Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Design
2.3. Forelimb Grip Strength
2.4. Swimming Exercise Performance Test
2.5. Determination of Fatigue-Associated Serum Biomarkers
2.6. Clinical Biochemical Profiles
2.7. Visceral Tissue Weight, Histology Staining, and Glycogen Determination
2.8. Statistical Analysis
3. Results
3.1. Effects of Lacticaseibacillus paracasei Supplementation on Body Weight and Food Intake
3.2. Effect of NB23 Supplementation on Grip Strength and Endurance Exercise Performance
3.3. Effect of NB23 Supplementation on Serum Lactate Levels After 10 Min Swim Test
3.4. Effect of NB23 Supplementation on Fatigue-Related Indexes After the 10 Min Swim Test or a 90 Min Swim Test and 60 Min Rest
3.5. Effect of NB23 Supplementation on Biochemical Profiles at End of Study
3.6. Effect of NB23 Supplementation on Liver and Muscle Glycogen
3.7. General Characteristics of Mice and Histopathology of Tissues with NB23 Supplementation for Six Weeks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Feng, Z.; Luo, Y.H.; Chen, J.M.; Zhang, Y.; Liao, Y.J.; Jiang, H.; Long, Y.; Wei, B. Exercise-Induced Central Fatigue: Biomarkers and Non-Medicinal Interventions. Aging Dis. 2024, 16, 1302–1315. [Google Scholar] [CrossRef]
- Cordeiro, L.M.S.; Rabelo, P.C.R.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D. Physical exercise-induced fatigue: The role of serotonergic and dopaminergaic systems. Braz. J. Med. Biol. Res. 2017, 50, e6432. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.J.; Qin, Z.; Wang, P.Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [PubMed]
- Fenwick, A.J.; Lin, D.C.; Tanner, B.C.W. Myosin cross-bridge kinetics slow at longer muscle lengths during isometric contractions in intact soleus from mice. Proc. Biol. Sci. 2021, 288, 20202895. [Google Scholar] [CrossRef]
- McKeegan, K.; Mason, S.A.; Trewin, A.J.; Keske, M.A.; Wadley, G.D.; Della Gatta, P.A.; Nikolaidis, M.G.; Parker, L. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biol. 2021, 44, 102005. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, Y.J.; Kim, Y.J.; Baek, J.H.; Kim, H.S.; Kim, I.Y.; Seong, J.K. Microbiota influences host exercise capacity via modulation of skeletal muscle glucose metabolism in mice. Exp. Mol. Med. 2023, 55, 1820–1830. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Song, Z.; Liu, Y.; Zhang, X. Dietary Strategies to Improve Exercise Performance by Modulating the Gut Microbiota. Foods 2024, 13, 1680. [Google Scholar] [CrossRef]
- Pant, K.; Venugopal, S.K.; Lorenzo Pisarello, M.J.; Gradilone, S.A. The Role of Gut Microbiome-Derived Short-Chain Fatty Acid Butyrate in Hepatobiliary Diseases. Am. J. Pathol. 2023, 193, 1455–1467. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- Zhao, X.; Petursson, F.; Viollet, B.; Lotz, M.; Terkeltaub, R.; Liu-Bryan, R. Peroxisome proliferator-activated receptor γ coactivator 1α and FoxO3A mediate chondroprotection by AMP-activated protein kinase. Arthritis Rheumatol. 2014, 66, 3073–3082. [Google Scholar] [CrossRef]
- Tian, L.; Cao, W.; Yue, R.; Yuan, Y.; Guo, X.; Qin, D.; Xing, J.; Wang, X. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J. Pharmacol. Sci. 2019, 139, 352–360. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, W.; Ma, C.; Zhang, Z.; Zhang, W.; Zhang, J. An emerging strategy: Probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024, 16, 2341717. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Chen, Y.M.; Wei, L.; Chiu, Y.S.; Hsu, Y.J.; Tsai, T.Y.; Wang, M.F.; Huang, C.C. Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients 2016, 8, 205. [Google Scholar] [CrossRef]
- Huang, W.C.; Lee, M.C.; Lee, C.C.; Ng, K.S.; Hsu, Y.J.; Tsai, T.Y.; Young, S.L.; Lin, J.S.; Huang, C.C. Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans. Nutrients 2019, 11, 2836. [Google Scholar] [CrossRef] [PubMed]
- Latif, A.; Shehzad, A.; Niazi, S.; Zahid, A.; Ashraf, W.; Iqbal, M.W.; Rehman, A.; Riaz, T.; Aadil, R.M.; Khan, I.M.; et al. Probiotics: Mechanism of action, health benefits and their application in food industries. Front. Microbiol. 2023, 14, 1216674. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Factories 2020, 19, 168. [Google Scholar] [CrossRef]
- Piqué, N.; Berlanga, M.; Miñana-Galbis, D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int. J. Mol. Sci. 2019, 20, 2534. [Google Scholar] [CrossRef]
- Ji, H.F.; Li, M.; Han, X.; Fan, Y.T.; Yang, J.J.; Long, Y.; Yu, J.; Ji, H.Y. Lactobacilli-Mediated Regulation of the Microbial-Immune Axis: A Review of Key Mechanisms, Influencing Factors, and Application Prospects. Foods 2025, 14, 1763. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Liao, Y.C.; Lee, M.C.; Cheng, Y.C.; Chiou, S.Y.; Lin, J.S.; Huang, C.C.; Watanabe, K. Different Impacts of Heat-Killed and Viable Lactiplantibacillus plantarum TWK10 on Exercise Performance, Fatigue, Body Composition, and Gut Microbiota in Humans. Microorganisms 2022, 10, 2181. [Google Scholar] [CrossRef]
- M’hamed, A.C.; Ncib, K.; Merghni, A.; Migaou, M.; Lazreg, H.; Snoussi, M.; Noumi, E.; Mansour, M.B.; Maaroufi, R.M. Characterization of Probiotic Properties of Lacticaseibacillus paracasei L2 Isolated from a Traditional Fermented Food “Lben”. Life 2023, 13, 21. [Google Scholar] [CrossRef]
- Bengoa, A.A.; Dardis, C.; Garrote, G.L.; Abraham, A.G. Health-Promoting Properties of Lacticaseibacillus paracasei: A Focus on Kefir Isolates and Exopolysaccharide-Producing Strains. Foods 2021, 10, 2239. [Google Scholar] [CrossRef]
- Kim, W.K.; Jang, Y.J.; Seo, B.; Han, D.H.; Park, S.; Ko, G. Administration of Lactobacillus paracasei strains improves immunomodulation and changes the composition of gut microbiota leading to improvement of colitis in mice. J. Funct. Foods 2019, 52, 565–575. [Google Scholar] [CrossRef]
- Lee, M.C.; Ho, C.S.; Hsu, Y.J.; Huang, C.C. Live and Heat-Killed Probiotic Lactobacillus paracasei PS23 Accelerated the Improvement and Recovery of Strength and Damage Biomarkers after Exercise-Induced Muscle Damage. Nutrients 2022, 14, 4563. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Lee, C.C.; Lee, M.C.; Hsu, H.Y.; Lin, J.S.; Huang, C.C.; Watanabe, K. Effects of heat-killed Lactiplantibacillus plantarum TWK10 on exercise performance, fatigue, and muscle growth in healthy male adults. Physiol. Rep. 2023, 11, e15835. [Google Scholar] [CrossRef]
- Yeh, W.L.; Hsu, Y.J.; Ho, C.S.; Ho, H.H.; Kuo, Y.W.; Tsai, S.Y.; Huang, C.C.; Lee, M.C. Lactobacillus plantarum PL-02 Supplementation Combined with Resistance Training Improved Muscle Mass, Force, and Exercise Performance in Mice. Front. Nutr. 2022, 9, 896503. [Google Scholar] [CrossRef]
- Lee, M.C.; Hsu, Y.J.; Chuang, H.L.; Hsieh, P.S.; Ho, H.H.; Chen, W.L.; Chiu, Y.S.; Huang, C.C. In Vivo Ergogenic Properties of the Bifidobacterium longum OLP-01 Isolated from a Weightlifting Gold Medalist. Nutrients 2019, 11, 2003. [Google Scholar] [CrossRef]
- Lee, M.C.; Hsu, Y.J.; Lin, Y.Q.; Chen, L.N.; Chen, M.T.; Huang, C.C. Effects of Perch Essence Supplementation on Improving Exercise Performance and Anti-Fatigue in Mice. Int. J. Environ. Res. Public Health 2022, 19, 1155. [Google Scholar] [CrossRef]
- Lee, M.C.; Hsu, Y.J.; Yang, L.H.; Huang, C.C.; Ho, C.S. Ergogenic Effects of Green Tea Combined with Isolated Soy Protein on Increasing Muscle Mass and Exercise Performance in Resistance-Trained Mice. Nutrients 2021, 13, 4547. [Google Scholar] [CrossRef]
- Cuevas-Sierra, A.; Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv. Nutr. 2019, 10 (Suppl. 1), S17–S30. [Google Scholar] [CrossRef]
- Liu, L.; Li, Q.; Yang, Y.; Guo, A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front. Vet. Sci. 2021, 8, 736739. [Google Scholar] [CrossRef] [PubMed]
- Ramos Meyers, G.; Samouda, H.; Bohn, T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022, 14, 5361. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Kim, M.T.; Han, J.H. GPR41 and GPR43: From development to metabolic regulation. Biomed. Pharmacother. 2024, 175, 116735. [Google Scholar] [CrossRef]
- Galmozzi, A.; Mitro, N.; Ferrari, A.; Gers, E.; Gilardi, F.; Godio, C.; Cermenati, G.; Gualerzi, A.; Donetti, E.; Rotili, D.; et al. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 2013, 62, 732–742. [Google Scholar] [CrossRef]
- Liu, P.; Jin, M.; Hu, P.; Sun, W.; Tang, Y.; Wu, J.; Zhang, D.; Yang, L.; He, H.; Xu, X. Gut microbiota and bile acids: Metabolic interactions and impacts on diabetic kidney disease. Curr. Res. Microb. Sci. 2024, 7, 100315. [Google Scholar] [CrossRef]
- Berbudi, A.; Khairani, S.; Tjahjadi, A.I. Interplay Between Insulin Resistance and Immune Dysregulation in Type 2 Diabetes Mellitus: Implications for Therapeutic Interventions. Immuno Targets Ther. 2025, 14, 359–382. [Google Scholar] [CrossRef]
- Kim, Y.I.; Lee, E.S.; Song, E.J.; Shin, D.U.; Eom, J.E.; Shin, H.S.; Kim, J.E.; Oh, J.Y.; Nam, Y.D.; Lee, S.Y. Lacticaseibacillus paracasei AO356 ameliorates obesity by regulating adipogenesis and thermogenesis in C57BL/6J male mice. J. Funct. Foods 2023, 101, 105404. [Google Scholar] [CrossRef]
- Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA 2007, 104, 12017–12022. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.B.; Richter, E.A.; Wojtaszewski, J.F. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J. Physiol. 2006, 574 Pt 1, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Bo, H.; Zhang, Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radic. Biol. Med. 2024, 213, 409–425. [Google Scholar] [CrossRef]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Emil Andersen, O.; Thorsteinsson, H.; Kristiansen, T.H.; Bilde, S.; Mikkelsen, M.S.; Nielsen, J.; Mohr, M.; Overgaard, K. Fibre type- and localisation-specific muscle glycogen utilisation during repeated high-intensity intermittent exercise. J. Physiol. 2022, 600, 4713–4730. [Google Scholar] [CrossRef]
- Murray, B.; Rosenbloom, C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 2018, 76, 243–259. [Google Scholar] [CrossRef]
- Ørtenblad, N.; Westerblad, H.; Nielsen, J. Muscle glycogen stores and fatigue. J. Physiol. 2013, 591, 4405–4413. [Google Scholar] [CrossRef]
- Di Dio, M.; Calella, P.; Pelullo, C.P.; Liguori, F.; Di Onofrio, V.; Gallè, F.; Liguori, G. Effects of Probiotic Supplementation on Sports Performance and Performance-Related Features in Athletes: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 2226. [Google Scholar] [CrossRef]
- Del Toro-Barbosa, M.; Hurtado-Romero, A.; Garcia-Amezquita, L.E.; García-Cayuela, T. Psychobiotics: Mechanisms of Action, Evaluation Methods and Effectiveness in Applications with Food Products. Nutrients 2020, 12, 3896. [Google Scholar] [CrossRef]
- Seton, K.A.; Espejo-Oltra, J.A.; Giménez-Orenga, K.; Haagmans, R.; Ramadan, D.J.; Mehlsen, J., on behalf of the European ME Research Group for Early Career Researchers (Young EMERG). Advancing Research and Treatment: An Overview of Clinical Trials in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Future Perspectives. J. Clin. Med. 2024, 13, 325. [Google Scholar] [CrossRef]
- Halson, S.L.; Bridge, M.W.; Meeusen, R.; Busschaert, B.; Gleeson, M.; Jones, D.A.; Jeukendrup, A.E. Time course of performance changes and fatigue markers during intensified training in trained cyclists. J. Appl. Physiol. (1985) 2002, 93, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, R.; Varacallo, M. Biochemistry, Glycolysis; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Mutch, B.J.; Banister, E.W. Ammonia metabolism in exercise and fatigue: A review. Med. Sci. Sports Exerc. 1983, 15, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, R.; Dehkhodaie, E.; Bouzari, B.; Rahimi, M.; Gholestani, A.; Hosseini-Fard, S.R.; Keyvani, H.; Ali Teimoori Karampoor, S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed. Pharmacother. 2022, 145, 112352. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, Y.; Makino, K.; Iwabuchi, A.; Watanuki, M.; Yamashita, T. Selection of ammonia-assimilating bifidobacteria and their effect on ammonia levels in rat caecal contents and blood. Microb. Ecol. Health Dis. 1993, 6, 85–94. [Google Scholar]
- Zhang, Y.; Zhu, X.; Yu, X.; Novák, P.; Gui, Q.; Yin, K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front. Nutr. 2023, 10, 1120168. [Google Scholar] [CrossRef]
- Lee, M.C.; Hsu, Y.J.; Ho, H.H.; Hsieh, S.H.; Kuo, Y.W.; Sung, H.C.; Huang, C.C. Lactobacillus salivarius Subspecies salicinius SA-03 is a New Probiotic Capable of Enhancing Exercise Performance and Decreasing Fatigue. Microorganisms 2020, 8, 545. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Li, S.; Jiang, W.; Wang, J.; Xiao, J.; Chen, T.; Ma, J.; Khan, M.Z.; Wang, W.; et al. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab. 2024, 36, 725–744. [Google Scholar] [CrossRef]
- He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; Bai, L.; Hao, X.; Li, X.; et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21, 6356. [Google Scholar] [CrossRef]
Characteristics | Vehicle | NB23–HT | NB23–1× | NB23–3× |
---|---|---|---|---|
Initial BW (g) | 34.6 ± 1.5 a | 34.7 ± 0.5 a | 34.7 ± 1.3 a | 34.7 ± 0.7 a |
1st wk BW | 35.5 ± 1.2 a | 35.3 ± 0.8 a | 34.6 ± 1.2 a | 34.8 ± 1.1 a |
2nd wk BW | 36.5 ± 1.6 b | 35.9 ± 1.2 b | 35.4 ± 1.7 ab | 34.5 ± 1.0 a |
3rd wk BW | 38.1 ± 1.4 c | 36.4 ± 1.2 b | 36.1 ± 1.8 ab | 34.9 ± 1.0 a |
4th wk BW | 38.8 ± 1.2 b | 37.3 ± 1.1 a | 36.9 ± 1.9 a | 36.2 ± 0.8 a |
5th wk BW | 39.4 ± 1.2 b | 37.8 ± 1.4 a | 37.1 ± 2.2 a | 36.7 ± 1.0 a |
6th wk BW | 40.4 ± 1.3 b | 38.8 ± 1.2 a | 37.7 ± 2.2 a | 37.5 ± 1.0 a |
7th wk BW | 39.6 ± 1.6 b | 38.8 ± 1.1 a | 37.9 ± 2.1 a | 37.9 ± 0.9 a |
Final BW (g) | 40.1 ± 1.6 b | 39.2 ± 1.1 b | 37.7 ± 2.2 a | 38.3 ± 1.1 ab |
Water intake (mL/mouse/day) | 7.9 ± 0.6 a | 7.9 ± 0.8 a | 7.8 ± 0.7 a | 7.9 ± 0.9 a |
Diet intake (g/mouse/day) | 6.7 ± 0.8 a | 6.8 ± 0.8 a | 6.8 ± 0.4 a | 6.8 ± 0.3 a |
Time Point | Vehicle | NB23-HT | NB23-1× | NB23-3× |
---|---|---|---|---|
Lactate (mmol/L) | ||||
Before swimming (A) | 3.24 ± 0.54 a | 3.23 ± 0.28 a | 3.27 ± 0.37 a | 3.26 ± 0.28 a |
After swimming (B) | 7.37 ± 0.58 c | 5.27 ± 0.39 b | 5.03 ± 0.56 a | 4.77 ± 0.46 a |
After a 20 min rest (C) | 6.46 ± 0.57 c | 4.24 ± 0.47 b | 4.00 ± 0.59 a | 3.73 ± 0.34 a |
Rate of lactate production and clearance | ||||
Production rate = B/A | 2.31 ± 0.34 c | 1.64 ± 0.17 b | 1.56 ± 0.24 a | 1.47 ± 0.13 a |
Clearance rate = (B − C)/B | 0.12 ± 0.06 a | 0.19 ± 0.06 a | 0.21 ± 0.06 a | 0.22 ± 0.06 b |
Parameter | Vehicle | NB23-HT | NB23-1× | NB23-3× |
---|---|---|---|---|
AST (U/L) | 93 ± 12 a | 95 ± 18 a | 95 ± 14 a | 94 ± 9 a |
ALT (U/L) | 51 ± 4 a | 52 ± 6 a | 51 ± 9 a | 51 ± 12 a |
GLU (mg/dL) | 204 ± 17 a | 205 ± 14 a | 204 ± 17 a | 205 ± 23 a |
CREA (mg/dL) | 0.40 ± 0.02 a | 0.39 ± 0.02 a | 0.39 ± 0.02 a | 0.39 ± 0.03 a |
BUN (mg/dL) | 19.2 ± 1.4 a | 19.3 ± 1.7 a | 19.2 ± 1.4 a | 19.2 ± 1.9 a |
UA (mg/dL) | 1.8 ± 0.7 a | 1.9 ± 0.6 a | 1.9 ± 0.6 a | 1.9 ± 0.5 a |
TC (mg/dL) | 154 ± 17 a | 153 ± 15 a | 154 ± 16 a | 155 ± 16 a |
TG (mg/dL) | 157 ± 17 a | 158 ± 14 a | 158 ± 12 a | 157 ± 22 a |
ALB (g/dL) | 3.29 ± 0.15 a | 3.28 ± 0.12 a | 3.27 ± 0.22 a | 3.29 ± 0.15 a |
TP (g/dL) | 5.6 ± 0.2 a | 5.6 ± 0.1 a | 5.6 ± 0.3 a | 5.6 ± 0.1 a |
Characteristic | Vehicle | NB23-HT | NB23-1× | NB23-3× |
---|---|---|---|---|
Liver (g) | 1.87 ± 0.12 a | 1.83 ± 0.15 a | 1.82 ± 0.11 a | 1.84 ± 0.13 a |
Muscle (g) | 0.40 ± 0.02 a | 0.40 ± 0.03 ab | 0.40 ± 0.03 ab | 0.39 ± 0.02 b |
Kidney (g) | 0.66 ± 0.08 a | 0.65 ± 0.06 a | 0.63 ± 0.05 a | 0.64 ± 0.04 a |
Heart (g) | 0.19 ± 0.03 a | 0.19 ± 0.02 a | 0.19 ± 0.02 a | 0.19 ± 0.01 a |
Lung (g) | 0.29 ± 0.02 a | 0.28 ± 0.02 a | 0.28 ± 0.03 a | 0.29 ± 0.03 a |
EFP (g) | 0.34 ± 0.09 b | 0.25 ± 0.06 a | 0.26 ± 0.06 a | 0.23 ± 0.06 a |
BAT (g) | 0.09 ± 0.02 a | 0.09 ± 0.02 a | 0.09 ± 0.02 a | 0.09 ± 0.02 a |
Cecum (g) | 0.98 ± 0.09 a | 0.97 ± 0.14 a | 0.95 ± 0.13 a | 0.96 ± 0.07 a |
Relative liver weight (%) | 4.68 ± 0.45 a | 4.68 ± 0.45 a | 4.83 ± 0.26 a | 4.82 ± 0.38 a |
Relative muscle weight (%) | 1.00 ± 0.07 a | 1.01 ± 0.06 b | 1.06 ± 0.07 b | 1.02 ± 0.08 c |
Relative kidney weight (%) | 1.64 ± 0.15 a | 1.65 ± 0.15 a | 1.67 ± 0.08 a | 1.67 ± 0.12 a |
Relative heart weight (%) | 0.48 ± 0.07 a | 0.49 ± 0.05 a | 0.51 ± 0.04 a | 0.50 ± 0.03 a |
Relative lung weight (%) | 0.72 ± 0.04 a | 0.72 ± 0.07 a | 0.76 ± 0.09 a | 0.76 ± 0.07 a |
Relative EFP weight (%) | 0.84 ± 0.23 b | 0.65 ± 0.13 a | 0.68 ± 0.17 ab | 0.60 ± 0.16 a |
Relative BAT weight (%) | 0.22 ± 0.04 a | 0.24 ± 0.04 a | 0.24 ± 0.06 a | 0.23 ± 0.04 a |
Relative cecum weight (%) | 2.45 ± 0.28 a | 2.48 ± 0.37 a | 2.52 ± 0.29 a | 2.50 ± 0.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-C.; Cheng, T.-Y.; Lin, P.-J.; Lin, T.-C.; Chou, C.-H.; Chen, C.-Y.; Huang, C.-C. Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice. Nutrients 2025, 17, 2568. https://doi.org/10.3390/nu17152568
Lee M-C, Cheng T-Y, Lin P-J, Lin T-C, Chou C-H, Chen C-Y, Huang C-C. Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice. Nutrients. 2025; 17(15):2568. https://doi.org/10.3390/nu17152568
Chicago/Turabian StyleLee, Mon-Chien, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen, and Chi-Chang Huang. 2025. "Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice" Nutrients 17, no. 15: 2568. https://doi.org/10.3390/nu17152568
APA StyleLee, M.-C., Cheng, T.-Y., Lin, P.-J., Lin, T.-C., Chou, C.-H., Chen, C.-Y., & Huang, C.-C. (2025). Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice. Nutrients, 17(15), 2568. https://doi.org/10.3390/nu17152568