Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Housing
2.2. Ultrafine Bubble Generation and Measurement
2.2.1. UFB Characterization Limitations
2.3. Sample Collection and Analysis
2.4. Histopathological Analysis
2.5. Statistical Analysis
3. Results
3.1. Microbiome Analysis and Taxonomic Changes
3.2. Short Chain Fatty Acid Production
3.3. Inflammatory Markers
3.4. Physiological Parameters
3.5. Concentration-Dependent Response Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UFB | Ultrafine bubble |
HPLC | High performance liquid chromatography |
GC | Gas chromatography |
TNF | Tumor necrosis factor |
IL | Interleukin |
SCFA | Short chain fatty acids |
GALT | Gut-associated lymphoid tissue |
SD | Standard deviation |
ELISA | Enzyme-linked immunosorbent assay |
MS | Mass spectrometer |
DNA | Deoxyribonucleic acid |
References
- Foudas, A.W.; Kosheleva, R.I.; Favvas, E.P.; Kostoglou, M.; Mitropoulos, A.C.; Kyzas, G.Z. Fundamentals and Applications of Nanobubbles: A Review. Chem. Eng. Res. Des. 2023, 189, 64–86. [Google Scholar] [CrossRef]
- Chaurasia, G. Nanobubbles: An Emerging Science in Nanotechnology. MGM J. Med. Sci. 2023, 10, 327–334. [Google Scholar] [CrossRef]
- Wang, X.; Li, P.; Ning, R.; Ratul, R.; Zhang, X.; Ma, J. Mechanisms on Stability of Bulk Nanobubble and Relevant Applications: A review. J. Clean. Prod. 2023, 426, 139153. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Zhang, L.; Hu, J. Generation and Stability of Bulk Nanobubbles: A Review and Perspective. Curr. Opin. Colloid Interface Sci. 2021, 53, 101439. [Google Scholar] [CrossRef]
- Terasaka, K.; Yasui, K.; Kanematsu, W.; Aya, N. Ultrafine Bubbles; Jenny Standford Publishing: Singapore, 2021; ISBN 978-981-4877-59-6. [Google Scholar]
- ISO-20480-1:2017; Fine Bubble Technology—General Principles for Usage and Measurement of Fine Bubbles—Part 1: Terminology. ISO: Geneva, Switzerland, 2017.
- Azevedo, A.; Etchepare, R.; Calgaroto, S.; Rubio, J. Aqueous Dispersions of Nanobubbles: Generation, Properties and Features. Miner. Eng. 2016, 94, 29–37. [Google Scholar] [CrossRef]
- Javed, M.; Matloob, A.; Ettoumi, F.; Sheikh, A.R.; Zhang, R.; Xu, Y. Novel Nanobubble Technology in Food Science: Application and Mechanism. Food Innov. Adv. 2023, 2, 135–144. [Google Scholar] [CrossRef]
- Temesgen, T.; Bui, T.T.; Han, M.; Kim, T.; Park, H. Micro and Nanobubble Technologies as a New Horizon for Water-Treatment Techniques: A Review. Adv. Colloid Interface Sci. 2017, 246, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Brenner, M.P.; Lohse, D. Dynamic Equilibrium Mechanism for Surface Nanobubble Stabilization. Phys. Rev. Lett. 2008, 101, 214505. [Google Scholar] [CrossRef]
- Kim, E.; Choe, J.K.; Kim, B.H.; Kim, J.; Park, J.; Choi, Y. Unraveling the Mystery of Ultrafine Bubbles: Establishment of Thermodynamic Equilibrium for Sub-Micron Bubbles and Its Implications. J. Colloid Interface Sci. 2020, 570, 173–181. [Google Scholar] [CrossRef]
- Nirmalkar, N.; Pacek, A.W.; Barigou, M. On the Existence and Stability of Bulk Nanobubbles. Langmuir 2018, 34, 10964–10973. [Google Scholar] [CrossRef]
- Ito, M.; Sugai, Y. Nanobubbles Activate Anaerobic Growth and Metabolism of Pseudomonas aeruginosa. Sci. Rep. 2021, 11, 16858. [Google Scholar] [CrossRef]
- Park, Y.; Shin, S.; Shukla, N.; Kim, K.; Park, M.-H. Effects of Nanobubbles in Dermal Delivery of Drugs and Cosmetics. Nanomaterials 2022, 12, 3286. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, T.; Lei, Z.; Kobayashi, M.; Adachi, Y.; Shimizu, K.; Lee, D.-J.; Zhang, Z. Supplementation of O2-Containing Gas Nanobubble Water to Enhance Methane Production from Anaerobic Digestion of Cellulose. Chem. Eng. J. 2020, 398, 125652. [Google Scholar] [CrossRef]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The Gut Microbiome in Health and in Disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef]
- Durack, J.; Lynch, S.V. The Gut Microbiome: Relationships with Disease and Opportunities for Therapy. J. Exp. Med. 2019, 216, 20–40. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Hu, B.; Wang, H.; Kong, L.; Han, H.; Li, K.; Sun, S.; Lei, Z.; Shimizu, K.; Zhang, Z. Supplementation with Nanobubble Water Alleviates Obesity-Associated Markers through Modulation of Gut Microbiota in High-Fat Diet Fed Mice. J. Funct. Foods 2020, 67, 103820. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Gäbel, G.; Aschenbach, J.R.; Müller, F. Transfer of Energy Substrates across the Ruminal Epithelium: Implications and Limitations. Anim. Health Res. Rev. 2002, 3, 15–30. [Google Scholar] [CrossRef]
- Gill, P.A.; Van Zelm, M.C.; Muir, J.G.; Gibson, P.R. Review Article: Short Chain Fatty Acids as Potential Therapeutic Agents in Human Gastrointestinal and Inflammatory Disorders. Aliment. Pharmacol. Ther. 2018, 48, 15–34. [Google Scholar] [CrossRef]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J.-P. The Firmicutes/Bacteroidetes Ratio of the Human Microbiota Changes with Age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, Y.; Kanazawa, A.; Aida, M.; Yoshida, Y.; Yamashiro, Y.; Watada, H. Association of Gut Microbiota and Inflammatory Markers in Obese Patients with Type 2 Diabetes Mellitus: Post Hoc Analysis of a Synbiotic Interventional Study. Biosci. Microbiota Food Health 2022, 41, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Ter Horst, R.; Jansen, T.; Jacobs, L.; Bonder, M.J.; et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2016, 167, 1125–1136.e8. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De La Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Wolfe, W.; Xiang, Z.; Yu, X.; Li, P.; Chen, H.; Yao, M.; Fei, Y.; Huang, Y.; Yin, Y.; Xiao, H. The Challenge of Applications of Probiotics in Gastrointestinal Diseases. Adv. Gut Microbiome Res. 2023, 2023, 1984200. [Google Scholar] [CrossRef]
- Louis, P.; Hold, G.L.; Flint, H.J. The Gut Microbiota, Bacterial Metabolites and Colorectal Cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Qin, C.; Li, Y.; Wu, Z.; Liu, L. Oat Phenolic Compounds Regulate Metabolic Syndrome in High Fat Diet-Fed Mice via Gut Microbiota. Food Biosci. 2022, 50, 101946. [Google Scholar] [CrossRef]
- Li, Y.; Qin, C.; Dong, L.; Zhang, X.; Wu, Z.; Liu, L.; Yang, J.; Liu, L. Whole Grain Benefit: Synergistic Effect of Oat Phenolic Compounds and β-Glucan on Hyperlipidemia via Gut Microbiota in High-Fat-Diet Mice. Food Funct. 2022, 13, 12686–12696. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, B.; Han, H.; Lei, Z.; Shimizu, K.; Zhang, L.; Zhang, Z. Metagenomic Insights into the Effects of Nanobubble Water on the Composition of Gut Microbiota in Mice. Food Funct. 2020, 11, 7175–7182. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.K.; Kelly, S.A.; Legge, R.; Ma, F.; Low, S.J.; Kim, J.; Zhang, M.; Oh, P.L.; Nehrenberg, D.; Hua, K.; et al. Individuality in Gut Microbiota Composition Is a Complex Polygenic Trait Shaped by Multiple Environmental and Host Genetic Factors. Proc. Natl. Acad. Sci. USA 2010, 107, 18933–18938. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jin, R.; Hao, J.; Zeng, J.; Yin, D.; Yi, Y.; Zhu, M.; Mandal, A.; Hua, Y.; Ng, C.K.; et al. Consumption of the Fish Oil High-Fat Diet Uncouples Obesity and Mammary Tumor Growth through Induction of Reactive Oxygen Species in Protumor Macrophages. Cancer Res. 2020, 80, 2564–2574. [Google Scholar] [CrossRef] [PubMed]
Ultrafine Bubble Test Group Water Samples | Concentration (UFBs/mL) | Mean Size ± SD (nm) |
---|---|---|
Supplied Week 0–6 | 1.7 × 106 | 168 ± 100 |
Supplied Week 7–12 | 6.5 × 109 | 164 ± 79 |
Parameter | Low UFB Phase * | High UFB Phase ** | Magnitude Change | p-Value *** |
---|---|---|---|---|
Week 6: Test vs. Control | Week 12: Test vs. Control | |||
Butyrate change (%) | −23.0 | +56.0 | +79.0 | <0.001 |
Valerate change (%) | −75.7 | +54.2 | +129.9 | <0.01 |
TNF-α change (%) | +225.7 | −83.9 | −309.6 | <0.05 |
IL-1β change (%) | +4.1 | −41.0 | −45.1 | <0.05 |
IL-10 change (%) | +351.7 | −69.8 | −421.5 | <0.05 |
Bacteriodetes change (%) | +31.3 | +133.3 | +102.0 | >0.05 |
Firmicutes (%) | +56.8 | −56.5 | −113.3 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackowetz, J.N.; Hanson, C.S.; Michael, M.; Tsoukalas, K.; Villanueva, C.; Kozak, P.A. Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats. Nanomaterials 2025, 15, 1193. https://doi.org/10.3390/nano15151193
Jackowetz JN, Hanson CS, Michael M, Tsoukalas K, Villanueva C, Kozak PA. Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats. Nanomaterials. 2025; 15(15):1193. https://doi.org/10.3390/nano15151193
Chicago/Turabian StyleJackowetz, John Nicholas, Carly S. Hanson, Minto Michael, Kiriako Tsoukalas, Cassandra Villanueva, and Peter A. Kozak. 2025. "Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats" Nanomaterials 15, no. 15: 1193. https://doi.org/10.3390/nano15151193
APA StyleJackowetz, J. N., Hanson, C. S., Michael, M., Tsoukalas, K., Villanueva, C., & Kozak, P. A. (2025). Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats. Nanomaterials, 15(15), 1193. https://doi.org/10.3390/nano15151193