Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines †
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Proximate Analysis of Windowpane Oyster Meat
2.2.1. Moisture Determination
2.2.2. Ash Determination
2.2.3. Crude Fat Determination
2.2.4. Crude Protein Determination
2.2.5. Crude Fiber Determination
2.2.6. Available Carbohydrates or Nitrogen-Free Extract Determination
2.3. Chemical Analysis of Fresh Windowpane Oyster
2.3.1. Extraction of Sample
2.3.2. Antioxidant Activity (2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Radical-Scavenging Activity)
2.3.3. Total Carotenoid Content
2.3.4. Total Phenolic Content (TPC)
2.3.5. Heavy Metals and Mineral Analysis
2.3.6. Fatty Acid Profile
2.4. Microbial Analysis of Windowpane Oyster
2.4.1. Aerobic Plate Count
2.4.2. Detection of Coliform
2.5. Detection of Salmonella
2.6. Detection of Vibrio parahaemolyticus
2.6.1. Enrichment
2.6.2. Isolation
2.7. Statistical Analysis of Data
3. Results
3.1. Sample Collection
3.2. Proximate Analysis of Windowpane Oyster Meat
Can the Meat from Oysters Provide Nutrition Comparable to Alternative Sources?
3.3. Antioxidant Activity, Total Carotenoids, and Total Phenolics Content of Windowpane Oyster Meat
3.4. Minerals and Heavy Metals Analysis
3.5. Fatty Acid Content of Windowpane Oyster
3.6. Microbial Analysis of Windowpane Oyster
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOAC | Association of Official Agricultural Chemists |
FAOLEX | Food and Agricultural Organization database |
FSANZ | Food Standards Australia New Zealand |
MPN | Most probable number |
TCBS | Thiosulfate–citrate–bile salts |
TPC | Total phenolic content |
References
- Dame, R.F.; Kenneth, M.J. Ecology of Marine Bivalves an Ecosystem Approach, 2nd ed.; Oven, A., Ed.; Marine Science; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2012; ISBN 9781439839096. [Google Scholar]
- Agricultural Research Service. Scientific Report of the 2015 Dietary Guidelines Advisory Committee; United States Department of Agriculture: Washington, DC, USA; United States Department of Health and Human Services: Washington, DC, USA, 2015; p. 436. Available online: https://odphp.health.gov/sites/default/files/2019-09/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf (accessed on 25 May 2025).
- Wright, A.C.; Fan, Y.; Baker, G.L. Nutritional Value and Food Safety of Bivalve Molluscan Shellfish. J. Shellfish Res. 2018, 37, 695–708. [Google Scholar] [CrossRef]
- Rustia, J.M.; Antonino, J.P.; Velasco, R.R.; Lima, M.A.; Yates, E.A.; Fernig, D.G. History and Prospects for the Sustainability and Circularity of the Windowpane Oyster Placuna Placenta Fishery in the Philippines. Fishes 2023, 3, 493. [Google Scholar] [CrossRef]
- Rustia, J.M. Valorization of By-Product of Windowpane Oyster Placuna Placenta Shell Processing. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2025. [Google Scholar] [CrossRef]
- Moller, J. Comparing Methods for Fibre Determination in Food and Feed 2014. Available online: https://www.fossanalytics.com/-/media/files/documents/papers/feed-and-forage-segment/fibre-methods-compared_gb.pdf (accessed on 25 May 2025).
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sanchez-Rangel, J.C.; Benavides, J.; Heredia, B.J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.V. The Folin–Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Horncastle, D.C.J. Atomic Absorption Spectrophotometry. SAGE J. Med. Sci. Law 1973, 13, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Ackman, R.G. Remarks on Official Methods Employing Boron Trifluoride in the Preparation of Methyl Esters of the Fatty Acids of Fish Oils. J. Am. Oil Chem. Soc. 1998, 75, 541–545. [Google Scholar] [CrossRef]
- Szekielda, K.H. Environmental Changes in Manila Bay. Int. J. Geol. Earth Environ. Sci. 2022, 12, 31–56. Available online: https://www.cibtech.org/J-GEOLOGY-EARTH-ENVIRONMENT/PUBLICATIONS/2022/JGEE-004-SZEKIELDA_ENVIRONMENTAL%20-MANILA-BAY.pdf (accessed on 25 May 2025).
- FORECA. Weather in Manila, Philippines; World Weather: Manila, Philippines, 2024; Available online: https://world-weather.info/forecast/philippines/manila/march-2022/ (accessed on 25 May 2025).
- PAGASA. Climate of the Philippines; Quezon City, Philippines, 2024. Available online: https://www.pagasa.dost.gov.ph/information/climate-philippines (accessed on 25 May 2025).
- International Production Assessment Division. Philippines Rice: Area Increases and Favorable Weather Lead to Estimated Record Production; Foreign Agricultural Service Global Market Analysis; United States Department of Agriculture: Washington, DC, USA, 2021; pp. 1–9. Available online: https://ipad.fas.usda.gov/highlights/2021/06/Philippines/index.pdf (accessed on 25 May 2025).
- Food and Nutrition Research Institute. Philippine Food Composition Table Online Database (PhilFCT); Food and Nutrition Research Institute, Department of Science and Technology Food and Nutrition Research Institute (DOST-FNRI): Taguig City, Philippines, 2019. Available online: https://i.fnri.dost.gov.ph/fct/library/report/4070 (accessed on 25 May 2025).
- Miletic, I.; Miric, M.; Lalic, Z.; Sobajic, S. Composition of Lipids and Proteins of Several Species of Molluscs, Marine and Terrestrial, from the Adriatic Sea and Serbia. Food Chem. 1991, 41, 303–308. [Google Scholar] [CrossRef]
- Erkan, N.; Özden, Ö.; Ulusoy, Ş. Seasonal Micro- and Macro-Mineral Profile and Proximate Composition of Oyster (Ostrea Edulis) Analyzed by ICP-MS. Food Anal. Methods 2011, 4, 35–40. [Google Scholar] [CrossRef]
- Beukema, J.J. Caloric Values of Marine Invertebrates with an Emphasis on the Soft Parts of Marine Bivalves. Oceanogr. Mar. Biol. Annu. Rev. 1997, 35, 407–430. [Google Scholar]
- Pachaiyappan, A.; Muthuvel, A.; Sadhasivam, G.; Vishwa Janani, V.S.; Sridhar, N.; Kumar, M. In-Vitro Antioxidant and Functional Properties of Protein Hydrolysates from Golden Grey Mullet Prepared by Commercial, Microbial and Visceral Proteases. Int. J. Pharm. Sci. Res. 2014, 5, 2539–2545. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids in Marine Animals. Mar. Drugs 2011, 9, 278–293. [Google Scholar] [CrossRef]
- Rozirwan; Nanda; Nugroho, R.Y.; Diansyah, G.; Muhtadi; Fauziyah; Putri, W.A.E.; Agussalim, A. Phytochemical Composition, Total Phenolic Content and Antioxidant Activity of Anadara Granosa (Linnaeus, 1758) Collected from the East Coast of South Sumatra, Indonesia. Baghdad Sci. J. 2023, 20, 6. [Google Scholar] [CrossRef]
- Venugopal, V.; Gopakumar, K. Shellfish: Nutritive Value, Health Benefits, and Consumer Safety. IFT 2017, 16, 1219–1242. [Google Scholar] [CrossRef]
- Alvariño, L.; Guabloche, A.; da Silva Acioly, T.M.; Viana, D.C.; Iannacone, J. Assessment of Potentially Toxic Metals, Metalloids, and Non-Metals in Muscle and Liver Tissue of Two Fish Species (Mugil Cephalus Linnaeus, 1758 and Odontesthes Regia (Humboldt, 1821) from the Coastal Area of Callao, Peru. Reg. Stud. Mar. Sci. 2024, 71, 103423. [Google Scholar] [CrossRef]
- Ciosek, Ż.; Kot, K.; Rotter, I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. Int. J. Environ. Res Public Health 2023, 20, 2197. [Google Scholar] [CrossRef]
- Allen, K.J.; Buck, N.E.; Cheah, D.M.Y.; Gazeas, S.; Bhathal, P.; Mercer, J.F.B. Chronological Changes in Tissue Copper, Zinc and Iron in the Toxic Milk Mouse and Effects of Copper Loading. Biometals 2006, 19, 555–564. [Google Scholar] [CrossRef]
- O’Connor, T.P. National Distribution of Chemical Concentrations in Mussels and Oysters in the USA. Mar. Environ. Res. 2002, 53, 117–143. [Google Scholar] [CrossRef] [PubMed]
- Food Standards Agency Chemical Contaminant Monitoring 2021. Available online: https://www.food.gov.uk/business-guidance/chemical-contaminant-monitoring (accessed on 25 May 2025).
- Food Standards Australia New Zealand. Schedule 19 Maximum Levels of Contaminants and Natural Toxicants; 2016. Available online: https://www.legislation.gov.au/F2015L00454/2022-09-01/2022-09-01/text/original/pdf (accessed on 25 May 2025).
- FAO-LEX Heavy Metals Regulations (L.N. No. 66 of 2003). 2003. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC042405/ (accessed on 25 May 2025).
- Arsenic. Available online: https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 15 July 2025).
- Singh, Y.T.; Krishnamoorthy, M.; Thippeswamy, S. Seasonal Variations of Cu, Pb, Fe, Ni and Cr in the Edible Wedge Clam, Donax Faba (Mollusca, Bivalvia) from the Padukere Beach, Karnatak. J. Theor. Exp. Biol. 2012, 8, 95–100. [Google Scholar]
- El-Moselhy, K.M.; Yassien, M.H. Accumulation Patterns of Heavy Metals in Venus Clams, Paphia Undulata (Born, 1780) and Gafrarium Pectinatum (Linnaeus, 1758), from Lake Timsah, Suez Canal, Egypt. Egypt. J. Aquat. Res. 2005, 31, 13–28. [Google Scholar]
- Reyes, T.; Bedoya, D.; Novotny, V. Agrochemical Use in the Philippines and Its Consequences to the Environment; Greenpeace Southeast Asia: Quezon City, Philippines, 2008; Available online: https://www.greenpeace.to/publications/gpsea_agrochemical-use-in-the-philip.pdf (accessed on 25 May 2025).
- Zhukova, N.V. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds. Mar. Drugs 2014, 12, 4578–4592. [Google Scholar] [CrossRef] [PubMed]
- Bergé, J.-P.; Barnathan, G. Fatty Acids from Lipids of Marine Organisms: Molecular Biodiversity, Roles as Biomarkers, Biologically Active Compounds, and Economical Aspects. In Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 96, pp. 49–125. ISBN 978-3-540-31549-0. [Google Scholar]
- Sajjadi, N.; Mooraki, N. Determination and Study the Fatty Acid Contents and Their Seasonal Variations by Temperature of a Dominant Bivalve (Callista Umbonella) of Haleh Creek. AquaDocs 2016, 15, 1134–1143. Available online: https://aquadocs.org/items/3521d468-098a-4837-b728-a7261fc638e6 (accessed on 25 May 2025).
- Remel Technical Manual of Microbiological Media for General Information Violet Red Bile Agar 2010. Available online: https://assets.fishersci.com/TFS-Assets/MBD/Instructions/IFU112872.pdf (accessed on 25 May 2025).
- Chakraborty, K.; Chakkalakal, S.J.; Joseph, D.; Joy, M. Nutritional Composition of Edible Oysters (Crassostrea madrasensis L.) from the South West Coast of India. J. Aquat. Food Prod. Technol. 2016, 25, 1172–1189. [Google Scholar] [CrossRef]
Sampling Date | September 2020 | February 2021 | March 2022 | Reference |
---|---|---|---|---|
Estimated monthly sea surface temperature range of Manila Bay, °C | 30.8–31.2 | 27.6–27.9 | 28.6–28.5 | [11] |
Average weather (from international forecast of weather in Manila, Philippines and nearby provinces) | 13 days precipitation, light to heavy intensity rain, 16 days cloudy, 1 day sunny | 13 days precipitation, light drizzle, 12 days cloudy, 3 days sunny | 15 days precipitation, light rain and thunderstorm to moderate rain, 11 days cloudy, 5 days sunny | [12] |
Season | Rainy/wet | Cool, dry | Hot, dry | [13] |
Rice production activity in Central Luzon | Planting to growing | Growing to harvesting | Growing to harvesting | [14] |
Microbial quality of brackish water at the time of collection (coliform most probable number/g) | 7.5 × 103 | 2.8 × 103 | 4.3 × 103 |
Sample | Moisture Content | Ash | Crude Fat | Crude Protein | Crude Fiber | Available Carbohydrates |
---|---|---|---|---|---|---|
Fresh | 69 ± 0.54 | 3.3 ± 1.65 | 1.5 ± 0.14 | 23.2 ± 0.36 | 0.2 ± 0.04 | 2.8 ± 2.0 |
Pre-cooked | 3.9 ± 0.86 | 8.4 ± 3.53 | 8.2 ± 0.2 | 48.8 ± 0.33 | 6.5 ± 0.09 | 24.2 ± 4.23 |
Fresh [15] | 70.2 | 1.8 | 1.4 | 23.3 | 0 | 3.3 |
Sample | Antioxidant Activity (mg Trolox Equivalent) | Total Carotenoids (µg/g) | Total Phenolics (mg GAE/g) |
---|---|---|---|
Fresh | 7.9 ± 0.48 | 57.6 ± 0.61 | 0.85 ± 0.07 |
Pre-cooked meat | 7.3 ± 0.98 | 54.4 ± 5.82 | 0.79 ± 0.14 |
Minerals | First Sampling/µg/g | Second Sampling/µg/g | Third Sampling/µg/g |
---|---|---|---|
Ca | 3212 ± 13 | 794 ± 8 | 2188 ± 6 |
Mg | 1155 ± 37 | 234 ± 6 | 974 ± 6 |
K | 3591 ± 58 | 122 ± 6 | 1955 ± 7 |
Fe | 540 ± 19 | 29 ± 0.5 | 348 ± 7 |
P | 1968 ± 10 | 27 ± 0.4 | 785 ± 6 |
Cu | 29 ± 1.3 | Less than 0.05 | 16 ± 0.3 |
Zn | 226 ± 7.77 | 17 ± 0.67 | 155 ± 7.02 |
Heavy metals | |||
As | Less than 0.25 | 2 ± 0.07 | Less than 0.25 |
Hg | Less than 0.005 | Less than 0.005 | Less than 0.005 |
Cd | Less than 0.03 | Less than 0.025 | Less than 0.025 |
Pb | Less than 0.1 | Less than 0.1 | Less than 0.1 |
Organization | As | Hg | Cd | Pb |
---|---|---|---|---|
FSANZ | 1 | 1.5 | 2 | 2 |
Food Standards Agency, UK | - | 0.5 | 1.0 | 1.5 |
FAOLEX | - | 0.5 | 1.0 | 1.0 |
Fatty Acids | First Sampling g/100 g | Second Sampling g/100 g | Third Sampling g/100 g |
---|---|---|---|
Saturated: | |||
Myristic acid | 0.87 ± 0.02 | 0.37 ± 0.013 | 0.77 ± 0.005 |
Pentadecanoic acid | 0.10 ± 0.008 | 0.06 ± 0.002 | 0.09 ± 0.006 |
Palmitic acid | 4.48 ± 0.201 | 3.82 ± 0.030 | 4.25 ± 0.031 |
Heptadecanoic acid | 0.30 ± 0.005 | 0.28 ± 0.005 | 0.33 ± 0.009 |
Stearic acid | 0.93 ± 0.017 | 1.03 ± 0.007 | 0.95 ± 0.008 |
Arachidic acid | 0.02 ± 0.002 | 0.03 ± 0.003 | 0.03 ± 0.006 |
Heneicosanoic acid | 0.05 ± 0.003 | 0.05 ± 0.003 | 0.05 ± 0.024 |
Behenic acid | 0.02 ± 0.003 | 0.04 ± 0.004 | 0.03 ± 0.004 |
Lignoceric acid | 0.04 ± 0.002 | 0.02 ± 0.004 | 0.04 ± 0.011 |
Total | 6.81 | 5.7 | 6.54 |
Monounsaturated: | |||
Palmitoleic acid | 1.39 ± 0.019 | 0.81 ± 0.015 | 1.37 ± 0.015 |
Elaidic acid | 0.02 ± 0.003 | 0.04 ± 0.003 | 0.02 ± 0.004 |
Oleic acid | 0.14 ± 0.002 | 0.13 ± 0.003 | 0.13 ± 0.006 |
Nervonic acid | 0.11 ± 0.004 | 0.28 ± 0.003 | 0.15 ± 0.005 |
Total | 1.66 | 1.26 | 1.67 |
Polyunsaturated: | |||
Linoleic | 0.10 ± 0.01 | 0.18 ± 0.006 | 0.12 ± 0.005 |
γ-linolenic | 0.10 ± 0.006 | 0.16 ± 0.004 | 0.16 ± 0.008 |
Linolenic | 0.50 ± 0.01 | 0.65 ± 0.004 | 0.57 ± 0.009 |
cis-8, 11, 14 Eicosatrienoic acid | 0.44 ± 0.003 | 0.71 ± 0.006 | 0.53 ± 0.013 |
cis-11, 14, 17 Eicosatrienoic acid | 0.10 ± 0.003 | 0.04 ± 0.004 | 0.08 ± 0.006 |
Arachidonic acid | 1.20 ± 0.008 | 1.19 ± 0.016 | 1.20 ± 0.006 |
cis-5, 8, 11, 14, 17 Eicosapentanoic acid | 0.10 ± 0.002 | 0 | 0.08 ± 0.003 |
cis-4, 7, 10, 13, 16, 19 Docosahexanoic acid | 0.04 ± 0.01 | 0.69 ± 0.025 | 0.28 ± 0.006 |
Total | 2.58 | 3.62 | 3.02 |
Sample | Aerobic Plate Count | Coliform MPN/g | Coliform Colonies in VRBA | Vibrio parahaemolyticus | Salmonella |
---|---|---|---|---|---|
Pre-cooked oyster | 3.7 × 102 | 1.59 × 103 | 8 est. APC (pinkish) | No growth | No growth |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rustia, J.M.; Antonino, J.P.; Velasco, R.R.; Yates, E.A.; Fernig, D.G. Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines. Fishes 2025, 10, 385. https://doi.org/10.3390/fishes10080385
Rustia JM, Antonino JP, Velasco RR, Yates EA, Fernig DG. Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines. Fishes. 2025; 10(8):385. https://doi.org/10.3390/fishes10080385
Chicago/Turabian StyleRustia, Jessica M., Judith P. Antonino, Ravelina R. Velasco, Edwin A. Yates, and David G. Fernig. 2025. "Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines" Fishes 10, no. 8: 385. https://doi.org/10.3390/fishes10080385
APA StyleRustia, J. M., Antonino, J. P., Velasco, R. R., Yates, E. A., & Fernig, D. G. (2025). Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines. Fishes, 10(8), 385. https://doi.org/10.3390/fishes10080385