Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,364)

Search Parameters:
Keywords = water observation product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 74879 KiB  
Article
Upscaling In Situ and Airborne Hyperspectral Data for Satellite-Based Chlorophyll Retrieval in Coastal Waters
by Roko Andričević
Water 2025, 17(15), 2356; https://doi.org/10.3390/w17152356 (registering DOI) - 7 Aug 2025
Abstract
Monitoring water quality parameters in coastal and estuarine environments is critical for assessing their ecological status and addressing environmental challenges. However, traditional in situ sampling programs are often constrained by limited spatial and temporal coverage, making it difficult to capture the complex variability [...] Read more.
Monitoring water quality parameters in coastal and estuarine environments is critical for assessing their ecological status and addressing environmental challenges. However, traditional in situ sampling programs are often constrained by limited spatial and temporal coverage, making it difficult to capture the complex variability in these dynamic systems. This study introduces a novel upscaling framework that leverages limited in situ measurements and airborne hyperspectral data to generate multiple conditional realizations of water quality parameter fields. These pseudo-measurements are statistically consistent with the original data and are used to calibrate inversion algorithms that relate satellite-derived reflectance data to water quality parameters. The approach was applied to Kaštela Bay, a semi-enclosed coastal area in the eastern Adriatic Sea, to map seasonal variations in water quality parameters such as Chlorophyll-a. The upscaling framework captured spatial patterns that were absent in sparse in situ observations and enabled regional mapping using Sentinel-2A satellite data at the appropriate spatial scale. By generating realistic pseudo-measurements, the method improved the stability and performance of satellite-based retrieval algorithms, particularly in periods of high productivity. Overall, this methodology addresses data scarcity challenges in coastal water monitoring and its application could benefit the implementation of European water quality directives through enhanced regional-scale mapping capabilities. Full article
(This article belongs to the Section Oceans and Coastal Zones)
22 pages, 15367 KiB  
Article
All-Weather Precipitable Water Vapor Retrieval over Land Using Integrated Near-Infrared and Microwave Satellite Observations
by Shipeng Song, Mengyao Zhu, Zexing Tao, Duanyang Xu, Sunxin Jiao, Wanqing Yang, Huaxuan Wang and Guodong Zhao
Remote Sens. 2025, 17(15), 2730; https://doi.org/10.3390/rs17152730 - 7 Aug 2025
Abstract
Precipitable water vapor (PWV) is a critical component of the Earth’s atmosphere, playing a pivotal role in weather systems, climate dynamics, and hydrological cycles. Accurate estimation of PWV is essential for numerical weather prediction, climate modeling, and atmospheric correction in remote sensing. Ground-based [...] Read more.
Precipitable water vapor (PWV) is a critical component of the Earth’s atmosphere, playing a pivotal role in weather systems, climate dynamics, and hydrological cycles. Accurate estimation of PWV is essential for numerical weather prediction, climate modeling, and atmospheric correction in remote sensing. Ground-based observation stations can only provide PWV measurements at discrete points, whereas spaceborne infrared remote sensing enables spatially continuous coverage, but its retrieval algorithm is restricted to clear-sky conditions. This study proposes an innovative approach that uses ensemble learning models to integrate infrared and microwave satellite data and other geographic features to achieve all-weather PWV retrieval. The proposed product shows strong consistency with IGRA radiosonde data, with correlation coefficients (R) of 0.96 for the ascending orbit and 0.95 for the descending orbit, and corresponding RMSE values of 5.65 and 5.68, respectively. Spatiotemporal analysis revealed that the retrieved PWV product exhibits a clear latitudinal gradient and seasonal variability, consistent with physical expectations. Unlike MODIS PWV products, which suffer from cloud-induced data gaps, the proposed method provides seamless spatial coverage, particularly in regions with frequent cloud cover, such as southern China. Temporal consistency was further validated across four east Asian climate zones, with correlation coefficients exceeding 0.88 and low error metrics. This algorithm establishes a novel all-weather approach for atmospheric water vapor retrieval that does not rely on ground-based PWV measurements for model training, thereby offering a new solution for estimating water vapor in regions lacking ground observation stations. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

21 pages, 3488 KiB  
Article
Effects of Continuous Saline Water Irrigation on Soil Salinization Characteristics and Dryland Jujube Tree
by Qiao Zhao, Mingliang Xin, Pengrui Ai and Yingjie Ma
Agronomy 2025, 15(8), 1898; https://doi.org/10.3390/agronomy15081898 - 7 Aug 2025
Abstract
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the [...] Read more.
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the effects of six irrigation water salinity levels (CK: 0.87 g·L−1, S1: 2 g·L−1, S2: 4 g·L−1, S3: 6 g·L−1, S4: 8 g·L−1, S5: 10 g·L−1) on soil salinization dynamics and jujube growth during a three-year field experiment (2020–2022). The results showed that soil salinity within the 0–1 m profile significantly increased with rising irrigation water salinity and prolonged irrigation duration, with the 0–0.4 m layer accounting for 50.27–74.95% of the total salt accumulation. A distinct unimodal salt distribution was observed in the 0.3–0.6 m soil zone, with the salinity peak shifting downward from 0.4 to 0.5 m over time. Meanwhile, soil pH and sodium adsorption ratio (SAR) increased steadily over the study period. The dominant hydrochemical type shifted from SO42−-Ca2+·Mg2+ to Cl-Na+·Mg2+. Crop performance exhibited a nonlinear response to irrigation salinity levels. Low salinity (2 g·L−1) significantly enhanced plant height, stem diameter, leaf area index (LAI), vitamin C content, and yield, with improvements of up to 12.11%, 3.96%, 16.67%, 16.24%, and 16.52% in the early years. However, prolonged exposure to saline irrigation led to significant declines in both plant growth and water productivity (WP) by 2022. Under high-salinity conditions (S5), yield decreased by 16.75%, while WP declined by more than 30%. To comprehensively evaluate the trade-off between economic effects and soil environment, the entropy weight TOPSIS method was employed to identify S1 as the optimal irrigation treatment for the 2020–2021 period and control (CK) as the optimal treatment for 2022. Through fitting analysis, the optimal irrigation water salinity levels over 3 years were determined to be 2.75 g·L−1, 2.49 g·L−1, and 0.87 g·L−1, respectively. These findings suggest that short-term irrigation of jujube trees with saline water at concentrations ≤ 3 g·L−1 is agronomically feasible. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

23 pages, 4317 KiB  
Article
Agronomical Responses of Elite Winter Wheat (Triticum aestivum L.) Varieties in Phenotyping Experiments Under Continuous Water Withdrawal and Optimal Water Management in Greenhouses
by Dániel Nagy, Tamás Meszlényi, Krisztina Boda, Csaba Lantos and János Pauk
Plants 2025, 14(15), 2435; https://doi.org/10.3390/plants14152435 - 6 Aug 2025
Abstract
Drought stress is a major environmental constraint that significantly reduces wheat productivity worldwide. In this study, seventeen wheat genotypes were evaluated under well-watered and drought-stressed conditions across two consecutive years (2023–2024) in a controlled greenhouse experiment. Twenty morphological and agronomic traits were recorded, [...] Read more.
Drought stress is a major environmental constraint that significantly reduces wheat productivity worldwide. In this study, seventeen wheat genotypes were evaluated under well-watered and drought-stressed conditions across two consecutive years (2023–2024) in a controlled greenhouse experiment. Twenty morphological and agronomic traits were recorded, and their responses to prolonged water limitation were assessed using multivariate statistical methods, including three-way ANOVA, principal component analysis (PCA), and cluster analysis. Drought stress significantly decreased all traits except the harvest index (HI), with the most severe reductions observed in traits related to secondary spikes (e.g., grain weight reduced by 95%). The ANOVA results confirmed significant genotype × treatment (G × T) interactions for key agronomic traits, with the strongest effect observed for total grain weight (F = 7064.30, p < 0.001). A PCA reduced the 20 original variables to five principal components, explaining 87.2% of the total variance. These components reflected distinct trait groups associated with productivity, spike architecture, and development in phenology. Cluster analysis based on PCA scores grouped genotypes into three clusters with contrasting drought response profiles. A yield-based evaluation confirmed the cluster structure, distinguishing genotypes with a stable performance (average yield loss ~58%) from highly sensitive ones (~70% loss). Overall, the findings demonstrate that drought tolerance in wheat is governed by complex trait interactions. Integrating a trait-based multivariate analysis with a yield stability assessment enables the identification of genotypes with superior adaptation to water-limited environments, providing an excellent genotype background for future breeding efforts. Full article
Show Figures

Figure 1

17 pages, 287 KiB  
Article
Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines
by Jessica M. Rustia, Judith P. Antonino, Ravelina R. Velasco, Edwin A. Yates and David G. Fernig
Fishes 2025, 10(8), 385; https://doi.org/10.3390/fishes10080385 - 6 Aug 2025
Abstract
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of [...] Read more.
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of this potential nutrient source is hindered by the lack of information concerning its organic and mineral content, the possible presence of heavy metal ions, and the risk of microbial pathogens. We report extensive analysis of the meat from Placuna placenta, harvested during three different seasons to account for potential variations. This comprises proximate analysis, mineral, antioxidant, and microbial analyses. While considerable seasonal variation was observed, the windowpane oyster was found to be a rich source of protein, fats, minerals, and carbohydrates, comparing well with the meats of other shellfish and land animals. Following pre-cooking (~90 °C, 25–30 min), the standard local method for food preparation, no viable E. coli or Salmonella sp. were detected. Mineral content was broadly similar to that reported in fish, although iron, zinc, and copper were more highly represented, nevertheless, heavy metals were below internationally acceptable levels, with the exception of one of three samples, which was slightly above the only current standard, FSANZ. Whether the arsenic was in the safer organic form, which is commonly the case for shellfish, or the more toxic inorganic form remains to be established. This and the variation of arsenic over time will need to be considered when developing food products. Overall, the meat of the windowpane oyster is a valuable food resource and its current (albeit low-level) use should lower any barriers to its acceptance, making it suitable for commercialization. The present data support its development for high-value food products in urban markets. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
18 pages, 1471 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
Show Figures

Figure 1

14 pages, 2709 KiB  
Article
Metagenomic Analysis of the Skin Microbiota of Brazilian Women: How to Develop Anti-Aging Cosmetics Based on This Knowledge?
by Raquel Allen Garcia Barbeto Siqueira, Ana Luiza Viana Pequeno, Yasmin Rosa Santos, Romualdo Morandi-Filho, Alexandra Lan, Edileia Bagatin, Vânia Rodrigues Leite-Silva, Newton Andreo-Filho and Patricia Santos Lopes
Cosmetics 2025, 12(4), 165; https://doi.org/10.3390/cosmetics12040165 - 5 Aug 2025
Abstract
Metagenomic studies have provided deeper insights into the complex interactions between the skin and its microbiota. However, limited research has been conducted on the skin microbiota of Brazilian women. Given that Brazil ranks as the fourth-largest consumer of cosmetics worldwide, the development of [...] Read more.
Metagenomic studies have provided deeper insights into the complex interactions between the skin and its microbiota. However, limited research has been conducted on the skin microbiota of Brazilian women. Given that Brazil ranks as the fourth-largest consumer of cosmetics worldwide, the development of new tools to analyze skin microbiota is crucial for formulating cosmetic products that promote a healthy microbiome. Skin samples were analyzed using the Illumina platform. Biometrology assessments were applied. The results showed pH variations were more pronounced in the older age group, along with higher transepidermal water loss values. Metagenomic analysis showed a predominance of Actinobacteria (83%), followed by Proteobacteria (7%), Firmicutes (9%) and Bacteroidetes (1%). In the older group (36–45 years old), an increase in Actinobacteria (87%) was observed and a decrease in Proteobacteria (6%). Moreover, the results differ from the international literature, since an increase in proteobacteria (13.9%) and a decrease in actinobacteria (46.7%) were observe in aged skin. The most abundant genus identified was Propionibacterium (84%), being the dominant species. Interestingly, previous studies have suggested a decline in Cutibacterium abundance with aging; although there is no significant difference, it is possible to observe an increasing trend in this genus in older skin. These studies can clarify many points about the skin microbiota of Brazilian women, and these findings could lead to the development of new cosmetics based on knowledge of the skin microbiome. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

14 pages, 1181 KiB  
Article
Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats
by John Nicholas Jackowetz, Carly S. Hanson, Minto Michael, Kiriako Tsoukalas, Cassandra Villanueva and Peter A. Kozak
Nanomaterials 2025, 15(15), 1193; https://doi.org/10.3390/nano15151193 - 5 Aug 2025
Viewed by 33
Abstract
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase [...] Read more.
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase design, UFB concentration was increased from 1.7 × 106 to 6.5 × 109 UFBs/mL at week 7 to assess dose-dependent effects. Administration of UFBs in drinking water induced significant shifts in gut microbiome populations, characterized by increased Bacteroidetes (+122% weeks 8–12) and decreased Firmicutes (−43% weeks 8–12) compared to controls. These microbial shifts coincided with enhanced short-chain fatty acid production (butyrate +56.0%, p ≤ 0.001; valerate +63.1%, p ≤ 0.01) and reduced inflammatory markers (TNF-α −84.0%, p ≤ 0.05; IL-1β −41.0%, p ≤ 0.05; IL-10 −69.8%, p ≤ 0.05). UFB effects demonstrated systematic concentration-dependent threshold responses, with 85.7% of parameters exhibiting directional reversals between low (1.7 × 106 UFBs/mL) and high (6.5 × 109 UFBs/mL) concentration phases rather than linear dose–response relationships. The systematic nature of these threshold effects, with 71.4% of parameters achieving statistical significance (p ≤ 0.05), indicates concentration-dependent biological mechanisms rather than random effects on gut biology. Despite current metagenomic techniques identifying only 25% of the total gut microbiome, the observed changes in characterized species and metabolites demonstrate UFB technology’s therapeutic potential for conditions requiring microbiome modulation, providing new insights into UFB influence on complex biological systems. Full article
(This article belongs to the Special Issue Nanobubbles and Nanodroplets: Current State-of-the-Art)
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Impact of Kickxia elatine In Vitro-Derived Stem Cells on the Biophysical Properties of Facial Skin: A Placebo-Controlled Trial
by Anastasia Aliesa Hermosaningtyas, Anna Kroma-Szal, Justyna Gornowicz-Porowska, Maria Urbanska, Anna Budzianowska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8625; https://doi.org/10.3390/app15158625 - 4 Aug 2025
Viewed by 176
Abstract
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various [...] Read more.
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various skin biophysical parameters. The cream was applied to the cheek once daily for six weeks on 40 healthy female volunteers between the ages of 40 to 49. The evaluated skin parameters including skin hydration, transepidermal water loss (TEWL), erythema intensity (EI), melanin intensity (MI), skin surface pH, and skin structure, wrinkle depth, vascular lesions, and vascular discolouration. The results indicated that significant improvements were observed in skin hydration (from 40.36 to 63.00 AU, p < 0.001) and there was a decrease in TEWL score (14.82 to 11.76 g/h/m2, p < 0.001), while the skin surface pH was maintained (14.82 to 11.76 g/h/m2, p < 0.001). Moreover, the K. elatine cell extract significantly improved skin structure values (9.23 to 8.50, p = 0.028), reduced vascular lesions (2.72 to 1.54 mm2, p = 0.011), and lowered skin discolouration (20.98% to 14.84%, p < 0.001), indicating its moisturising, protective, brightening, and soothing properties. These findings support the potential use of K. elatine cell extract in dermocosmetic formulations targeting dry, sensitive, or ageing skin. Full article
Show Figures

Figure 1

24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 - 4 Aug 2025
Viewed by 110
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

28 pages, 3909 KiB  
Article
Exploring How Climate Change Scenarios Shape the Future of Alboran Sea Fisheries
by Isabella Uzategui, Susana Garcia-Tiscar and Paloma Alcorlo
Water 2025, 17(15), 2313; https://doi.org/10.3390/w17152313 - 4 Aug 2025
Viewed by 257
Abstract
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure [...] Read more.
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure on the biomass of commercially important species in the Alboran Sea from 1999 to 2022. Data were sourced from the Copernicus observational program, focusing on the geographical sub-area 1 (GSA-1) zone across three depth ranges. Generalized Additive Models were applied for analysis. Rising temperatures and seasonal anomalies have largely negative effects, disrupting species’ physiological balance. Changes in water quality, including improved nutrient and oxygen concentrations, have yielded complex ecological responses. Fishing indices highlight the vulnerability of small pelagic fish to climate change and overfishing, underscoring their economic and ecological significance. These findings stress the urgent need for ecosystem-based management strategies that integrate climate change impacts to ensure sustainable marine resource management. Full article
(This article belongs to the Special Issue Impact of Climate Change on Marine Ecosystems)
Show Figures

Figure 1

21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 261
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

18 pages, 4468 KiB  
Article
Proteomic and Functional Analysis Reveals Temperature-Driven Immune Evasion Strategies of Streptococcus iniae in Yellowfin Seabream (Acanthopagrus latus)
by Yanjian Yang, Guanrong Zhang, Ruilong Xu, Yiyang Deng, Zequan Mo, Yanwei Li and Xueming Dan
Biology 2025, 14(8), 986; https://doi.org/10.3390/biology14080986 - 2 Aug 2025
Viewed by 290
Abstract
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion [...] Read more.
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion strategies of S. iniae. Our results demonstrated a striking temperature-dependent virulence phenotype, with significantly higher A. latus mortality rates observed at high temperature (HT, 33 °C) compared to low temperature (LT, 23 °C). Proteomic analysis revealed temperature-dependent upregulation of key virulence factors, including streptolysin S-related proteins (SagG, SagH), antioxidant-related proteins (SodA), and multiple capsular polysaccharide (cps) synthesis proteins (cpsD, cpsH, cpsL, cpsY). Flow cytometry analysis showed that HT infection significantly reduced the percentage of lymphocyte and myeloid cell populations in the head kidney leukocytes of A. latus, which was associated with elevated caspase-3/7 expression and increased apoptosis. In addition, HT infection significantly inhibited the release of reactive oxygen species (ROS) but not nitric oxide (NO) production. Using S. iniae cps-deficient mutant, Δcps, we demonstrated that the cps is essential for temperature-dependent phagocytosis resistance in S. iniae, as phagocytic activity against Δcps remained unchanged across temperatures, while NS-1 showed significantly reduced uptake at HT. These findings provide new insights into the immune evasion of S. iniae under thermal regulation, deepening our understanding of the thermal adaptation of aquatic bacterial pathogens. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

21 pages, 1458 KiB  
Article
Production of a Biosurfactant for Application in the Cosmetics Industry
by Ana Paula Barbosa Cavalcanti, Gleice Paula de Araújo, Káren Gercyane de Oliveira Bezerra, Fabíola Carolina Gomes de Almeida, Maria da Glória Conceição da Silva, Alessandra Sarubbo, Cláudio José Galdino da Silva Júnior, Rita de Cássia Freire Soares da Silva and Leonie Asfora Sarubbo
Fermentation 2025, 11(8), 451; https://doi.org/10.3390/fermentation11080451 - 2 Aug 2025
Viewed by 329
Abstract
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal [...] Read more.
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal risk to humans and the environment, which has attracted the interest of an emerging consumer market and, consequently, the cosmetics industry. The aim of the present study was to produce a biosurfactant from the yeast Starmerella bombicola ATCC 22214 cultivated in a mineral medium containing 10% soybean oil and 5% glucose. The biosurfactant reduced the surface tension of water from 72.0 ± 0.1 mN/m to 33.0 ± 0.3 mN/m after eight days of fermentation. The yield was 53.35 ± 0.39 g/L and the critical micelle concentration was 1000 mg/L. The biosurfactant proved to be a good emulsifier of oils used in cosmetic formulations, with emulsification indices ranging from 45.90 ± 1.69% to 68.50 ± 1.10%. The hydrophilic–lipophilic balance index demonstrated the wetting capacity of the biosurfactant and its tendency to form oil-in-water (O/W) emulsions, with 50.0 ± 0.20% foaming capacity. The biosurfactant did not exhibit cytotoxicity in the MTT assay or irritant potential. Additionally, an antioxidant activity of 58.25 ± 0.32% was observed at a concentration of 40 mg/mL. The compound also exhibited antimicrobial activity against various pathogenic microorganisms. The characterisation of the biosurfactant using magnetic nuclear resonance and Fourier transform infrared spectroscopy revealed that the biomolecule is a glycolipid with an anionic nature. The results demonstrate that biosurfactant produced in this work has potential as an active biotechnological ingredient for innovative, eco-friendly cosmetic formulations. Full article
(This article belongs to the Special Issue The Industrial Feasibility of Biosurfactants)
Show Figures

Figure 1

Back to TopTop