importance of the string structure in designing highly sensitive sensors. Full article
Show Figures

Figure 1

Back to TopTop