Multi-Scale Characterization and Modeling of Natural Fractures in Ultra-Deep Tight Sandstone Reservoirs: A Case Study of Bozi-1 Gas Reservoir in Kuqa Depression
Abstract
1. Introduction
2. Geological Overview
3. Description of Multi-Scale Natural Fractures
3.1. Characteristics of Large-Scale Fractures
3.2. Development Characteristics of Medium- and Small-Scale Fractures
- First generation: Formed during the Late Cretaceous–Neogene Jidike Formation deposition under near N–S extension and weak compressional uplift, producing limited E–W tensile fractures and N–S shear fractures. These early fractures were largely mineral-filled with calcite or gypsum, rendering them ineffective.
- Second generation: Developed during the Neogene Kangcun–Kuqa formations under near N–S compression, generating mainly N–S shear fractures. These fractures are partially unfilled, with relatively low effectiveness and limited contribution to production.
- Third generation: Formed during the late deposition of the Kuqa Formation under strong N–S compressive thrusting, producing shear fractures and E–W tensile fractures caused by bending deformation. These fractures are numerous, widely distributed, and characterized by large apertures and low fill, making them the most effective for fluid flow.
4. Multi-Scale Natural Fracture Modeling
4.1. Large-Scale Fracture Model Construction
4.2. Establishment of Medium- and Small-Scale Fracture Models
5. Validation and Application of the Model
5.1. Productivity Characteristics
5.2. Water Invasion Characteristics
5.3. Wellbore Loss Characteristics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, T.; Zheng, M.; Huang, F.X.; Ouyang, J.; Li, M.; Zeng, F.; Fan, J.; Liu, C.; Liu, H. Exploration progress and potential of oil and gas in deep–ultradeep clastic rocks of PetroChina. Mar. Orig. Pet. Geol. 2024, 29, 225–235. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Q.H.; Yang, H.J.; Li, Y. Petroleum exploration history and enlightenment in Tarim Basin. Xinjiang Pet. Geol. 2021, 42, 272–282. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, M.N.; Li, N.; Li, N.; Ye, Y.; Dong, J. Research progress of numerical simulation models for shale gas reservoirs. Geol. China 2019, 46, 1284–1299. [Google Scholar]
- Xia, H.B.; Han, K.N.; Song, W.H.; Wang, W.; Yao, J. Pore scale fracturing fluid occurrence mechanisms in multi-scale matrix-fracture system of shale gas reservoir. Reserv. Eval. Dev. 2023, 13, 627–635+685. [Google Scholar] [CrossRef]
- Wu, F.; Chen, X.W.; Zhao, H.; Shi, X.; Liu, J. Computed tomography and image processing based multi-scale fracture extraction method for core samples. Pet. Geol. Exp. 2025, 47, 882–894. [Google Scholar]
- Wang, K.; Zhang, R.H.; Zhao, J.L.; Wang, J.; Zeng, Q.; Huang, Q.; Zhang, Z.; Zhou, L. Influence of strike-slip activity in the Kelasu structural belt on tectonic fractures in Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 2023, 34, 1316–1327. [Google Scholar]
- Chen, D.; Wang, C.L.; Deng, H.C.; Chen, N.; Ding, H.; Hu, X.; Zhang, H.; Yang, Y.; Du, Y.; Gao, Y. Evaluation of characteristics, distribution, and production control of advantageous natural fractures in ultra-deep layers: A case study of the Lower Cretaceous tight sandstone in the Bozi-Dabei area of the Tarim Basin. Nat. Gas Geosci. 2025, 36, 479–492. [Google Scholar] [CrossRef]
- Lv, W.Y.; Zeng, L.B.; Chen, S.Q.; Lv, P.; Dong, S.; Hui, C.; Li, R.; Wang, H. Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs. Geol. Rev. 2021, 67, 543–556. [Google Scholar] [CrossRef]
- Dong, S.Q.; Lv, W.Y.; Xia, D.L.; Wang, S.; Du, X.; Wang, T.; Wu, Y.; Guan, C. An approach to 3D geological modeling of multi-scaled fractures in tight sandstone reservoirs. Oil Gas Geol. 2020, 41, 627–637. [Google Scholar]
- Liang, Z.Q. Prediction techniques and application for fractures of multi-scales. J. Shengli Coll. China Univ. Pet. 2022, 36, 33–38. [Google Scholar]
- Liu, J.F.; Wang, P.; Mao, Q.H.; Gui, Z. Comparison of reservoir fracture modelling methods based on fracture scales. Prog. Geophys. 2023, 38, 2071–2079. [Google Scholar]
- Dong, S.Q.; Zeng, L.B.; Cao, H.; Xu, C.; Wang, S. Principle and implementation of discrete fracture network modeling controlled by fracture density. Geol. Rev. 2018, 64, 1302–1314. [Google Scholar] [CrossRef]
- Ren, X.J.; Duan, Y.X.; Sun, Q.F. Convolutional neural network model for faults identification based on 3D seismic imaging. Comput. Digit. Eng. 2022, 50, 1998–2004. [Google Scholar]
- Guo, H.H.; Feng, J.W.; Zhao, L.B. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin. Oil Gas Geol. 2023, 44, 962–975. [Google Scholar]
- Wang, Z.M.; Wang, C.L.; Xu, K.; Zhang, H.; Chen, N.; Deng, H.; Hu, X.; Yang, Y.; Feng, X.; Du, Y.; et al. Characteristics and controlling factors of tectonic fractures of ultra-deep tight sandstone: A case study of the Lower Cretaceous reservoir in Bozi-Dabei area, Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 2023, 34, 1535–1551. [Google Scholar]
- Gong, X. Study on Structural Characteristics of Bozi-Dabei Section in Kelasu Structural Belt, Kuqa Depression [Dissertation]. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2022. [Google Scholar]
- Cai, Z.Z.; Wang, J.; Mo, T.; Li, Z.; Wang, C.; Sun, X.; Zhu, W.; Ding, H. Characteristics and diagenesis evolution of ultra-deep Bashijiqike Formation reservoir in Bozi section of Kelasu structural belt, Kuqa Depression. Unconv. Oil Gas 2024, 11, 8–16. [Google Scholar]
- Jiang, X.J.; Shi, L.L.; Mo, T.; Yang, H.; Du, H.; Shi, W.; Dong, G. Characteristics and causes of physical property differences of deep and ultradeep tight sandstone reservoirs: A case study of the Bashijiqike Formation in the Bozi area of the Kuqa Depression. Bull. Geol. Sci. Technol. 2025, 44, 151–164. [Google Scholar]
- Wang, S.Y.; Wang, J.; Li, Y.; Wang, A.; Chen, M.; Liu, K. Evolution of petrophysical properties and coupled hydraulic–mechanical modelling for fault-related anticline reservoirs: Example from Cretaceous reservoirs in the Kelasu structural belt, Kuqa Depression. J. Northeast Pet. Univ. 2025, 49, 30–45. [Google Scholar]
- Yang, H.J.; Shi, W.Z.; Du, H.; Shai, L.; Wang, X.; Dong, G.; Mo, T.; Zuo, T.; Xu, L.; Jiang, J. Hydrocarbon charging periods and maturities in Bozi-Dabei area of Kuqa Depression and their indications to the structural trap sequence. Acta Pet. Sin. 2024, 45, 1480–1491. [Google Scholar]
- Zhang, G.J.; Zhang, B.X.; Xu, K.; Shen, C.; Zhang, H.; Yin, G.; Wang, H.; Wang, Z.; Liu, J. Fracture characteristics of ultra-deep tight sandstone reservoirs in the Bozi Block, Kuqa Depression of Tarim Basin, and effects on oil-gas production. Bull. Geol. Sci. Technol. 2024, 43, 75–86. [Google Scholar]
- Xu, X.T.; Zeng, L.B.; Dong, S.Q.; Diwu, P.; Li, H.; Liu, J.; Han, G.; Xu, H.; Ji, C. Fracture development characteristics and their influence on water invasion of ultra-deep tight sandstone reservoirs in Keshen gas reservoir of Kuqa Depression, Tarim Basin. Pet. Geol. Exp. 2024, 46, 812–822. [Google Scholar]
- Xu, K.; Zhang, H.; Ju, W.; Yin, G.; Wang, H.; Wang, Z.; Wang, Z.; Li, C.; Yuan, F.; Zhao, W. Distribution patterns of effective fractures in ultra-deep reservoirs of Bozi X Block, Kuqa Depression, and their effects on natural gas production. Earth Sci. 2023, 48, 2489–2505. [Google Scholar]
- Li, F.; Lyu, B.; Qi, J.; Verma, S.; Zhang, B. Seismic Coherence for Discontinuity Interpretation. Surv. Geophys. 2021, 42, 1229–1280. [Google Scholar] [CrossRef]
- Zeng, L.B.; Lv, P.; Qu, X.F.; Fan, J. Multi-scale fractures in tight sandstone reservoirs with low permeability and geological conditions of their development. Oil Gas Geol. 2020, 41, 449–454. [Google Scholar]
- Blasingame, T.A. The Characteristic Flow Behavior of Low-Permeability Reservoir Systems. In Proceedings of the SPE Unconventional Reservoirs Conference, Keystone, CO, USA, 10–12 February 2008. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, C.G.; Cai, M.; Gan, Q.; Cai, D.; Zhu, L. Research on evaluation method of fracture permeability based on Stoneley wave energy attenuation. Prog. Geophys. 2019, 34, 1127–1131. [Google Scholar]
- Lu, H.; Lu, X.S.; Fan, J.J.; Wang, X.; Fu, X.; Wei, H.; Zhang, B. The controlling effects of fractures on gas accumulation and production in tight sandstone: A case of Jurassic Dibei gas reservoir in the East Kuqa Foreland Basin. Nat. Gas Geosci. 2015, 26, 1047–1056. [Google Scholar]
- Hu, S.Y.; Liu, H. Analysis on water invasion patterns and sensitivity of drainage parameters in fractured gas reservoirs with edge/bottom water. Xinjiang Pet. Geol. 2025, 46, 478–484. [Google Scholar]
- Yin, T.; Chen, Q. Simulation-based investigation on the accuracy of discrete fracture network (DFN) representation. Comput. Geotech. 2020, 121, 103487. [Google Scholar] [CrossRef]
- Luo, Q.; Tang, H.F.; Liu, Q.M.; Yin, Y.; Wang, L.; Shang, H. Multi-scale fracture modeling method and its application: A case study of tight sandstone reservoir in Keshen 2 Gas Field, Tarim Basin. Nat. Gas Geosci. 2024, 35, 1000–1013. [Google Scholar]
- Banerjee, A.; Chatterjee, R. Fracture analysis using Stoneley waves in a coalbed methane reservoir. Near Surf. Geophys. 2022, 20, 710–722. [Google Scholar] [CrossRef]
- Hornby, B.E.; Johnson, D.L.; Winkler, K.W.; Plumb, R.A. Fracture evaluation using reflected Stoneley-wave arrivals. Geophysics 1989, 54, 1274–1288. [Google Scholar] [CrossRef]









| Number | Seismic Attributes | Blind Well Match Rate |
|---|---|---|
| 1 | Curv, Variance, RmsAmpl, likelihood, Crop, Sweet | 0.7223 |
| 2 | Curv, Variance, RmsAmpl, likelihood, Crop, Sweet, TraceAGC | 0.7333 |
| 3 | Curv, Variance, RmsAmpl, likelihood, phase, Crop, Sweet, TraceAGC | 0.8601 |
| 4 | Variance, Sweet, TraceAGC | 0.577 |
| 5 | Frequency, Curv, Variance, RmsAmpl, likelihood, phase, Crop, Sweet, TraceAGC | 0.7426 |
| 6 | Curv, Variance, RmsAmpl, Sweet, TraceAGC | 0.7277 |
| Well Name | Well Depth with Losses (m) | Lost Volume (m3) | Lost Pathway | Average Effective Fracture Density (Fractures/m) |
|---|---|---|---|---|
| X1-2 | 7161.83 | 78.35 | Large-scale fractures | 5.24 |
| X24-2 | 7224.53 | 7.60 | Small-scale fractures | 0.49 |
| 7268.10 | 119.5 | Large-scale fractures | 10.13 | |
| X101-1 | 6932.04 | 8.5 | Small-scale fractures | 0.51 |
| X101-2 | 6925.55 | 11.0 | Small-scale fractures | 0.57 |
| 7030.33 | 1.4 | Small-scale fractures | 0.47 | |
| 7085.70 | 67.0 | Large-scale fractures | 7.21 | |
| 7091.65 | 39.4 | Large-scale fractures | 1.51 | |
| X102-1 | 6752.20 | 3.5 | Small-scale fractures | 0.50 |
| 6885.15 | 8.4 | Small-scale fractures | 0.51 | |
| 6908.40 | 6.0 | Small-scale fractures | 0.51 | |
| X102-2 | 6653 | 21.5 | Small-scale fractures | 0.73 |
| 6768.43 | 18.2 | Small-scale fractures | 0.65 | |
| X2402 | 7410.34 | 13.0 | Small-scale fractures | 0.61 |
| 7463.00 | 145.98 | Large-scale fractures | 12.6 | |
| X102-7 | 7390.49 | 4.5 | Small-scale fractures | 0.54 |
| X104-1 | 6744.12 | 83.0 | Large-scale fractures | 5.18 |
| 6866.47 | 46.0 | Large-scale fractures | 4.87 | |
| X105-1 | 7289.85 | 9.6 | Small-scale fractures | 0.53 |
| 7289.85 | 8.0 | Small-scale fractures | 0.54 | |
| X105-3 | 6981.09 | 148.8 | Large-scale fractures | 11.36 |
| 7080 | 108.2 | Large-scale fractures | 8.55 | |
| X101 | 6981.9 | 98.4 | Large-scale fractures | 7.22 |
| X105 | 7058.19 | 43.8 | Large-scale fractures | 5.36 |
| 7069.83 | 44.4 | Large-scale fractures | 5.48 | |
| 7128.18 | 7.9 | Small-scale fractures | 0.49 | |
| 7163.01 | 110.39 | Large-scale fractures | 10.52 | |
| 7186.96 | 11.72 | Small-scale fractures | 0.57 | |
| 7195.83 | 3.28 | Small-scale fractures | 0.52 | |
| 7214.55 | 5.6 | Small-scale fractures | 0.55 | |
| X102-3 | 7300.79 | 35.54 | Large-scale fractures | 6.27 |
| 7606.00 | 69.70 | Large-scale fractures | 5.41 | |
| 7701.09 | 9.00 | Small-scale fractures | 0.56 | |
| 7713.02 | 36.40 | Large-scale fractures | 3.33 | |
| 7730.50 | 8.80 | Small-scale fractures | 0.55 | |
| 7733.59 | 10.70 | Small-scale fractures | 0.52 | |
| 7734.09 | 198.50 | Large-scale fractures | 15.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Ren, X.; Zhang, C.; Qu, Y.; Song, B.; Wang, X.; Tian, W. Multi-Scale Characterization and Modeling of Natural Fractures in Ultra-Deep Tight Sandstone Reservoirs: A Case Study of Bozi-1 Gas Reservoir in Kuqa Depression. Processes 2025, 13, 4080. https://doi.org/10.3390/pr13124080
Dai L, Ren X, Zhang C, Qu Y, Song B, Wang X, Tian W. Multi-Scale Characterization and Modeling of Natural Fractures in Ultra-Deep Tight Sandstone Reservoirs: A Case Study of Bozi-1 Gas Reservoir in Kuqa Depression. Processes. 2025; 13(12):4080. https://doi.org/10.3390/pr13124080
Chicago/Turabian StyleDai, Li, Xingnan Ren, Chengze Zhang, Yuanji Qu, Binghui Song, Xiaoyan Wang, and Wei Tian. 2025. "Multi-Scale Characterization and Modeling of Natural Fractures in Ultra-Deep Tight Sandstone Reservoirs: A Case Study of Bozi-1 Gas Reservoir in Kuqa Depression" Processes 13, no. 12: 4080. https://doi.org/10.3390/pr13124080
APA StyleDai, L., Ren, X., Zhang, C., Qu, Y., Song, B., Wang, X., & Tian, W. (2025). Multi-Scale Characterization and Modeling of Natural Fractures in Ultra-Deep Tight Sandstone Reservoirs: A Case Study of Bozi-1 Gas Reservoir in Kuqa Depression. Processes, 13(12), 4080. https://doi.org/10.3390/pr13124080

