The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management
Abstract
1. Introduction
2. Improving Wearable GOx-Based Electrochemical Biosensors Using Nanomaterials
2.1. Enhancement of Wearable GOx-Based Electrochemical Biosensors Using Metal Nanomaterials
2.2. Enhancement of Wearable GOx-Based Electrochemical Biosensors Using Carbon Nanomaterials
2.3. Enhancement of Wearable GOx-Based Electrochemical Biosensors Using Other Nanomaterials
3. The Application of Nanomaterials in Wearable Non-Enzymatic Electrochemical Diabetes Biosensors
4. Future Perspective in Nanomaterial Applications in Wearable Biosensor for Diabetes Detection
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CGM | continuous glucose monitoring |
GOx | glucose oxidase |
DET | direct electron transfer |
LOD | Limit of detection |
References
- Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.-K.; Jung, J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 2019, 9, 813. [Google Scholar] [CrossRef]
- Laha, S.; Rajput, A.; Laha, S.S.; Jadhav, R. A concise and systematic review on non-invasive glucose monitoring for potential diabetes management. Biosensors 2022, 12, 965. [Google Scholar] [CrossRef]
- Tehrani, F.; Teymourian, H.; Wuerstle, B.; Kavner, J.; Patel, R.; Furmidge, A.; Aghavali, R.; Hosseini-Toudeshki, H.; Brown, C.; Zhang, F. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 2022, 6, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zheng, J.; Zhang, G.; Lu, S.; Zhou, J. Wearable Electrochemical Glucose Sensors for Fluid Monitoring: Advances and Challenges in Non-Invasive and Minimally Invasive Technologies. Biosensors 2025, 15, 309. [Google Scholar] [CrossRef] [PubMed]
- Dziergowska, K.; Łabowska, M.B.; Gąsior-Głogowska, M.; Kmiecik, B.; Detyna, J. Modern noninvasive methods for monitoring glucose levels in patients: A review. Bio-Algorithms Med-Syst. 2019, 15, 20190052. [Google Scholar] [CrossRef]
- Reddy, V.S.; Agarwal, B.; Ye, Z.; Zhang, C.; Roy, K.; Chinnappan, A.; Narayan, R.J.; Ramakrishna, S.; Ghosh, R. Recent advancement in biofluid-based glucose sensors using invasive, minimally invasive, and non-invasive technologies: A review. Nanomaterials 2022, 12, 1082. [Google Scholar] [CrossRef]
- Ji, D.; Guo, X.; Fu, W.; Ding, Z.; Wang, C.; Zhang, Q.; Ramakrishna, S.; Qin, X. The marriage of biochemistry and nanotechnology for non-invasive real-time health monitoring. Mater. Sci. Eng. R Rep. 2022, 149, 100681. [Google Scholar] [CrossRef]
- Domingo-Lopez, D.A.; Lattanzi, G.; Schreiber, L.H.; Wallace, E.J.; Wylie, R.; O’Sullivan, J.; Dolan, E.B.; Duffy, G.P. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Adv. Drug Deliv. Rev. 2022, 185, 114280. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A review on flexible wearables-Recent developments in non-invasive continuous health monitoring. Sens. Actuators A Phys. 2024, 366, 114993. [Google Scholar] [CrossRef]
- Tu, J.; Torrente-Rodríguez, R.M.; Wang, M.; Gao, W. The era of digital health: A review of portable and wearable affinity biosensors. Adv. Funct. Mater. 2020, 30, 1906713. [Google Scholar] [CrossRef]
- Khalil, Y.; Mahmoud, A.E.D. Nanomaterial-based Sensors for Wearable Health Monitoring in Bioelectronics Nano Engineering. J. Contemp. Healthc. Anal. 2023, 7, 126–144. [Google Scholar]
- Awad, A.; Trenfield, S.J.; Pollard, T.D.; Ong, J.J.; Elbadawi, M.; McCoubrey, L.E.; Goyanes, A.; Gaisford, S.; Basit, A.W. Connected healthcare: Improving patient care using digital health technologies. Adv. Drug Deliv. Rev. 2021, 178, 113958. [Google Scholar] [CrossRef]
- Abdelbasset, W.K.; Savina, S.V.; Mavaluru, D.; Shichiyakh, R.A.; Bokov, D.O.; Mustafa, Y.F. Smartphone based aptasensors as intelligent biodevice for food contamination detection in food and soil samples: Recent advances. Talanta 2023, 252, 123769. [Google Scholar] [CrossRef] [PubMed]
- Abhinav, V.; Basu, P.; Verma, S.S.; Verma, J.; Das, A.; Kumari, S.; Yadav, P.R.; Kumar, V. Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology. Micromachines 2025, 16, 522. [Google Scholar] [CrossRef] [PubMed]
- Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 2012, 14, 398–402. [Google Scholar] [CrossRef]
- Mansour, M.; Darweesh, M.S.; Soltan, A. Wearable devices for glucose monitoring: A review of state-of-the-art technologies and emerging trends. Alex. Eng. J. 2024, 89, 224–243. [Google Scholar] [CrossRef]
- Alim, S.; Vejayan, J.; Yusoff, M.M.; Kafi, A. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens. Bioelectron. 2018, 121, 125–136. [Google Scholar]
- Cho, I.-H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res. 2020, 24, 1–12. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, W.; Zeng, J.; He, Z.; Wang, X.; Zhu, Z.; Hu, R.; Liu, C.; Wang, Q. Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater. Today Bio 2023, 20, 100638. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Kim, S.; Park, S.; Jeong, I.-K.; Kang, J.; Kim, Y.R.; Lee, D.Y.; Chung, E. Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens. Nano Lett. 2021, 21, 8933–8940. [Google Scholar] [CrossRef]
- Saha, T.; Del Caño, R.; Mahato, K.; De la Paz, E.; Chen, C.; Ding, S.; Yin, L.; Wang, J. Wearable electrochemical glucose sensors in diabetes management: A comprehensive review. Chem. Rev. 2023, 123, 7854–7889. [Google Scholar] [CrossRef] [PubMed]
- Dey, K.; Santra, T.S.; Tseng, F.G. Advancements in Glucose Monitoring: From Traditional Methods to Wearable Sensors. Appl. Sci. 2025, 15, 2523. [Google Scholar] [CrossRef]
- Kim, T.Y.; De, R.; Choi, I.; Kim, H.; Hahn, S.K. Multifunctional Nanomaterials for Smart Wearable Diabetic Healthcare Devices. Biomaterials 2024, 122630. [Google Scholar] [CrossRef]
- Lippi, G.; Pighi, L.; Mattiuzzi, C. Update on Patient Self-Testing with Portable and Wearable Devices: Advantages and Limitations. Diagnostics 2024, 14, 2037. [Google Scholar] [CrossRef]
- Yoo, E.-H.; Lee, S.-Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef]
- Chaubey, A.; Malhotra, B. Mediated biosensors. Biosens. Bioelectron. 2002, 17, 441–456. [Google Scholar] [CrossRef]
- Martinkova, P.; Pohanka, M. Biosensors for blood glucose and diabetes diagnosis: Evolution, construction, and current status. Anal. Lett. 2015, 48, 2509–2532. [Google Scholar] [CrossRef]
- Zafar, H.; Channa, A.; Jeoti, V.; Stojanović, G.M. Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring. Sensors 2022, 22, 638. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, J.; Zhao, Y.; Huang, J.; Liu, H. Advancements in electrochemical glucose sensors. Talanta 2025, 281, 126897. [Google Scholar] [CrossRef]
- Karpova, E.V.; Shcherbacheva, E.V.; Galushin, A.A.; Vokhmyanina, D.V.; Karyakina, E.E.; Karyakin, A.A. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal. Chem. 2019, 91, 3778–3783. [Google Scholar] [CrossRef]
- Saha, T.; Khan, M.I.; Sandhu, S.S.; Yin, L.; Earney, S.; Zhang, C.; Djassemi, O.; Wang, Z.; Han, J.; Abdal, A. A Passive Perspiration Inspired Wearable Platform for Continuous Glucose Monitoring. Adv. Sci. 2024, 11, e2405518. [Google Scholar] [CrossRef] [PubMed]
- Bhande, S.S.; Bhosale, S. Biosensor: Tools and Techniques for Characterization and Analysis. In Nanomaterials for Sustainable Development: Opportunities and Future Perspectives; Springer: Berlin/Heidelberg, Germany, 2023; pp. 25–63. [Google Scholar]
- Pirzada, M.; Altintas, Z. Nanomaterials for healthcare biosensing applications. Sensors 2019, 19, 5311. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, G.; Chen, W.; Asif, M.; Aziz, A.; Zhong, Z.-T.; Iftikhar, T.; Zhao, Y.-D. Topical advancements in electrochemical and optical signal amplification for biomolecules detection: A comparison. Mater. Today Chem. 2022, 26, 101119. [Google Scholar] [CrossRef]
- Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L. Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications. Biosensors 2022, 13, 40. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Noruzi, E.B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Gorab, M.G.; Hashemi, S.M.; Javanshir, S.; Cohan, R.A. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183. [Google Scholar] [CrossRef]
- Dervisevic, M.; Alba, M.; Esser, L.; Tabassum, N.; Prieto-Simon, B.; Voelcker, N.H. Silicon micropillar array-based wearable sweat glucose sensor. ACS Appl. Mater. Interfaces 2021, 14, 2401–2410. [Google Scholar] [CrossRef]
- Li, G.; Hao, J.; Li, W.; Ma, F.; Ma, T.; Gao, W.; Yu, Y.; Wen, D. Integrating highly porous and flexible au hydrogels with soft-mems technologies for high-performance wearable biosensing. Anal. Chem. 2021, 93, 14068–14075. [Google Scholar] [CrossRef]
- Yu, M.; Li, Y.-T.; Hu, Y.; Tang, L.; Yang, F.; Lv, W.-L.; Zhang, Z.-Y.; Zhang, G.-J. Gold nanostructure-programmed flexible electrochemical biosensor for detection of glucose and lactate in sweat. J. Electroanal. Chem. 2021, 882, 115029. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, S.; Yu, H.; Feng, S.; Zhang, K. Ga@MXene-based flexible wearable biosensor for glucose monitoring in sweat. iScience 2025, 28, 111737. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Diao, B.; Zhang, H.; Zhang, D.; Sun, F.; Wang, X.; Zhang, C.; Joo, S.W.; Kim, S.H.; et al. Printed MXene/magnetic nanoparticle composite electrodes for scalable production of flexible micro-glucose sensing patches. Sens. Actuators B Chem. 2025, 438, 137814. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Wang, C.; Li, X.; Xia, X.; Jin, C.; Fang, K.; Huo, D.; Hou, C. Optimized synergistic effects in sweat glucose detection with a Pt single-atom catalyst on NiO for fingertip wearable biosensors. Talanta 2025, 284, 127239. [Google Scholar] [CrossRef] [PubMed]
- Hossain, G.M.; Jalal, A.H.; Pala, N.; Alam, F. Advancements in Glucose Monitoring: A Thin Film ZnO-Nanoflakes Based Highly Sensitive Wearable Biosensor for Noninvasive Sweat-Based Point-of-Care Monitoring for Diabetes. ECS Trans. 2024, 113, 35. [Google Scholar] [CrossRef]
- Biswas, K.; Mohanta, Y.K. An overview of carbon-based nanomaterials and their derivatives for different sensing applications. Nanoscale Matter Princ. Sens. Labeling Appl. 2024, 305–325. [Google Scholar] [CrossRef]
- Antonova, I.V.; Ivanov, A.I.i. Wearable noninvasive glucose sensors based on graphene and other carbon materials. Uspekhi Fiz. Nauk 2024, 194, 520–545. [Google Scholar] [CrossRef]
- Jiang, H.; Xia, C.; Lin, J.; Garalleh, H.A.; Alalawi, A.; Pugazhendhi, A. Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus. Environ. Res. 2023, 221, 115250. [Google Scholar] [CrossRef]
- Ehtesabi, H.; Kalji, S.-O. Carbon nanomaterials for sweat-based sensors: A review. Microchim. Acta 2024, 191, 77. [Google Scholar] [CrossRef]
- Gupta, S.; Tai, N.-H. Carbon nanomaterials and their composites for electrochemical glucose biosensors: A review on fabrication and sensing properties. J. Taiwan Inst. Chem. Eng. 2024, 154, 104957. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Xue, Z.; Li, H.; Shen, S. Wearable biosensor with high specific surface area PGA-CNTs electrode for sweat glucose detection. Microchem. J. 2025, 210, 112965. [Google Scholar] [CrossRef]
- Shamili, C.; Pillai, A.S.; Saisree, S.; Chandran, A.; Varma, M.R.; Peethambharan, S.K. All-printed wearable biosensor based on MWCNT-iron oxide nanocomposite ink for physiological level detection of glucose in human sweat. Biosens. Bioelectron. 2024, 258, 116358. [Google Scholar] [CrossRef]
- Xiao, Y.; Hou, L.; Wang, M.; Liu, R.; Han, L.; Nikolai, M.; Zhang, S.; Cheng, C.; Hu, K. Noninvasive glucose monitoring using portable GOx-Based biosensing system. Anal. Chim. Acta 2024, 1287, 342068. [Google Scholar] [CrossRef]
- Tang, C.; Zhou, K.; Wang, R.; Li, M.; Liu, W.; Li, C.; Chen, X.; Lu, Q.; Chang, Y. Wearable biosensors for human sweat glucose detection based on carbon black nanoparticles. Anal. Bioanal. Chem. 2024, 416, 1407–1415. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Y.; Sun, C.; Zhou, Z.; Zhang, J.; Xu, Y.; Xiao, X.; Deng, H.; Zhong, Y.; Li, G. Fully integrated wearable microneedle biosensing platform for wide-range and real-time continuous glucose monitoring. Acta Biomater. 2024, 175, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Rinawati, M.; Chang, L.-Y.; Wang, Y.-X.; Wu, Y.-T.; Yen, Y.-H.; Chen, K.-J.; Ho, K.-C.; Yeh, M.-H. A non-invasive wearable sweat biosensor with a flexible N-GQDs/PANI nanocomposite layer for glucose monitoring. Sens. Actuators B Chem. 2023, 383, 133617. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Rinawati, M.; Chang, L.-Y.; Guo, Y.-T.; Chen, K.-J.; Chiu, H.-C.; Lin, Z.-H.; Huang, W.-H.; Haw, S.-C.; Yeh, M.-H. Carbon Nitride Quantum Dots/Polyaniline Nanocomposites for Non-Invasive Glucose Monitoring Using Wearable Sweat Biosensor. ACS Appl. Nano Mater. 2025, 8, 2340–2351. [Google Scholar] [CrossRef]
- Li, B.; Wu, X.; Shi, C.; Dai, Y.; Zhang, J.; Liu, W.; Wu, C.; Zhang, Y.; Huang, X.; Zeng, W. Flexible enzymatic biosensor based on graphene sponge for glucose detection in human sweat. Surf. Interfaces 2023, 36, 102525. [Google Scholar] [CrossRef]
- Moradi, S.; Hosseini, M.; Firoozbakhtian, A.; Barshan Tashnizi, M.; Reza Ganjali, M. Electrochemical detection of glucose in sweat using a paper-based origami biosensor based on PEDOT:PSS/Ti3C2/MWCNT composite. J. Electroanal. Chem. 2024, 973, 118675. [Google Scholar] [CrossRef]
- Thirumalai, D.; Santhamoorthy, M.; Kim, S.-C.; Lim, H.-R. Conductive Polymer-Based Hydrogels for Wearable Electrochemical Biosensors. Gels 2024, 10, 459. [Google Scholar] [CrossRef]
- Chenani, H.; Saeidi, M.; Rastkhiz, M.A.; Bolghanabadi, N.; Aghaii, A.H.; Orouji, M.; Hatamie, A.; Simchi, A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal. Chem. 2024, 96, 8160–8183. [Google Scholar] [CrossRef]
- Pan, Y.; He, M.; Wu, J.; Qi, H.; Cheng, Y. One-step synthesis of MXene-functionalized PEDOT: PSS conductive polymer hydrogels for wearable and noninvasive monitoring of sweat glucose. Sens. Actuators B Chem. 2024, 401, 135055. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, J.; Liu, P.; Wang, W.; Bai, L.; Chen, H.; Yang, H.; Yang, L.; Wei, D. Carboxymethyl Cellulose Sodium Nanocomposite Hydrogels for Flexible Sensors of Human Motion and Glucose Levels in Sweat. ACS Appl. Polym. Mater. 2024, 6, 7393–7407. [Google Scholar] [CrossRef]
- Komkova, M.A.; Alexandrovich, A.S.; Karyakin, A.A. Polyazine nanoparticles as anchors of PQQ glucose dehydrogenase for its most efficient bioelectrocatalysis. Talanta 2024, 267, 125219. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; George, M.; Derry Holaday, M.; Jandas, P. Biosensor Technology: Basic Principles, Fundamentals, and History. Nano-Biosens. Technol. Diagn. Infect. Dis. 2025, 1–22. [Google Scholar] [CrossRef]
- Ayoib, A. Hybrid Nanomaterials in Biosensors for Advanced Point-of-Care Diagnostics: DNA-, Enzyme-, or Immunosensor-Based, for Healthcare. In Hybrid-Nanomaterials: Fabrication, Characterization and Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 123–153. [Google Scholar]
- Lee, H.; Reginald, S.S.; Sravan, J.S.; Lee, M.; Chang, I.S. Advanced strategies for enzyme–electrode interfacing in bioelectrocatalytic systems. Trends Biotechnol. 2025, 43, 1328–1355. [Google Scholar] [CrossRef]
- Dua, A.; Debnath, A.; Kumar, K.; Mazumder, R.; Mazumder, A.; Singh, R.; Mangal, S.; Sanchitra, J.; Khan, F.; Tripathi, S. Advancements of glucose monitoring biosensor: Current state, generations of technological progress, and innovation dynamics. Curr. Pharm. Biotechnol. 2025, 26, 1716–1733. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiao, N.; Jiang, M.; Long, J.; Li, Z.; Zhu, Z. Advances of transition metal-based electrochemical non-enzymatic glucose sensors for glucose analysis: A review. Crit. Rev. Anal. Chem. 2024, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H.; Qu, X. Biosystem-inspired engineering of nanozymes for biomedical applications. Adv. Mater. 2024, 36, 2211147. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Rao, R.R. Advanced Techniques for Glucose Oxidase Immobilization: Evolution, Computational Integration, and Biomedical Applications. Adv. Eng. Intell. Syst. 2024, 3, 82–93. [Google Scholar]
- Mohamad Nor, N.; Ridhuan, N.S.; Abdul Razak, K. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors 2022, 12, 1136. [Google Scholar] [CrossRef]
- Arivazhagan, M.; Mohan, B.; Jakmunee, J. Nanostructured metallic enzymes mimic for electrochemical biosensing of glucose. Green Anal. Chem. 2024, 10, 100127. [Google Scholar] [CrossRef]
- Guati, C.; Gomez-Coma, L.; Fallanza, M.; Ortiz, I. Progress on the influence of non-enzymatic electrodes characteristics on the response to glucose detection: A review (2016–2022). Rev. Chem. Eng. 2024, 40, 123–148. [Google Scholar] [CrossRef]
- Pramanik, R.; Ikbal, M.; Mishra, N.; Parvin, S.; Hoque, R. Advancement in glucose biosensors and current development of electrochemical sensing. Curr. Phys. Chem. 2025, 15, 2–27. [Google Scholar] [CrossRef]
- Demir, E.; Kırboga, K.K.; Işık, M. An overview of stability and lifetime of electrochemical biosensors. In Novel Nanostructured Materials for Electrochemical Bio-Sensing Applications; Elsevier: Amsterdam, The Netherlands, 2024; pp. 129–158. [Google Scholar] [CrossRef]
- Zhu, H.; Shi, F.; Peng, M.; Zhang, Y.; Long, S.; Liu, R.; Li, J.; Yang, Z. Non-Enzymatic Electrochemical Glucose Sensors Based on Metal Oxides and Sulfides: Recent Progress and Perspectives. Chemosensors 2025, 13, 19. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Wang, J.; Li, W.; Wang, F. A flexible biosensor for efficiently glucose monitoring in sweat based on copper nanoparticles modified PHEMA hydrogel. Eur. Polym. J. 2025, 222, 113630. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Bano, M.; Arshad, F.; Hassan, I.U.; BaOmar, F.; Alfagih, I.M.; Tambuwala, M.M. Non-enzymatic glucose sensors composed of trimetallic CuO/Ag/NiO based composite materials. Sci. Rep. 2023, 13, 6210. [Google Scholar] [CrossRef] [PubMed]
- Daboss, E.V.; Shcherbacheva, E.V.; Karyakin, A.A. Simultaneous noninvasive monitoring of diabetes and hypoxia using core-shell nanozyme–oxidase enzyme biosensors. Sens. Actuators B Chem. 2023, 380, 133337. [Google Scholar] [CrossRef]
- Li, Q.-F.; Chen, X.; Wang, H.; Liu, M.; Peng, H.-L. Pt/MXene-based flexible wearable non-enzymatic electrochemical sensor for continuous glucose detection in sweat. ACS Appl. Mater. Interfaces 2023, 15, 13290–13298. [Google Scholar] [CrossRef]
- Pavadai, R.; Arivazhagan, M.; Jakmunee, J.; Pavadai, N.; Palanisamy, R.; Honnu, G.; Kityakarn, S.; Khumphon, J.; Issro, C.; Khamboonrueang, D. Highly Porous 3D Ni-MOFs as an Efficient and Enzyme-Mimic Electrochemical Sensing Platform for Glucose in Real Samples of Sweat and Saliva in Biomedical Applications. ACS Omega 2024, 10, 1610–1623. [Google Scholar] [CrossRef]
- Luo, G.; Liu, J.; Xie, J.; Jing, W.; Li, M.; Zhao, L.; Li, Z.; Yang, P.; Jiang, Z. A highly electrocatalytic, stretchable, and breathable enzyme-free electrochemical patch based on electrospun fibers decorated with platinum nano pine needles for continuous glucose sensing in neutral conditions. Dalton Trans. 2023, 52, 12988–12998. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, H.; Xu, Z.; Yang, Z.; Lv, J.; Kong, C. Wearable noninvasive glucose sensor based on CuxO NFs/Cu NPs nanocomposites. Sensors 2023, 23, 695. [Google Scholar] [CrossRef]
- Su, M.; Chen, X.; Yang, L. CuO-embedded laser-induced graphene microfluidic system for continuous, non-invasive, and cost-effective glucose monitoring in sweat. Chem. Eng. Sci. 2025, 314, 121839. [Google Scholar] [CrossRef]
- Kim, T.; Pak, J.J. Fabrication and Characterization of a Flexible Non-Enzymatic Electrochemical Glucose Sensor Using a Cu Nanoparticle/Laser-Induced Graphene Fiber/Porous Laser-Induced Graphene Network Electrode. Sensors 2025, 25, 2341. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wang, J.; Tang, Y.; Song, X.; Zhou, W.; Li, Y.; Gao, F. Enhanced sensing performance of flexible non-enzymatic electrochemical glucose sensors using hollow Fe3O4 nanospheres of controllable morphologies. Ceram. Int. 2024, 50, 38009–38021. [Google Scholar] [CrossRef]
- Sobahi, N.; Alam, M.M.; Imran, M.; Khan, M.E.; Mohammad, A.; Yoon, T.; Mehedi, I.M.; Hussain, M.A.; Abdulaal, M.J.; Jiman, A.A. Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance. Molecules 2024, 29, 2439. [Google Scholar] [CrossRef] [PubMed]
- Golsanamlou, Z.; Mahmoudpour, M.; Soleymani, J.; Jouyban, A. Applications of advanced materials for non-enzymatic glucose monitoring: From invasive to the wearable device. Crit. Rev. Anal. Chem. 2023, 53, 1116–1131. [Google Scholar] [CrossRef]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev. 2018, 119, 120–194. [Google Scholar] [CrossRef]
- Naghib, S.M.; Katebi, S.M.; Ghorbanzade, S. Electrochemical Biosensors in Practice: Materials and Methods; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023. [Google Scholar]
- Osuna, V.; Aparicio Martínez, E.P.; Dominguez, R.B.; Vega Rios, A. A Review on the advances in nanomaterials for electrochemical non-enzymatic glucose sensors working in physiological conditions. Chemosensors 2024, 12, 159. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, T.; Chu, Z.; Wang, Y. Advances in nanostructured material-based non-enzymatic electrochemical glucose sensors. Anal. Methods 2023, 15, 6344–6361. [Google Scholar] [CrossRef]
- Govindaraj, M.; Srivastava, A.; Muthukumaran, M.K.; Tsai, P.-C.; Lin, Y.-C.; Raja, B.K.; Rajendran, J.; Ponnusamy, V.K.; Selvi, J.A. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int. J. Biol. Macromol. 2023, 253, 126680. [Google Scholar] [CrossRef]
- Song, Z. Engineering High-Efficiency Non-Enzymatic Catalysts for Reliable Glucose Sensing. Adv. Eng. Technol. Res. 2025, 13, 962. [Google Scholar] [CrossRef]
- Bhatia, D.; Paul, S.; Acharjee, T.; Ramachairy, S.S. Biosensors and their widespread impact on human health. Sens. Int. 2024, 5, 100257. [Google Scholar] [CrossRef]
- Pu, Z.; Zhang, X.; Li, C.; Zheng, H.; Ma, J.; Zhang, C.; Fan, Y.; Li, D. Flexible and Wearable Biosensors. In Biosensors: Developments, Challenges and Perspectives; Springer: Berlin/Heidelberg, Germany, 2024; pp. 69–98. [Google Scholar]
- Duan, H.; Zhang, Y.; Zhang, Y.; Zhu, P.; Mao, Y. Recent Advances of Stretchable Nanomaterial-Based Hydrogels for Wearable Sensors and Electrophysiological Signals Monitoring. Nanomaterials 2024, 14, 1398. [Google Scholar] [CrossRef] [PubMed]
- Molahalli, V.; Soman, G.; Sharma, A.; Bijapur, K.; Chattham, N.; Pai, R.K.; Hegde, G. Flexing the Future: Strategic Insights into Wearable Sensor Development. ChemNanoMat 2025, 11, e202500063. [Google Scholar] [CrossRef]
- Bocu, R. Extended review concerning the integration of electrochemical biosensors into modern IoT and wearable devices. Biosensors 2024, 14, 214. [Google Scholar] [CrossRef]
- Pal, S.; Shukla, S.K. Challenges and prospects of functionalized nanomaterial-based biosensors. Funct. Nanomater. Biosensing Bioelectron. Appl. 2024, 335–349. [Google Scholar] [CrossRef]
- Verma, J.; Dahiya, S. Nanomaterials for diabetes: Diagnosis, detection and delivery. Nanotechnology 2024, 35, 392001. [Google Scholar] [CrossRef]
Detected Analytes | Recognition Unit | Linear Concentration Range (mM) | LOD 1 (μM) | Sensitivity (μA mM−1 cm−2) | Reproducibility (%) | Recovery (%) | Nanomaterials Application | Ref. |
---|---|---|---|---|---|---|---|---|
glucose | Au-Si-MPA 2, PB 3, Cs-Au NPs 4, Gox 5 | 0.05–1.4 | 26 ± 5 | 4.7 ± 0.8 μA mM−1 † | ∼5.3 (n = 10) | NR 6 | protection of biological layer from mechanical stress, increased surface area, an increase in current intensity | [37] |
glucose and lactate | porous Au-hydrogel/GOx and lactate oxidase | 0–5.0 for glucose | 17.84 for glucose and 11,600 for lactate | 10.51 | 0.30–0.70 (n = 9) | NR | high-mechanical performance and larger specific surface area | [38] |
glucose and lactate | AuNNs 7, PEGDE 8, GOx and lactate oxidase | 0–0.25 for glucose and 0–25 for lactate | 7 for glucose, 54 for lactate | NR | 2.5 for glucose and 4.1 for lactate (n = 5) | 92.8–108 for glucose and 98.7–106% for lactate | signal amplification and larger surface area for enzyme immobilization | [39] |
glucose | Ga 9\@MXene hydrogel, GOx | 0.001–1 | 0.77 | 1.122 × 109 | 0.16 (n = 5) | 95–107.1 | create a conductive and stretchable network | [40] |
glucose | MXene/Fe3O4 nanocomposite, GOx | 0.1–10 | 45.84 | Low conc. range: 11.07 × 109 High conc. range: 2.42 × 109 | NR | NR | structural support for biocompatible enzyme immobilization, signal transduction | [41] |
glucose | Pt single-atom catalyst anchored on NiO nanomaterial, GOx | 0–2 | 3.74 | 0.003744 µA † | 3.03 (n = 5) | NR | To enhance electrocatalytic activity and provide a high surface area for efficient enzyme immobilization | [42] |
glucose | ZnO 10 nanoflakes, synthesized on an Au-coated PET 11 film/GOx | 0.1–10 | up to 1 | 29.97μA/decade/cm2 † | NR | NR | elevated surface charge density and an effective surface for the immobilization of GOx | [43] |
Detected Analytes | Recognition Unit | Linear Concentration Range (mM) | LOD 1 (μM) | Sensitivity (μA mM−1 cm−2) | Reproducibility (%) | Recovery (%) | Nanomaterials Application | Ref. |
---|---|---|---|---|---|---|---|---|
glucose | PGA-CNTs 2/Gox 3 | 0.002–0.3 | 5.18 | 78.45 | 1.46 (n = 5) | 103.83–109.54 | increased the surface area and uniformly immobilized the GOx | [49] |
glucose | MWCNT 4, PEDOPT: PSS 5 hydrogel and iron (II, III) oxide NPs 6/GOx | 0.001–0.4 | ~0.38 | ~4495 | 2.76 (n = 5) | 96.0–98.6 | increased the surface area and provides a biocompatible environment for sensitive glucose detection based on GOx | [50] |
glucose | GOx/PBNPs 7/MWCNT-COOH/GOx | 0.01–1 | 7 | 11.87 | 5.81 (n = 5) | 94.55–109.92 | stabilized GOx and improved electrochemical performance | [51] |
glucose | CBNPs-PB 8/GOx | 0.005–1.25 | 4.83 | 14.64 | 2.1 (n = 3) | 101.62–107.94 | increase the conductivity and reduces interference in the sample matrix | [52] |
glucose | PB, Cs 9, GA 10 & GOx | 0–36 | 6.44 | 8.425 | 3.62 (n = 7) | NR 11 | creating a semi-permeable outer layer and Stabilizer | [53] |
H2O2 and glucose | N-GQDs 12 anchored PANI 13 matrix and GOx | 0–1 for H2O2 and 0–0.5 for glucose | 34 for glucose | 44.06 ± 2.1 | Negligible (n = 5) | 95.7 | the enhanced electron transfer resulting in greater sensitivity | [54] |
glucose | CNQDs/PANI 14 nanocomposite/GOx | 0–0.5 | 0.029 | 49.71 ± 0.45 | NR | 96.27 | high surface area and edge-rich architecture, enhanced electron transfer, high mechanical stability | [55] |
glucose | GOx/Cs/GS/PB | 0.00817–1 | 2.45 | 1790 nA·mM−1·cm−2 | NR | NR | the large surface area and the cross-linked hierarchical porous structure of GS enable easy absorption and even distribution of a large amount of GOx | [56] |
glucose | MWCNTs/Ti3C2, dissolved in PEDOT:PSS ink/GOx | 0.01–0.4 | 7 | NR | 0.3–0.76 (n = 4) | 94.6–98.68 | enhanced electron transfer, higher surface aera | [57] |
Detected Analytes | Recognition Unit | Linear Concentration Range (mM) | LOD 1 (μM) | Sensitivity (μA⋅mM−1⋅cm−2) | Reproducibility (%) | Recovery (%) | Nanomaterials Application | Ref. |
---|---|---|---|---|---|---|---|---|
glucose | MXene-functionalized PEDOT:PSS 2 conductive polymer hydrogels/Gox 3 | 0.003–0.094 | 1.9 | 21.7 | NR 4 | NR | Creating porous network for GOx, higher conductivity and stability (91.19% electrode response after 10 days) | [60] |
glucose | CMC-Na-GTAN 5/GOx | 0–120 | 0.28 | 25.71 | NR | 92.6 | Creating porous network for GOx, higher conductivity | [61] |
glucose | PQQ GDH 6-(p(MG)) NPs 7/GOx | 0–2.5 | 10 | 5.5 ± 0.5 | NR | NR | To orient the enzyme upon immobilization | [62] |
Detected Biomarker | Recognition Unit | Linear Concentration Range (mM) | LOD 1 (μM) | Sensitivity (μA mM−1 cm−2) | Reproducibility (%) | Recovery (%) | Nanomaterial Application | Ref. |
---|---|---|---|---|---|---|---|---|
glucose | CuNPs/PHEMA 2 hydrogel | 0–0.2 & 0.2–4 | 9.99 | 2.5 | 3.4 (n = 5) | 92 | maximizes and maintains the active surface area for glucose interaction | [76] |
glucose | nanoporous CuO 3, CuO/Ag, and CuO/Ag/NiO 4 | 0.001–5.50 | 0.1 | 2895.3 | <2 | 96 | the increased number of active sites and a larger surface area exposed to glucose and a rapid electron transfer and a low resistance to electron flow, leading to increased current density | [77] |
glucose and lactate | PB-NPs 5 and nickel hexacyanoferrate nanozymes | 0.001–2 for glucose | NR 6 | (0.20 ± 0.01) × 106 | NR | NR | creating nanozymes-oxidase activity | [78] |
glucose | Pt/MXene nanosheets | 0–1 | 29.15 | 3.43 | ≤3 | 91.15 | increases the active surface area and improve the current response to glucose | [79] |
glucose | 3D Ni-TMAF | 0.1–2.5 | 0.33 | 203.89 | 0.73–4.9 (n = 3) | 96.4–98.0 | electrocatalytic activity towards glucose oxidation and efficient electron transfer and redox reactions | [80] |
glucose | PU 7 fibrous mats and Pt nano-pine needles followed by magnetron sputtering of gold | 0.1–4 and 5–10 | 14.77 | 203.13 | NR | 96.16–101.15 | development of a stretchable, porous structure, with a large specific surface area | [81] |
glucose | Cu2O/CuO NFs 8 | higher than 2.5 | 0.0791 | 779 | NR | NR | forming high surface area and selectivity, as well as the durability of mechanical deformation | [82] |
glucose | CuO-LIG 9 | 0.08–1.5 | 80 | 2500 | NR | 92 ± 3 | the large specific surface area with many groove structures is conducive to sweat transportation and storage | [83] |
glucose | Cu/LIGF/LIG | 0–4 | 0.124 | 1438.8 | NR | NR | creating a larger surface area exposed to glucose, great stability | [84] |
glucose | Fe3O4 nanospheres | 0–18.0 | 19.2 | 96.1 ± 5.4 | NR | ≥95 | provide favorable solid/liquid interface for mass diffusion and abundant active sites for sufficient oxidation of glucose | [85] |
glucose | Polyaniline nanofiber | 0.01–1 | 10.6 | NR | NR | NR | scalable and cost-effective materials for electrode fabrication | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamshidnejad-Tosaramandani, T.; Kashanian, S.; Omidfar, K.; Schiöth, H.B. The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management. Biosensors 2025, 15, 451. https://doi.org/10.3390/bios15070451
Jamshidnejad-Tosaramandani T, Kashanian S, Omidfar K, Schiöth HB. The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management. Biosensors. 2025; 15(7):451. https://doi.org/10.3390/bios15070451
Chicago/Turabian StyleJamshidnejad-Tosaramandani, Tahereh, Soheila Kashanian, Kobra Omidfar, and Helgi B. Schiöth. 2025. "The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management" Biosensors 15, no. 7: 451. https://doi.org/10.3390/bios15070451
APA StyleJamshidnejad-Tosaramandani, T., Kashanian, S., Omidfar, K., & Schiöth, H. B. (2025). The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management. Biosensors, 15(7), 451. https://doi.org/10.3390/bios15070451