Feature Paper in Food Microbiology

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Food Microbiology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1763

Special Issue Editors


E-Mail Website
Guest Editor
Department of Food Science, University of Udine, Via Sondrio, 2/a, 33100 Udine, Italy
Interests: food microorganisms; spoilage; safety; hygiene; natural antimicrobial compounds; starters; food bioprotection and improvement; fermented foods and beverages; microbial ecology; toxin and mycotoxin; biomolecular methods
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Department of Agricultural, Food and Environmental Sciences (SAFE), University of Foggia, Via Napoli 25, 71100 Foggia, Italy
Interests: food microbiology; foodborne pathogens; food safety; food preservation; probiotics; predictive microbiology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
Institute of Food Sciences National Research Council of Italy, 83100 Avellino, Italy
Interests: wine; food science

Special Issue Information

Dear Colleagues,

Recently, the European Union adopted a green agenda called the Green Deal, with the aim of becoming climate neutral by 2050. The agri-food sector is also involved. In particular, the EU promotes the use of green alternatives to traditional food products and synthetic preservatives, with the specific aim of promoting people’s health. Consequently, research in Food Microbiology has been improved. New products have been developed, such as functional foods, plant-based or cultivated meat products, and insect flour, which represent promising solutions to solve the world’s demand for foods. In addition, methods of investigating the presence, activity, and ecology of microorganisms in food have been improved. However, microorganisms play different roles in food, such as safety, spoilage, production and bioprotection, and could cause problems in either traditional foods or new foods. So, the aim of this new issue is to encourage feature articles and new research frontiers in Food Microbiology.

Prof. Dr. Giuseppe Comi
Dr. Antonio Bevilacqua
Guest Editors

Dr. Francesca Coppola
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • new products
  • functional food
  • starter cultures and bioprotection
  • metagenomics and metabolomics
  • new identification methods
  • food waste recycling
  • novel pre-pro-syn-postbiotic applications
  • foodborne pathogens
  • innovations in traditional and new fermented foods
  • microorganisms in food ecosystems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 283 KiB  
Article
Hygienic Quality of Air-Packed and Refrigerated or Frozen Stored Döner Kebab and Evaluation of the Growth of Intentionally Inoculated Listeria monocytogenes
by Francesca Coppola, Giada Ferluga, Lucilla Iacumin, Cristian Bernardi, Michela Pellegrini and Giuseppe Comi
Microorganisms 2025, 13(4), 701; https://doi.org/10.3390/microorganisms13040701 - 21 Mar 2025
Cited by 1 | Viewed by 490
Abstract
Döner kebab, a meat product of Middle-Eastern origin, has gained significant popularity and is now widely consumed across Europe. The recipe varies depending on the area, with beef, turkey, lamb, or chicken being used as main ingredients. The aim of this work was [...] Read more.
Döner kebab, a meat product of Middle-Eastern origin, has gained significant popularity and is now widely consumed across Europe. The recipe varies depending on the area, with beef, turkey, lamb, or chicken being used as main ingredients. The aim of this work was to assess the hygienic-sanitary quality of raw and cooked döner kebabs stored at 4 ± 2 °C for 10 days and at 8 ± 2 °C for the next 20 days or frozen (−18 °C) for one month. One additional aim was to determine the potential growth of Listeria monocytogenes intentionally inoculated in cooked döner kebab during storage at 4 ± 2 °C or freezing. The concentration of Total Viable Count (TVC) and the Enterobacteriaceae of the 100 samples of raw döner kebab were less than 7 log CFU/g and 4 log CFU/g, respectively. Consequently, the samples can be considered acceptable and similar to traditional raw meat. The cooked döner kebab can be considered safe for a period of 30 days, especially from a microbiological point of view, when stored under refrigerated conditions, also taking into account possible thermal abuse. Coagulase Positive Cocci (CPC), Clostridium H2S+, Salmonella spp., and Listeria monocytogenes were never found in any of the samples. After 30 days, the TVC was at the level of 6 log CFU/g and Enterobacteriaceae at less than 4 log CFU/g. The main concern was related to microbial or tissue activity, resulting in an increase in total volatile basic nitrogen (TVB-N) content. However, in the cooked samples, the TVB-N content remained below 40 mg N/100 g at the end of the shelf-life period (32.5 mg N/100 g), which is still considered an acceptable value. In addition, the level of Malondialdehyde (MDA) was found to be within acceptable limits, with a reading of 1.4 nmol/g attained after 30 days. The same product, when frozen and stored at −18 °C, can be considered stable for a minimum of 6 months, both from a microbiological and a physico-chemical point of view. No microbial growth was observed. The TVB-N and the MDA levels increased, but after 6 months, their levels were still acceptable, with values of 19.1 mg N/100 g and 1.2 nmol/g, respectively. These observations demonstrate low protein degradation and lipid oxidation during the shelf-life period. The challenge test showed that Listeria monocytogenes did not grow in döner kebab either when stored at 4 ± 2 °C for 10 days and 8 ± 2 °C for 20 days or when stored at −18 °C for 6 months. The concentration of L. monocytogenes was found to be 5.4 log CFU/g in the refrigerated products and 4.9 log CFU/g in the frozen products. At the end of the shelf-life period, the L. monocytogenes load in both products was lower than the initial concentration that had been added. Finally, the use of air-packaging has been proven to be beneficial to the preservation of the product and maintained its microbiological and physico-chemical properties intact. Despite these good results, future directions could be to investigate different plastic films and packaging such as Modified Atmosphere (MAP), Vacuum (VP), and Sous Vide packaging (SVP). Full article
(This article belongs to the Special Issue Feature Paper in Food Microbiology)

Review

Jump to: Research

48 pages, 3075 KiB  
Review
New Methodologies as Opportunities in the Study of Bacterial Biofilms, Including Food-Related Applications
by Francesca Coppola, Florinda Fratianni, Vittorio Bianco, Zhe Wang, Michela Pellegrini, Raffaele Coppola and Filomena Nazzaro
Microorganisms 2025, 13(5), 1062; https://doi.org/10.3390/microorganisms13051062 - 2 May 2025
Viewed by 980
Abstract
Traditional food technologies, while essential, often face limitations in sensitivity, real-time detection, and adaptability to complex biological systems such as microbial biofilms. These constraints have created a growing demand for more advanced, precise, and non-invasive tools to ensure food safety and quality. In [...] Read more.
Traditional food technologies, while essential, often face limitations in sensitivity, real-time detection, and adaptability to complex biological systems such as microbial biofilms. These constraints have created a growing demand for more advanced, precise, and non-invasive tools to ensure food safety and quality. In response to these challenges, cross-disciplinary technological integration has opened new opportunities for the food industry and public health, leveraging methods originally developed in other scientific fields. Although their industrial-scale implementation is still evolving, their application in research and pilot settings has already significantly improved our ability to detect and control biofilms, thereby strengthening food safety protocols. Advanced analytical techniques, the identification of pathogenic species and their virulence markers, and the screening of “natural” antimicrobial compounds can now be conceptualized as interconnected elements within a virtual framework centered on “food” and “biofilm”. In this short review, starting from the basic concepts of biofilm and associated microorganisms, we highlight a selection of emerging analytical approaches—from optical methods, microfluidics, Atomic Force Microscopy (AFM), and biospeckle techniques to molecular strategies like CRISPR, qPCR, and NGS, and the use of organoids. Initially conceived for biomedical and biotechnological applications, these tools have recently demonstrated their value in food science by enhancing our understanding of biofilm behavior and supporting the discovery of novel anti-biofilm strategies. Full article
(This article belongs to the Special Issue Feature Paper in Food Microbiology)
Show Figures

Figure 1

Back to TopTop