Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = water flowing fractured zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4582 KB  
Article
Distribution Characteristics of Remaining Oil in Fractured–Vuggy Carbonate Reservoirs and EOR Strategies: A Case Study from the Shunbei No. 1 Strike–Slip Fault Zone, Tarim Basin
by Jilong Song, Shan Jiang, Wanjie Cai, Lingyan Luo, Peng Chen and Ziyi Chen
Energies 2026, 19(3), 593; https://doi.org/10.3390/en19030593 - 23 Jan 2026
Viewed by 191
Abstract
A comprehensive study on the distribution characteristics and exploitation strategies of remaining oil was carried out in the Ordovician ultra-deep fault-controlled fractured–vuggy carbonate reservoir within the Shunbei No. 1 strike–slip fault zone. This research addresses challenges such as severe watered-out and gas channeling [...] Read more.
A comprehensive study on the distribution characteristics and exploitation strategies of remaining oil was carried out in the Ordovician ultra-deep fault-controlled fractured–vuggy carbonate reservoir within the Shunbei No. 1 strike–slip fault zone. This research addresses challenges such as severe watered-out and gas channeling encountered during multi-stage development, marking a shift toward a development phase focused on residual oil recovery. By integrating seismic attributes, drilling, logging, and production performance data—and building upon previous methodologies of “hierarchical constraint and genetic modeling”—a three-dimensional geological model was constructed with a five-tiered architecture: strike–slip fault affected zone, fault-controlled unit, cave-like structure, cluster fillings, and fracture zone. Numerical simulations were subsequently performed based on this model. The results demonstrate that the distribution of remaining oil is dominantly controlled by the coupling between key geological factors—including fault kinematics, reservoir architecture formed by karst evolution, and fracture–vug connectivity—and the injection–production well pattern. Three major categories with five sub-types of residual oil distribution patterns were identified: (1) local low permeability, weak hydrodynamics; (2) shielded connectivity pathways; and (3) Well Pattern-Dependent. Accordingly, two types of potential-tapping measures are proposed: improve well control through optimized well placement and sidetrack drilling and reservoir flow field modification via adjusted injection–production parameters and sealing of high-permeability channels. Techniques such as gas (nitrogen) huff-and-puff, gravity-assisted segregation, and injection–production pattern restructuring are recommended to improve reserve control and sweep efficiency, thereby increasing ultimate recovery. This study provides valuable guidance for the efficient development of similar ultra-deep fractured–vuggy carbonate reservoirs. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

31 pages, 38361 KB  
Article
Multi-Factor Coupled Numerical Simulation and Sensitivity Analysis of Hysteresis Water Inundation Induced by the Activation of Small Faults in the Bottom Plate Under the Influence of Mining
by Zhenhua Li, Hao Ren, Wenqiang Wang, Feng Du, Yufeng Huang, Zhengzheng Cao and Longjing Wang
Appl. Sci. 2026, 16(2), 1051; https://doi.org/10.3390/app16021051 - 20 Jan 2026
Viewed by 90
Abstract
A major danger that significantly raises the possibility of deep coal mining accidents is the delayed water influx from the bottom plate, which is brought on by the activation of tiny faults brought on by mining at the working face of the restricted [...] Read more.
A major danger that significantly raises the possibility of deep coal mining accidents is the delayed water influx from the bottom plate, which is brought on by the activation of tiny faults brought on by mining at the working face of the restricted aquifer. This study develops 17 numerical models utilizing FLAC3D simulation software 6.00.69 to clarify the activation and water inburst mechanisms of minor faults influenced by various parameters, incorporating fluid–solid coupling effects in coal seam mining. The developmental patterns of the stress field, displacement field, plastic zone, and seepage field of the floor rock layer were systematically examined in relation to four primary factors: aquifer water pressure, minor fault angle, fracture zone width, and the distance from the coal seam to the aquifer. The results of the study show that the upper and lower plates of the minor fault experience discontinuous deformation as a result of mining operations. The continuity of the rock layers below is broken by the higher plate’s deformation, which is significantly larger than that of the lower plate. The activation and water flow into small faults are influenced by many elements in diverse ways. Increasing the distance between the coal seam and the aquifer will make the water conduction pathway more resilient. This will reduce the amount of water that flows in. On the other hand, higher aquifer water pressure, a larger fracture zone, and a fault that is tilted will all help smaller faults become active and create channels for water to flow into. The gray relational analysis method was used to find out how sensitive something is. The sensitivities of each factor to water influence were ranked from high to low as follows: distance between the aquifer and coal seam (correlation coefficient 0.766), aquifer water pressure (0.756), width of the fracture zone (0.710), and angle of the minor fault (0.673). This study statistically elucidates the inherent mechanism of delayed water instillation in minor faults influenced by many circumstances, offering a theoretical foundation for the accurate prediction and targeted mitigation of mine water hazards. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

22 pages, 6012 KB  
Article
Fracture Expansion and Closure in Overburden: Mechanisms Controlling Dynamic Water Inflow to Underground Reservoirs in Shendong Coalfield
by Shirong Wei, Zhengjun Zhou, Duo Xu and Baoyang Wu
Processes 2026, 14(2), 355; https://doi.org/10.3390/pr14020355 - 19 Jan 2026
Viewed by 238
Abstract
The construction of underground reservoirs in coal goafs is an innovative technology to alleviate the coal–water conflict in arid mining areas of northwest China. However, its widespread application is constrained by the challenge of accurately predicting water inflow, which fluctuates significantly due to [...] Read more.
The construction of underground reservoirs in coal goafs is an innovative technology to alleviate the coal–water conflict in arid mining areas of northwest China. However, its widespread application is constrained by the challenge of accurately predicting water inflow, which fluctuates significantly due to the dynamic “expansion–closure” behavior of mining-induced fractures. This study focuses on the Shendong mining area, where repeated multi-seam mining occurs, and employs a coupled Finite Discrete Element Method (FDEM) and Computational Fluid Dynamics (CFD) numerical model, combined with in situ tests such as drilling fluid loss and groundwater level monitoring, to quantify the evolution of overburden fractures and their impact on reservoir water inflow during mining, 8 months post-mining, and after 7 years. The results demonstrate that the height of the water-conducting fracture zone decreased from 152 m during mining to 130 m after 7 years, while fracture openings in the key aquifer and aquitard were reduced by over 50%. This closure process caused a dramatic decline in water inflow from 78.3 m3/h to 2.6 m3/h—a reduction of 96.7%. The CFD-FDEM simulations showed a deviation of only 10.6% from field measurements, confirming fracture closure as the dominant mechanism driving inflow attenuation. This study reveals how fracture closure shifts water flow patterns from vertical to lateral recharge, providing a theoretical basis for optimizing the design and sustainable operation of underground reservoirs. Full article
Show Figures

Figure 1

26 pages, 11478 KB  
Article
Controls on Microscopic Distribution and Flow Characteristics of Remaining Oil in Tight Sandstone Reservoirs: Chang 7 Reservoirs, Yanchang Formation, Ordos Basin
by Yawen He, Tao Yi, Linjun Yu, Yulongzhuo Chen, Jing Yang, Buhuan Zhang, Pengbo He, Zhiyu Wu and Wei Dang
Minerals 2026, 16(1), 72; https://doi.org/10.3390/min16010072 - 13 Jan 2026
Viewed by 155
Abstract
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory [...] Read more.
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory techniques—including nuclear magnetic resonance, mercury intrusion porosimetry, oil–water relative permeability, spontaneous imbibition experiments, scanning electron microscopy, and thin section analysis—this study systematically characterizes representative tight sandstone samples and examines the microscopic distribution of remaining oil, flow behavior, and their controlling factors. Results indicate that residual oil is mainly stored in nanoscale micropores, whereas movable fluids are predominantly concentrated in medium to large pores. The bimodal or trimodal T2 spectra reflect the presence of multiscale pore–fracture systems. Spontaneous imbibition and relative permeability experiments reveal low displacement efficiency (average 41.07%), with flow behavior controlled by capillary forces and imbibition rates exhibiting a three-stage pattern. The primary factors influencing movable fluid distribution include mineral composition (quartz, feldspar, lithic fragments), pore–throat structure (pore size, sorting, displacement pressure), physical properties (porosity, permeability), and heterogeneity (fractal dimension). High quartz and illite contents enhance effective flow pathways, whereas lithic fragments and swelling clay minerals significantly impede fluid migration. Overall, this study clarifies the coupled “lithology–pore–flow” control mechanism, providing a theoretical foundation and practical guidance for the fine characterization and efficient development of tight oil reservoirs. The findings can directly guide the optimization of hydraulic fracturing and enhanced oil recovery strategies by identifying high-mobility zones and key mineralogical constraints, enabling targeted stimulation and improved recovery in the Chang 7 and analogous tight reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

21 pages, 7900 KB  
Article
Mechanisms and Multi-Field-Coupled Responses of CO2-Enhanced Coalbed Methane Recovery in the Yanchuannan and Jinzhong Blocks Toward Improved Sustainability and Low-Carbon Reservoir Management
by Hequn Gao, Yuchen Tian, Helong Zhang, Yanzhi Liu, Yinan Cui, Xin Li, Yue Gong, Chao Li and Chuncan He
Sustainability 2026, 18(2), 765; https://doi.org/10.3390/su18020765 - 12 Jan 2026
Viewed by 213
Abstract
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite [...] Read more.
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite and kaolinite. These synergistic processes remove pore fillings, enlarge flow channels, and generate new dissolution pores, thereby increasing the total pore volume while making the pore–fracture network more heterogeneous and structurally complex. Such reservoir restructuring provides the intrinsic basis for CO2 injectivity and subsequent CH4 displacement. Both adsorption capacity and volumetric strain exhibit Langmuir-type growth characteristics, and permeability evolution follows a three-stage pattern—rapid decline, slow attenuation, and gradual rebound. A negative exponential relationship between permeability and volumetric strain reveals the competing roles of adsorption swelling, mineral dissolution, and stress redistribution. Swelling dominates early permeability reduction at low pressures, whereas fracture reactivation and dissolution progressively alleviate flow blockage at higher pressures, enabling partial permeability recovery. Injection pressure is identified as the key parameter governing CO2 migration, permeability evolution, sweep efficiency, and the CO2-ECBM enhancement effect. Higher pressures accelerate CO2 adsorption, diffusion, and sweep expansion, strengthening competitive adsorption and improving methane recovery and CO2 storage. However, excessively high pressures enlarge the permeability-reduction zone and may induce formation instability, while insufficient pressures restrict the effective sweep volume. An optimal injection-pressure window is therefore essential to balance injectivity, sweep performance, and long-term storage integrity. Importantly, the enhanced methane production and permanent CO2 storage achieved in this study contribute directly to greenhouse gas reduction and improved sustainability of subsurface energy systems. The multi-field coupling insights also support the development of low-carbon, environmentally responsible CO2-ECBM strategies aligned with global sustainable energy and climate-mitigation goals. The integrated experimental–numerical framework provides quantitative insight into the coupled adsorption–deformation–flow–geochemistry processes in deep coal seams. These findings form a scientific basis for designing safe and efficient CO2-ECBM injection strategies and support future demonstration projects in heterogeneous deep coal reservoirs. Full article
Show Figures

Figure 1

40 pages, 318496 KB  
Article
Hydrogeochemical Characteristics and Genetic Mechanism of the Shiqian Hot Spring Group in Southwestern China: A Study Based on Water–Rock Interaction
by Jianlong Zhou, Jianyou Chen, Yupei Hao, Zhengshan Chen, Mingzhong Zhou, Chao Li, Pengchi Yang and Yu Ao
Minerals 2026, 16(1), 61; https://doi.org/10.3390/min16010061 - 7 Jan 2026
Viewed by 274
Abstract
Shiqian County, located within a key geothermal fluids belt in Guizhou Province, China, has abundant underground hot water resources. Therefore, elucidating the hydrogeochemical characteristics and formation mechanisms of thermal mineral water in this area is essential for evaluating and sustainably utilizing regional geothermal [...] Read more.
Shiqian County, located within a key geothermal fluids belt in Guizhou Province, China, has abundant underground hot water resources. Therefore, elucidating the hydrogeochemical characteristics and formation mechanisms of thermal mineral water in this area is essential for evaluating and sustainably utilizing regional geothermal fluids. This study focuses on the Shiqian Hot Spring Group and employs integrated analytical techniques, including rock geochemistry, hydrogeochemistry, isotope hydrology, digital elevation model (DEM) data analysis, remote sensing interpretation, geological surveys, mineral saturation index calculations, and PHREEQC-based inverse hydrogeochemical modeling, to elucidate its hydrogeochemical characteristics and formation mechanisms. The results show that strontium concentrations range from 0.06 to 7.17 mg/L (average 1.65 mg/L) and metasilicic acid concentrations range from 19.46 to 65.51 mg/L (average 33.64 mg/L). Most samples meet the national standards for natural mineral water and are classified as Sr-metasilicic acid type. Isotope analysis indicates that the geothermal water is recharged by meteoric precipitation at elevations between 911 m and 1833 m, mainly from carbonate outcrops and fracture zones on the southwestern slope of Fanjingshan, and discharges south of Shiqian County. The dominant hydrochemical types are HCO3·SO4-Ca·Mg and HCO3-Ca·Mg. Strontium is primarily derived from carbonate rocks and celestite-bearing evaporites, whereas metasilicic acid mainly originates from quartz dissolution along the upstream groundwater flow path. PHREEQC-based inverse modeling indicates that, during localized thermal mineral water runoff in the middle-lower reaches or discharge areas, calcite dissolves while dolomite and quartz tend to precipitate, reflecting calcite dissolution-dominated water–rock interactions and near-saturation conditions for some minerals at late runoff stages. Full article
Show Figures

Figure 1

20 pages, 8380 KB  
Article
Numerical Study on the Permeability Evolution Within Fault Damage Zones
by Yulong Gu, Jiyuan Zhao, Debin Kong, Guoqing Ji, Lihong Shi, Hongtao Li and Zhenguo Mao
Water 2026, 18(1), 134; https://doi.org/10.3390/w18010134 - 5 Jan 2026
Viewed by 367
Abstract
This study investigates the permeability evolution in floor fault damage zones under stress–seepage–damage coupling, with a focus on water inrush risks caused by confined water upward conduction during deep mining. A stochastic fracture geometry model of the fault damage zone was developed using [...] Read more.
This study investigates the permeability evolution in floor fault damage zones under stress–seepage–damage coupling, with a focus on water inrush risks caused by confined water upward conduction during deep mining. A stochastic fracture geometry model of the fault damage zone was developed using the discrete fracture network (DFN) model and the Monte Carlo method. Based on geological data from a mining area in Shandong, a multiphysics-coupled numerical model under mining-induced conditions was established with COMSOL Multiphysics. The simulations visually reveal the dynamic evolution of damage propagation patterns in the floor strata during working face advancement. Results indicate that the damage zone stabilizes after the working face advances to 80 m, with its morphology exhibiting strong spatial correlation to regions of high seepage velocity. Moreover, increasing confined water pressure plays a critical role in driving flow field evolution. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

27 pages, 6323 KB  
Article
Multivariate Analysis and Hydrogeochemical Evolution of Groundwater in a Geologically Controlled Aquifer System: A Case Study in North Central Province, Sri Lanka
by Uthpala Hansani, Sapumal Asiri Witharana, Prasanna Lakshitha Dharmapriya, Pushpakanthi Wijekoon, Zhiguo Wu, Xing Chen, Shameen Jinadasa and Rohan Weerasooriya
Water 2026, 18(1), 89; https://doi.org/10.3390/w18010089 - 30 Dec 2025
Viewed by 437
Abstract
This study investigates the coupled relationship between groundwater chemistry, lithology, and structural features in the dry zone of Netiyagama, Sri Lanka, within a fractured crystalline basement. Groundwater chemistry fundamentally reflects geological conditions determined by rock-water interactions, we hypothesized that the specific spatial patterns [...] Read more.
This study investigates the coupled relationship between groundwater chemistry, lithology, and structural features in the dry zone of Netiyagama, Sri Lanka, within a fractured crystalline basement. Groundwater chemistry fundamentally reflects geological conditions determined by rock-water interactions, we hypothesized that the specific spatial patterns of groundwater chemistry in heterogeneous fractured systems are distinctly controlled by integrated effects of lithological variations, structurally driven flow pathways, aquifer stratification, and geochemical processes, including cation exchange and mineral-specific weathering. To test this, we integrated hydrogeochemical signatures with mapped hydrogeological data and applied multi-stage multivariate analyses, including Piper diagrams, Hierarchical Cluster Analysis (HCA), and Principal Component Analysis (PCA), and various bivariate plots. Piper diagrams identified five distinct hydrochemical facies, but these did not correlate directly with specific rock types, highlighting the limitations of traditional methods in heterogeneous settings. Employing a multi-stage multivariate analysis, we identified seven clusters (C1–C7) that exhibited unique spatial distributions across different rock types and provided a more refined classification of groundwater chemistries. These clusters align with a three-unit aquifer framework (shallow weathered zone, intermittent fracture zone at ~80–100 m MSL, and deeper persistent fractures) controlled by a regional syncline and lineaments. Further analysis through bivariate diagrams revealed insights into dominant weathering processes, cation-exchange mechanisms, and groundwater residence times across the identified clusters. Recharge-type clusters (C1, C2, C5) reflect plagioclase-dominated weathering and short flow paths; transitional clusters (C3, C7) show mixed sources and increasing exchange; evolved clusters (C4, C6) exhibit higher mineralization and longer residence. Overall, the integrated workflow (facies plots + PCA/HCA + bivariate/process diagrams) constrains aquifer dynamics, recharge pathways, and flow-path evolution without additional drilling, and provides practical guidance for well siting and treatment. Full article
Show Figures

Figure 1

21 pages, 7958 KB  
Article
Multi-Scale Characterization and Modeling of Natural Fractures in Ultra-Deep Tight Sandstone Reservoirs: A Case Study of Bozi-1 Gas Reservoir in Kuqa Depression
by Li Dai, Xingnan Ren, Chengze Zhang, Yuanji Qu, Binghui Song, Xiaoyan Wang and Wei Tian
Processes 2025, 13(12), 4080; https://doi.org/10.3390/pr13124080 - 18 Dec 2025
Viewed by 351
Abstract
Natural fractures in tight sandstone reservoirs are the key factors controlling hydrocarbon flow and productivity. The Bozi-1 gas reservoir in the Kuqa Depression, as a typical ultra-deep tight sandstone gas reservoir, is characterized by low-porosity and ultra-low-permeability sandstones. This study addresses the limitations [...] Read more.
Natural fractures in tight sandstone reservoirs are the key factors controlling hydrocarbon flow and productivity. The Bozi-1 gas reservoir in the Kuqa Depression, as a typical ultra-deep tight sandstone gas reservoir, is characterized by low-porosity and ultra-low-permeability sandstones. This study addresses the limitations of previous fracture characterization, which primarily focused on macro-structural fractures while neglecting medium- and small-scale fractures. We integrate multi-source heterogeneous data, including core, well-logging imaging, seismic, and production observations, to systematically conduct multi-scale natural fracture characterization and modeling. First, the overall geology of the study area is briefly introduced, followed by a detailed description of the development characteristics of large-scale and medium–small-scale fractures, achieving a multi-scale representation of complex curved fracture networks. Finally, the three-dimensional multi-scale fracture model is validated using static indicators, including production characteristics, water invasion features, and well leakage data. The main findings are as follows: (1) Large-scale fractures in the Bozi-1 reservoir are mainly oriented near EW, NE–SW, and NW–SE, acting as the primary hydrocarbon migration pathways. Medium–small-scale fractures predominantly develop near SN, NE–SW, NW–SE, and near EW directions, exhibiting strong heterogeneity. (2) The complex curvature of large-scale fractures was captured by the “adaptive sampling + segmented splicing + equivalent distribution of fracture flow capacity” method, while the distribution of effective medium–small-scale fractures across the study area was represented using “single-well Stoneley wave inversion + seismic machine learning prediction”, achieving an 86% match with actual single-well measurements. (3) Model reliability was further verified through static comparisons, including production characteristics (unimpeded flow vs. effective fracture density, R2 = 0.92), water invasion features (fracture-dominated water invasion matching fracture distribution), and well leakage characteristics (matching rate of high fracture density zones: 84.2%). The results provide key technical support for the precise characterization of fracture systems and establish a model ready for dynamic simulation in ultra-deep tight sandstone gas reservoirs. Full article
Show Figures

Figure 1

16 pages, 6944 KB  
Article
Water Shutoff with Polymer Gels in a High-Temperature Gas Reservoir in China: A Success Story
by Tao Song, Hongjun Wu, Pingde Liu, Junyi Wu, Chunlei Wang, Hualing Zhang, Song Zhang, Mantian Li, Junlei Wang, Bin Ding, Weidong Liu, Jianyun Peng, Yingting Zhu and Falin Wei
Energies 2025, 18(24), 6554; https://doi.org/10.3390/en18246554 - 15 Dec 2025
Viewed by 415
Abstract
Gel treatments have been widely applied to control water production in oil and gas reservoirs. However, for water shutoff in dense gas reservoirs, most gel-based treatments focus on individual wells rather than the entire reservoir, exhibiting limited treatment depth, poor durability, and inadequate [...] Read more.
Gel treatments have been widely applied to control water production in oil and gas reservoirs. However, for water shutoff in dense gas reservoirs, most gel-based treatments focus on individual wells rather than the entire reservoir, exhibiting limited treatment depth, poor durability, and inadequate repeatability Notably, formation damage is a primary consideration in treatment design—most dense gas reservoirs have a permeability of less than 1 mD, making them highly susceptible to damage by formation water, let alone viscous polymer gels. Constrained by well completion methods, gelant can only be bullheaded into deep gas wells in most scenarios. Due to the poor gas/water selective plugging capability of conventional gels, the injected gelant tends to enter both gas and water zones, simultaneously plugging fluid flow in both. Although several techniques have been developed to re-establish gas flow paths post-treatment, treating gas-producing zones remains risky when no effective barrier exists between water and gas strata. Additionally, most water/gas selective plugging materials lack sufficient thermal stability under high-temperature and high-salinity (HTHS) gas reservoir conditions, and their injectivity and field feasibility still require further optimization. To address these challenges, treatment design should be optimized using non-selective gel materials, shifting the focus from directly preventing formation water invasion into individual wells to mitigating or slowing water invasion across the entire gas reservoir. This approach can be achieved by placing large-volume gels along major water flow paths via fully watered-out wells located at structurally lower positions. Furthermore, the drainage capacity of these wells can be preserved by displacing the gel slug to the far-wellbore region, thereby dissipating water-driven energy. This study evaluates the viability of placing gels in fully watered-out wells at structurally lower positions in an edge-water drive gas reservoir to slow water invasion into structurally higher production wells interconnected via numerous microfractures and high-permeability streaks. The gel system primarily comprises polyethyleneimine (PEI), a terpolymer, and nanofibers. Key properties of the gel system are as follows: Static gelation time: 6 h; Elastic modulus of fully crosslinked gel: 8.6 Pa; Thermal stability: Stable in formation water at 130 °C for over 3 months; Injectivity: Easily placed in a 219 mD rock matrix with an injection pressure gradient of 0.8 MPa/m at an injection rate of 1 mL/min; and Plugging performance: Excellent sealing effect on microfractures, with a water breakthrough pressure gradient of 2.25 MPa/m in 0.1 mm fractures. During field implementation, cyclic gelant injections combined with over-displacement techniques were employed to push the gel slug deep into the reservoir while maintaining well drainage capacity. The total volumes of injected fluid and gelant were 2865 m3 and 1400 m3, respectively. Production data and tracer test results from adjacent wells confirmed that the water invasion rate was successfully reduced from 59 m/d to 35 m/d. The pilot test results validate that placing gels in fully watered-out wells at structurally lower positions is a viable strategy to protect the production of gas wells at structurally higher positions. Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs—3rd Edition)
Show Figures

Figure 1

19 pages, 5898 KB  
Article
Effect of Pressure Decline Rate on Horizontal Well Performance in Transitional Shale Gas Reservoirs
by Yinhua Liu and Zhiming Chen
Processes 2025, 13(12), 3843; https://doi.org/10.3390/pr13123843 - 27 Nov 2025
Viewed by 612
Abstract
Technical advances in horizontal drilling and hydraulic fracturing have been key drivers enabling the economic production of shale gas. While substantial efforts have been devoted to optimizing well productivity, the effect of the early pressure decline rate on horizontal well performance remains poorly [...] Read more.
Technical advances in horizontal drilling and hydraulic fracturing have been key drivers enabling the economic production of shale gas. While substantial efforts have been devoted to optimizing well productivity, the effect of the early pressure decline rate on horizontal well performance remains poorly understood in transitional shale gas reservoirs, which exhibit significant stress sensitivity. To address this, a multiscale flow model that integrates the Embedded Discrete Fracture Model (EDFM) with a geomechanical stress-sensitivity model was developed. This model describes the flow through matrix pores, bedding fractures, and hydraulic fractures and was validated against a field case. The results indicate that rapid fluid drainage during the early production stage creates a larger pressure drainage area. Specifically, a depletion rate of 0.2 MPa/d yields a 10% production increase over a rate of 0.05 MPa/d. However, stress sensitivity reduces overall production by approximately 20% while the bedding fracture connectivity can improve it by about 5%. For well X1H, the current production status suggests that gas and water are likely trapped or ‘blocked’ within the fractures; flow conductivity enhancement is recommended. For adjacent wells with a stress sensitivity coefficient exceeding 0.8, flow-restricted zones may extend into the matrix pores; stress sensitivity should be avoided. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

21 pages, 5114 KB  
Article
Exploiting Chloride Conservative Tendencies as Contaminant Surrogates in Groundwater Transport Modeling in a Typical Hydrogeological Environment of Northern New Jersey
by Toritseju Oyen and Duke Ophori
Hydrology 2025, 12(11), 293; https://doi.org/10.3390/hydrology12110293 - 4 Nov 2025
Viewed by 906
Abstract
This study investigates the transport of chloride, a conservative tracer and surrogate for contaminants, in the fractured Brunswick aquifer of northern New Jersey using a dual-porosity MODFLOW-MT3DMS model. Focusing on the First Watchung Mountain region—a microcosm of northern New Jersey’s hydrogeological environment encompassing [...] Read more.
This study investigates the transport of chloride, a conservative tracer and surrogate for contaminants, in the fractured Brunswick aquifer of northern New Jersey using a dual-porosity MODFLOW-MT3DMS model. Focusing on the First Watchung Mountain region—a microcosm of northern New Jersey’s hydrogeological environment encompassing Montclair State University and adjoining communities, the numerical model simulates groundwater flow and solute transport in a hydrogeologically complex, urbanized setting. Results indicate that chloride migrates through the fractured aquifer via both local flow systems (e.g., Third River) and regional flow systems (Passaic River) within decades. Chloride concentrations exceeded the EPA’s 250 mg/L threshold much faster in local discharge streams (5 years in the Third River) compared to regional base-level rivers (79 years in the Passaic River), demonstrating rapid fracture transport versus delayed matrix diffusion. Over 450 years, chlorides traveled approximately 7000 m, demonstrating potential for widespread salinization and contamination. The study also highlights “salting-out” effects, where elevated salinity enhances contaminant retention and complicates remediation efforts in fractured aquifers. These findings emphasize the need for integrated water management strategies, targeted deicing salt reduction, stormwater management, and recharge-zone protection, to mitigate long-term risks in fractured aquifers. By quantifying dual-domain dynamics previously unaddressed in the Brunswick aquifer, this work provides a framework for contaminant transport modeling and management in similar urbanized fractured systems. Full article
Show Figures

Figure 1

49 pages, 15439 KB  
Article
Geomechanical Integrity of Offshore Oil Reservoir During EOR-CO2 Process: A Case Study
by Piotr Ruciński
Energies 2025, 18(21), 5751; https://doi.org/10.3390/en18215751 - 31 Oct 2025
Viewed by 647
Abstract
The aim of this work was to investigate the evolution of the mechanical integrity of the selected offshore oil reservoir during its life cycle. The geomechanical stability of the reservoir formation, including the caprock and base rock, was investigated from the exploitation phase [...] Read more.
The aim of this work was to investigate the evolution of the mechanical integrity of the selected offshore oil reservoir during its life cycle. The geomechanical stability of the reservoir formation, including the caprock and base rock, was investigated from the exploitation phase through waterflooding production to the final phase of enhanced oil recovery (EOR) with CO2 injection. In this study, non-isothermal flow simulations were performed during the process of cold water and CO2 injection into the oil reservoir as part of the secondary EOR method. The analysis of in situ stress was performed to improve quality of the geomechanical model. The continuous changes in elastic and thermal properties were taken into account. The stress–strain tensor was calculated to efficiently describe and analyze the geomechanical phenomena occurring in the reservoir as well as in the caprock and base rock. The integrity of the reservoir formation was then analyzed in detail with regard to potential reactivation or failure associated with plastic deformation. The consideration of poroelastic and thermoelastic effects made it possible to verify the development method of the selected oil reservoir with regard to water and CO2 injection. The numerical method that was applied to describe the evolution of an offshore oil reservoir in the context of evaluating the geomechanical state has demonstrated its usefulness and effectiveness. Thermally induced stresses have been found to play a dominant role over poroelastic stresses in securing the geomechanical stability of the reservoir and the caprock during oil recovery enhanced by water and CO2 injection. It was found that the injection of cold water or CO2 in a supercritical state mostly affected horizontal stress components, and the change in vertical stress was negligible. The transition from the initial strike-slip regime to the normal faulting due to formation cooling was closely related to the observed failure zones in hybrid and tensile modes. It has been estimated that changes in the geomechanical state of the oil reservoir can increase the formation permeability by sixteen times (fracture reactivation) to as much as thirty-five times (tensile failure). Despite these events, the integrity of the overburden was maintained in the simulations, demonstrating the safety of enhanced oil recovery with CO2 injection (EOR-CO2) in the selected offshore oil reservoir. Full article
(This article belongs to the Special Issue Advanced Solutions for Carbon Capture, Storage, and Utilization)
Show Figures

Figure 1

29 pages, 9861 KB  
Article
Multiscale Investigation of Interfacial Behaviors in Rubber Asphalt–Aggregate Systems Under Salt Erosion: Insights from Laboratory Tests and Molecular Dynamics Simulations
by Yun Li, Youxiang Si, Shuaiyu Wang, Peilong Li, Ke Zhang and Yuefeng Zhu
Materials 2025, 18(20), 4746; https://doi.org/10.3390/ma18204746 - 16 Oct 2025
Cited by 1 | Viewed by 655
Abstract
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber [...] Read more.
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber asphalt–aggregate systems, this study developed a multiscale characterization method integrating a macroscopic mechanical test, microscopic tests, and molecular dynamics (MD) simulations. Firstly, laboratory-controlled salt–freeze–thaw cycles were employed to simulate field conditions, followed by quantitative evaluation of interfacial bonding properties through pull-out tests. Subsequently, the atomic force microscopy (AFM) and Fourier transform infrared spectrometer (FTIR) tests were conducted to characterize the microscopic morphology evolution and chemical functional group transformations, respectively. Moreover, by combining the diffusion coefficients of water molecules, salt solution ions, and asphalt components, the mechanism of interfacial salt erosion was elucidated. The results demonstrate that increasing NaCl concentration and freeze–thaw cycles progressively reduces interfacial pull-out strength and fracture energy, with NaCl-induced damage becoming limited after twelve salt–freeze–thaw cycles. In detail, with exposure to 15 freeze–thaw cycles in 6% NaCl solution, the pull-out strength and fracture energy of the rubber asphalt–limestone aggregate decrease by 50.47% and 51.57%, respectively. At this stage, rubber asphalt exhibits 65.42% and 52.34% increases in carbonyl and sulfoxide indexes, respectively, contrasted by 49.24% and 42.5% decreases in aromatic and aliphatic indexes. Long-term exposure to salt–freeze–thaw conditions promotes phase homogenization, ultimately reducing surface roughness and causing rubber asphalt to resemble matrix asphalt morphologically. At the rubber asphalt–NaCl solution–aggregate interface, the diffusion of Na+ is faster than that of Cl. Meanwhile, compared with other asphalt components, saturates exhibit notably enhanced mobility under salt erosion conditions. The synergistic effects of accelerated aging, salt crystallization pressure, and enhanced ionic diffusion jointly induce the deterioration of interfacial bonding, which accounts for the decrease in macroscopic pull-out strength. This multiscale investigation advances understanding of salt-induced deterioration while providing practical insights for developing durable asphalt mixtures in cold regions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 5379 KB  
Article
Multiscale Fracture Roughness Effects on Coupled Nonlinear Seepage and Heat Transfer in an EGS Fracture
by Ziqian Yan, Jian Zhou, Xiao Peng and Tingfa Dong
Energies 2025, 18(20), 5391; https://doi.org/10.3390/en18205391 - 13 Oct 2025
Viewed by 444
Abstract
The seepage characteristics and heat transfer efficiency in rough fractures are indispensable for assessing the lifetime and production performance of geothermal reservoirs. In this study, a two-dimensional rough rock fracture model with different secondary roughness is developed using the wavelet analysis method to [...] Read more.
The seepage characteristics and heat transfer efficiency in rough fractures are indispensable for assessing the lifetime and production performance of geothermal reservoirs. In this study, a two-dimensional rough rock fracture model with different secondary roughness is developed using the wavelet analysis method to simulate the coupled flow and heat transfer process under multiscale roughness based on two theories: local thermal equilibrium (LTE) and local thermal nonequilibrium (LTNE). The simulation results show that the primary roughness controls the flow behavior in the main flow zone in the fracture, which determines the overall temperature distribution and large-scale heat transfer trend. Meanwhile, the nonlinear flow behaviors induced by the secondary roughness significantly influence heat transfer performance: the secondary roughness usually leads to the formation of more small-scale eddies near the fracture walls, increasing flow instability, and these changes profoundly affect the local water temperature distribution and heat transfer coefficient in the fracture–matrix system. The eddy aperture and eddy area fraction are proposed for analyzing the effect of nonlinear flow behavior on heat transfer. The eddy area fraction significantly and positively correlates with the overall heat transfer coefficient. Meanwhile, the overall heat transfer coefficient increases by about 3% to 10% for eddy area fractions of 0.3% to 3%. As the eddy aperture increases, fluid mixing is enhanced, leading to a rise in the magnitude of the local heat transfer coefficient. Finally, the roughness characterization was decomposed into primary roughness root mean square and secondary roughness standard deviation, and for the first time, an empirical correlation was established between multiscale roughness, flow velocity, and the overall heat transfer coefficient. Full article
Show Figures

Figure 1

Back to TopTop