Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (692)

Search Parameters:
Keywords = voltage uniformity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4829 KiB  
Article
Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers
by Mun Jeong Choi, Dae Hyeob Yoon, Yoo Sei Park, Hyoryung Nam and Geon Hwee Kim
Appl. Sci. 2025, 15(14), 8023; https://doi.org/10.3390/app15148023 - 18 Jul 2025
Viewed by 263
Abstract
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved [...] Read more.
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved or complex surfaces, low mechanical compliance, and susceptibility to oxidation-induced degradation. To overcome these challenges, we applied a protein-assisted electroless copper (Cu) plating strategy to electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber substrates to fabricate flexible, conductive planar heating membranes. For interfacial functionalization, a protein-based engineering approach using bovine serum albumin (BSA) was employed to facilitate palladium ion coordination and seed formation. The resulting membrane exhibited a dense, continuous Cu coating, low sheet resistance, excellent durability under mechanical deformation, and stable heating performance at low voltages. These results demonstrate that the BSA-assisted strategy can be effectively extended to complex three-dimensional fibrous membranes, supporting its scalability and practical potential for next-generation conformal and wearable planar heaters. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 2708 KiB  
Article
Mathematical Model of a Semiconductor Structure Based on Vanadium Dioxide for the Mode of a Conductive Phase
by Oleksii Kachura, Valeriy Kuznetsov, Mykola Tryputen, Vitalii Kuznetsov, Sergei Kolychev, Artur Rojek and Petro Hubskyi
Electronics 2025, 14(14), 2884; https://doi.org/10.3390/electronics14142884 - 18 Jul 2025
Viewed by 210
Abstract
This study presents a comprehensive mathematical model of a semiconductor structure based on vanadium dioxide (VO2), specifically in its conductive phase. The model was developed using the finite element method (FEM), enabling detailed simulation of the formation of a conductive [...] Read more.
This study presents a comprehensive mathematical model of a semiconductor structure based on vanadium dioxide (VO2), specifically in its conductive phase. The model was developed using the finite element method (FEM), enabling detailed simulation of the formation of a conductive channel under the influence of low-frequency alternating voltage (50 Hz). The VO2 structure under investigation exhibits pronounced electric field concentration at the surface, where the field strength reaches approximately 5 × 104 V/m, while maintaining a more uniform distribution of around 2 × 104 V/m within the bulk of the material. The simulation results were validated experimentally using a test circuit. Minor deviations—no greater than 8%—were observed between the simulated and measured current values, attributed to magnetic core saturation and modeling assumptions. A distinctive feature of the model is its ability to incorporate the nonlinear dependencies of VO2’s electrical properties on frequency. Analytical expressions were derived for the magnetic permeability and resistivity of VO2, demonstrating excellent agreement with experimental data. The coefficients of determination (R2) for the frequency dependence of magnetic permeability and resistance were found to be 0.9976 and 0.9999, respectively. The current version of the model focuses exclusively on the conductive phase and does not include the thermally induced metal–insulator phase transition characteristic of VO2. The study confirms that VO2-based structures exhibit high responsiveness and nonlinear switching behavior, making them suitable for applications in electronic surge protection, current limiting, and switching elements. The developed model provides a reliable and physically grounded tool for the design and optimization components based on VO2 in power electronics and protective circuitry. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

17 pages, 7385 KiB  
Article
Time-Division Subbands Beta Distribution Random Space Vector Pulse Width Modulation Method for the High-Frequency Harmonic Dispersion
by Jian Wen and Xiaobin Cheng
Electronics 2025, 14(14), 2852; https://doi.org/10.3390/electronics14142852 - 16 Jul 2025
Viewed by 222
Abstract
Conventional space vector pulse width modulation (CSVPWM) with the fixed switching frequency generates significant sideband harmonics in the three-phase voltage. Discrete random switching frequency SVPWM (DRSF-SVPWM) methods have been widely applied in motor control systems for the suppression of tone harmonic energy. To [...] Read more.
Conventional space vector pulse width modulation (CSVPWM) with the fixed switching frequency generates significant sideband harmonics in the three-phase voltage. Discrete random switching frequency SVPWM (DRSF-SVPWM) methods have been widely applied in motor control systems for the suppression of tone harmonic energy. To further reduce the amplitude of the high-frequency harmonic with a limited switching frequency variation range, this paper proposes a time-division subbands beta distribution random SVPWM (TSBDR-SVPWM) method. The overall frequency band of the switching frequency is equally divided into N subbands, and each fundamental cycle of the line voltage is segmented into 2*(N-1) equal time intervals. Additionally, within each time segment, the switching frequency is randomly selected from the corresponding subband and follows the optimal discrete beta distribution. The switching frequency harmonic energy in the line voltage spectrum spreads across multiple frequency subbands and discrete frequency components, thereby forming a more uniform power spectrum of the line voltage. Both simulation and experimental results validate that, compared with CSVPWM, the sideband harmonic amplitude is reduced by more than 8.5 dB across the entire range of speed and torque conditions in the TSBDR-SVPWM. Furthermore, with the same variation range of the switching frequency, the proposed method achieves the lowest switching frequency harmonic amplitude and flattest line voltage spectrum compared with several state-of-the-art random modulation methods. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

19 pages, 5202 KiB  
Article
Optimizing Energy/Current Fluctuation of RF-Powered Secure Adiabatic Logic for IoT Devices
by Bendito Freitas Ribeiro and Yasuhiro Takahashi
Sensors 2025, 25(14), 4419; https://doi.org/10.3390/s25144419 - 16 Jul 2025
Viewed by 390
Abstract
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a [...] Read more.
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a promising solution for achieving energy efficiency and enhancing the security of IoT devices. Adiabatic logic circuits are well suited for energy harvesting systems, especially in applications such as sensor nodes, RFID tags, and other IoT implementations. In these systems, the harvested bipolar sinusoidal RF power is directly used as the power supply for the adiabatic logic circuit. However, adiabatic circuits require a peak detector to provide bulk biasing for pMOS transistors. To meet this requirement, a diode-connected MOS transistor-based voltage doubler circuit is used to convert the sinusoidal input into a usable DC signal. In this paper, we propose a novel adiabatic logic design that maintains low power consumption while optimizing energy and current fluctuations across various input transitions. By ensuring uniform and complementary current flow in each transition within the logic circuit’s functional blocks, the design reduces energy variation and enhances resistance against power analysis attacks. Evaluation under different clock frequencies and load capacitances demonstrates that the proposed adiabatic logic circuit exhibits lower fluctuation and improved security, particularly at load capacitances of 50 fF and 100 fF. The results show that the proposed circuit achieves lower power dissipation compared to conventional designs. As an application example, we implemented an ultrasonic transmitter circuit within a LoRaWAN network at the end-node sensor level, which serves as both a communication protocol and system architecture for long-range communication systems. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

22 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 325
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

15 pages, 3659 KiB  
Article
Investigation of DC Breakdown Properties of Low GWP Gas R404a and Its Mixtures with N2/CO2 as an Alternative to SF6
by Hassan Riaz, Muhammad Zaheer Saleem and Muhammad Faheem
Processes 2025, 13(7), 2247; https://doi.org/10.3390/pr13072247 - 14 Jul 2025
Viewed by 193
Abstract
Sulfur hexafluoride (SF6), an extraordinary gas insulation medium, must be replaced by environmentally friendly gas in electric equipment because of its high global warming potential (GWP). In this research work, the DC breakdown properties of R404a gas and its mixtures with [...] Read more.
Sulfur hexafluoride (SF6), an extraordinary gas insulation medium, must be replaced by environmentally friendly gas in electric equipment because of its high global warming potential (GWP). In this research work, the DC breakdown properties of R404a gas and its mixtures with N2 and CO2 are studied under a sphere–sphere electrode configuration and uniform field conditions. The GWP of R404a is 16% of SF6 and its liquefaction temperature is also in the suitable range for practical applications. Nitrogen and carbon dioxide are mixed with R404a to reduce its boiling point and GWP. Other important parameters such as the self-recoverability, liquefaction temperature, GWP, and synergistic effect of R404a/CO2 and R404a/N2 were also studied to complement the insulation performance and the results are comparable to other gas mixtures. As a result, it was found that both the mixtures containing 80% R404a and 20% N2 or 20% CO2 possess a breakdown strength of 0.83 times that of SF6. Mixtures containing an 80% concentration of R404a possess a GWP equal to only 15% of SF6. These properties make gaseous mixtures containing 80% R404a and 20% N2 or CO2 a suitable alternative to SF6 in medium-voltage gas-insulated equipment. Full article
Show Figures

Figure 1

15 pages, 5168 KiB  
Article
Effects of Pulse Ion Source Arc Voltage on the Structure and Friction Properties of Ta-C Thin Films on NBR Surface
by Sen Feng, Wenzhuang Lu, Fei Guo, Can Wang and Liang Zou
Coatings 2025, 15(7), 809; https://doi.org/10.3390/coatings15070809 - 10 Jul 2025
Viewed by 312
Abstract
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed [...] Read more.
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed arc ion plating technology and adjusting the arc voltage of the pulsed arc ion source, tetrahedral amorphous carbon (ta-C) films with varying sp3 content were prepared on the surface of NBR. The effects of arc voltage on the structural composition and friction performance of NBR/ta-C materials were examined. A scanning electron microscopy analysis revealed that the ta-C film applied to the surface of NBR was uniform and dense, exhibiting typical network crack characteristics. The results of Raman spectroscopy and X-ray photoelectron spectroscopy indicated that as the arc voltage increased, the sp3 content in the film initially rose before declining, reaching a maximum of 72.28% at 300 V. Mechanical tests demonstrated that the bonding strength and friction performance of the film are primarily influenced by the percentage of sp3 content. Notably, the ta-C film with lower sp3 content demonstrates enhanced wear resistance. At 200 V, the sp3 content of the film is 58.16%, resulting in optimal friction performance characterized by a stable friction coefficient of 0.38 and minimal wear weight loss. This performance is attributed to the protective qualities of the ta-C film and the formation of a graphitized transfer film. These results provide valuable insights for the design and development of wear-resistant rubber materials. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

13 pages, 2818 KiB  
Article
Leveling Method of Working Platform Based on PZT Electromechanical Coupling Effect
by Aiqun Xu, Jianhui Yuan and Jinxuan Gao
Micromachines 2025, 16(7), 796; https://doi.org/10.3390/mi16070796 - 8 Jul 2025
Viewed by 282
Abstract
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used functional materials due to their strong and stable piezoelectric properties. A leveling method based on lead zirconate titanate piezoelectric ceramics is proposed for the high level of accuracy required in microelectromechanical fields such as [...] Read more.
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used functional materials due to their strong and stable piezoelectric properties. A leveling method based on lead zirconate titanate piezoelectric ceramics is proposed for the high level of accuracy required in microelectromechanical fields such as aerospace, industrial robotics, biomedical, and photolithography. A leveling mechanism consisting of core components such as piezoelectric ceramic actuators and sensors is designed. The closed-loop leveling of the working platform is performed using the electromechanical coupling effect of the PZT piezoelectric material. Combined with the theory of the dielectric inverse piezoelectric effect in electric fields, a simulation is used to analyze the four force and deformation cases generated by the drive legs when the load is attached at different positions of the working platform, and the leveling is realized by applying the drive voltage to generate micro-motion displacement. Simulation and calculation results show that the leveling method can reduce the tilt angle of the working platform by 60% when the driving voltage is in the range of 10~150 V. The feasibility of the leveling method and the uniformity of the theoretical calculation and simulation are verified. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

23 pages, 4667 KiB  
Article
An Experimental Study on the Charging Effects and Atomization Characteristics of a Two-Stage Induction-Type Electrostatic Spraying System for Aerial Plant Protection
by Yufei Li, Qingda Li, Jun Hu, Changxi Liu, Shengxue Zhao, Wei Zhang and Yafei Wang
Agronomy 2025, 15(7), 1641; https://doi.org/10.3390/agronomy15071641 - 5 Jul 2025
Viewed by 327
Abstract
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and [...] Read more.
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and electrostatic induction, and, through the integration of three-dimensional numerical simulation and additive manufacturing technology, a new two-stage inductive charging device was designed on the basis of the traditional hydrodynamic nozzle structure, and a synergistic optimization study of the charging effect and atomization characteristics was carried out systematically. With the help of a charge ratio detection system and Malvern laser particle sizer, spray pressure (0.25–0.35 MPa), charging voltage (0–16 kV), and spray height (100–1000 mm) were selected as the key parameters, and the interaction mechanism of each parameter on the droplet charge ratio (C/m) and the particle size distribution (Dv50) was analyzed through the Box–Behnken response surface experimental design. The experimental data showed that when the charge voltage was increased to 12 kV, the droplet charge-to-mass ratio reached a peak value of 1.62 mC/kg (p < 0.01), which was 83.6% higher than that of the base condition; the concentration of the particle size distribution of the charged droplets was significantly improved; charged droplets exhibited a 23.6% reduction in Dv50 (p < 0.05) within the 0–200 mm core atomization zone below the nozzle, with the coefficient of variation of volume median diameter decreasing from 28.4% to 16.7%. This study confirms that the two-stage induction structure can effectively break through the charge saturation threshold of traditional electrostatic spraying, which provides a theoretical basis and technical support for the optimal design of electrostatic spraying systems for plant protection UAVs. This technology holds broad application prospects in agricultural settings such as orchards and farmlands. It can significantly enhance the targeted deposition efficiency of pesticides, reducing drift losses and chemical usage, thereby enabling agricultural enterprises to achieve practical economic benefits, including reduced operational costs, improved pest control efficacy, and minimized environmental pollution, while generating environmental benefits. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

22 pages, 5129 KiB  
Article
A Dynamic Analysis of a Cantilever Piezoelectric Vibration Energy Harvester with Maximized Electric Polarization Due to the Optimal Shape of the Thickness for First Eigen Frequency
by Paulius Skėrys and Rimvydas Gaidys
Appl. Sci. 2025, 15(13), 7525; https://doi.org/10.3390/app15137525 - 4 Jul 2025
Viewed by 279
Abstract
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to [...] Read more.
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to amplify axial strain within the piezoelectric layers, thereby increasing electric polarization and maximizing the conversion efficiency of mechanical vibrations into electrical energy. The steady-state response under harmonic base excitation at resonance was modeled to evaluate the harvester’s dynamic behavior against uniform-thickness counterparts. Results show that the optimized beam achieves significantly higher output voltage and energy harvesting efficiency. Simulations reveal effective strain concentration in regions of high piezoelectric sensitivity, enhancing power generation under resonant conditions. Two independent experimental setups were employed for empirical validation: a non-contact laser vibrometry system (Polytec 3D) and a first resonant base excitation setup. Eigenfrequencies matched within 5% using a Polytec multipath interferometry system, and constant excitation tests showed approximately 30% higher in optimal shapes electrical potential value generation. The outcome of this study highlights the efficacy of geometric tailoring—specifically, non-linear thickness shaping—as a key strategy in achieving enhanced energy output from piezoelectric harvesters operating at their fundamental frequency. This work establishes a practical route for optimizing unimorph structures in real-world applications requiring efficient energy capture from low-frequency ambient vibrations. Full article
Show Figures

Figure 1

18 pages, 5570 KiB  
Article
SPICE-Compatible Degradation Modeling Framework for TDDB and LER Effects in Advanced Packaging BEOL Based on Ion Migration Mechanism
by Shao-Chun Zhang, Sen-Sen Li, Ying Ji, Ning Yang, Yuan-Hao Shan, Li Hong, Hao-Gang Wang, Wen-Sheng Zhao and Da-Wei Wang
Micromachines 2025, 16(7), 766; https://doi.org/10.3390/mi16070766 - 29 Jun 2025
Viewed by 375
Abstract
The time-dependent dielectric breakdown (TDDB) degradation mechanism, governed by the synergistic interaction of multiphysics fields, plays a pivotal role in the performance degradation and eventual failure of semiconductor devices and advanced packaging back-end-of-line (BEOL) structures. This work specifically focuses on the dielectric breakdown [...] Read more.
The time-dependent dielectric breakdown (TDDB) degradation mechanism, governed by the synergistic interaction of multiphysics fields, plays a pivotal role in the performance degradation and eventual failure of semiconductor devices and advanced packaging back-end-of-line (BEOL) structures. This work specifically focuses on the dielectric breakdown mechanism driven by metal ion migration within inter-metal dielectric layers, a primary contributor to TDDB degradation. A SPICE-compatible modeling approach is developed to accurately capture the dynamics of this ion migration-induced degradation. The proposed model is rooted in the fundamental physics of metal ion migration and the evolution of conductive filaments (CFs) within the dielectric layer under operational stress conditions. By precisely characterizing the degradation behavior induced by TDDB, a SPICE-compatible degradation model is developed. This model facilitates accurate predictions of resistance changes across a range of operational conditions and lifetime, encompassing variations in stress voltages, temperatures, and structural parameters. The predictive capability and accuracy of the model are validated by comparing its calculated results with numerical ones, thereby confirming its applicability. Furthermore, building upon the established degradation model, the impact of line-edge roughness (LER) is incorporated through a process variation model based on the power spectral density (PSD) function. This PSD-derived model provides a quantitative characterization of LER-induced fluctuations in critical device dimensions, enabling a more realistic representation of process-related variability. By integrating this stochastic variability model into the degradation framework, the resulting lifetime prediction model effectively captures reliability variations arising from real-world fabrication non-uniformities. Validation against simulation data demonstrates that the inclusion of LER effects significantly improves the accuracy of predicted lifetime curves, yielding closer alignment with observed device behavior under accelerated stress conditions. Full article
(This article belongs to the Special Issue Advanced Interconnect and Packaging, 3rd Edition)
Show Figures

Figure 1

12 pages, 3013 KiB  
Article
Investigation of Poling for Pb(Zr, Ti)O3/Pb(Zr, Ti)O3 Sol–Gel Composite
by Mako Nakamura, Ryota Ono and Makiko Kobayashi
Micromachines 2025, 16(7), 760; https://doi.org/10.3390/mi16070760 - 28 Jun 2025
Viewed by 473
Abstract
Phased-array ultrasonic transducers using sol–gel composites face challenges in terms of polarization uniformity when using conventional corona poling. Pb(Zr, Ti)O3 (PZT)/PZT composites with a thickness of 25 µm were fabricated on 3 mm thick titanium substrates, and the samples were poled by [...] Read more.
Phased-array ultrasonic transducers using sol–gel composites face challenges in terms of polarization uniformity when using conventional corona poling. Pb(Zr, Ti)O3 (PZT)/PZT composites with a thickness of 25 µm were fabricated on 3 mm thick titanium substrates, and the samples were poled by AC poling, DC poling, and corona discharge poling at RT. It was found that the polarization direction could be controlled by the voltage off-phase angle. When poling was performed with a voltage off-phase angle of 90°, applied voltage of 200 V (rms), 10 cycles, and frequency of 1 Hz, average values and standards of measured piezoelectric constant d33 of −35.1 ± 0.8 pC/N and ultrasonic sensitivity of 11.4 ± 0.1 dB were obtained. Furthermore, the AC-poled samples demonstrated smaller variations in d33 and ultrasonic sensitivity compared with the corona-poled samples, and higher values of d33 and ultrasonic sensitivity compared with the DC-poled samples, indicating the potential of AC poling for PZT/PZT sol–gel composites with large areas. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 1560 KiB  
Review
Revolutionizing Electrospinning: A Review of Alternating Current and Pulsed Voltage Techniques for Nanofiber Production
by Yasir Al Saif and Richárd Cselkó
Processes 2025, 13(7), 2048; https://doi.org/10.3390/pr13072048 - 27 Jun 2025
Viewed by 359
Abstract
Electrospinning has evolved into a vital nanofiber production technique with broad applications across biomedical, environmental, and industrial sectors. Alternating current (AC) and pulsed voltage (PV) electrospinning offer transformative alternatives by utilizing time-varying electric fields to overcome the drawbacks of DC electrospinning by employing [...] Read more.
Electrospinning has evolved into a vital nanofiber production technique with broad applications across biomedical, environmental, and industrial sectors. Alternating current (AC) and pulsed voltage (PV) electrospinning offer transformative alternatives by utilizing time-varying electric fields to overcome the drawbacks of DC electrospinning by employing an oscillating electric field that facilitates balanced charge dynamics, improved jet stability, and collectorless operation, leading to enhanced fiber alignment and significantly higher production rates, with reports exceeding 20 g/h. Conversely, PV electrospinning applies intermittent high-voltage pulses, offering precise control over jet initiation and termination. This method enables the fabrication of ultrafine, bead-free, and structurally uniform fibers, making it particularly suitable for biomedical applications such as controlled drug delivery and tissue scaffolds. Both techniques support tunable fiber morphology, reduced diameter variability, and improved structural uniformity, contributing to the advancement of high-performance nanofiber materials. This review examines the underlying electrohydrodynamic mechanisms, charge transport behavior, equipment configurations, and performance metrics associated with AC and PV electrospinning. It further highlights key innovations, current limitations in scalability and standardization, and prospective research directions. Full article
(This article belongs to the Special Issue Advances in Properties and Applications of Electrospun Fibers)
Show Figures

Figure 1

19 pages, 3871 KiB  
Review
A Comprehensive Review of the Art of Cell Balancing Techniques and Trade-Offs in Battery Management Systems
by Adnan Ashraf, Basit Ali, Mothanna S. A. Al Sunjury and Pietro Tricoli
Energies 2025, 18(13), 3321; https://doi.org/10.3390/en18133321 - 24 Jun 2025
Viewed by 687
Abstract
The battery pack is a critical component of electric vehicles, with lithium-ion cells being a frequently preferred choice. Lithium-ion cells are known for long life, high power and energy density, and are reliable for a broad range of temperatures. However, these batteries have [...] Read more.
The battery pack is a critical component of electric vehicles, with lithium-ion cells being a frequently preferred choice. Lithium-ion cells are known for long life, high power and energy density, and are reliable for a broad range of temperatures. However, these batteries have a drawback of over-voltage, under-voltage, thermal runaway, and especially, state of charge or voltage imbalance. Among these, the cell imbalance is particularly important because it causes an uneven power dissipation in each cell, resulting in non-uniform temperature distribution. This uneven temperature distribution negatively affects the lifetime and efficiency of a battery pack. Cell imbalance is mitigated by cell balancing techniques, of which several methods have been presented over the last few years. These methods consider different power electronics circuits and control approaches to optimise cell balancing characteristics. This paper reviews basic to advanced cell balancing techniques and compares their circuit designs, costs, switching stresses, complexity, sizes, and control techniques to highlight the recent trends and future directions. This paper also compares the recent trend of machine learning integration with basic cell balancing topologies and provides a critical analysis of the outcomes. Full article
Show Figures

Figure 1

37 pages, 1546 KiB  
Article
Fractional-Order Swarming Intelligence Heuristics for Nonlinear Sliding-Mode Control System Design in Fuel Cell Hybrid Electric Vehicles
by Nabeeha Qayyum, Laiq Khan, Mudasir Wahab, Sidra Mumtaz, Naghmash Ali and Babar Sattar Khan
World Electr. Veh. J. 2025, 16(7), 351; https://doi.org/10.3390/wevj16070351 - 24 Jun 2025
Viewed by 290
Abstract
Due to climate change, the electric vehicle (EV) industry is rapidly growing and drawing researchers interest. Driving conditions like mountainous roads, slick surfaces, and rough terrains illuminate the vehicles inherent nonlinearities. Under such scenarios, the behavior of power sources (fuel cell, battery, and [...] Read more.
Due to climate change, the electric vehicle (EV) industry is rapidly growing and drawing researchers interest. Driving conditions like mountainous roads, slick surfaces, and rough terrains illuminate the vehicles inherent nonlinearities. Under such scenarios, the behavior of power sources (fuel cell, battery, and super-capacitor), power processing units (converters), and power consuming units (traction motors) deviates from nominal operation. The increasing demand for FCHEVs necessitates control systems capable of handling nonlinear dynamics, while ensuring robust, precise energy distribution among fuel cells, batteries, and super-capacitors. This paper presents a DSMC strategy enhanced with Robust Uniform Exact Differentiators for FCHEV energy management. To optimally tune DSMC parameters, reduce chattering, and address the limitations of conventional methods, a hybrid metaheuristic framework is proposed. This framework integrates moth flame optimization (MFO) with the gravitational search algorithm (GSA) and Fractal Heritage Evolution, implemented through three spiral-based variants: MFOGSAPSO-A (Archimedean), MFOGSAPSO-H (Hyperbolic), and MFOGSAPSO-L (Logarithmic). Control laws are optimized using the Integral of Time-weighted Absolute Error (ITAE) criterion. Among the variants, MFOGSAPSO-L shows the best overall performance with the lowest ITAE for the fuel cell (56.38), battery (57.48), super-capacitor (62.83), and DC bus voltage (4741.60). MFOGSAPSO-A offers the most accurate transient response with minimum RMSE and MAE FC (0.005712, 0.000602), battery (0.004879, 0.000488), SC (0.002145, 0.000623), DC voltage (0.232815, 0.058991), and speed (0.030990, 0.010998)—outperforming MFOGSAPSO, GSA, and PSO. MFOGSAPSO-L further reduces the ITAE for fuel cell tracking by up to 29% over GSA and improves control smoothness. PSO performs moderately but lags under transient conditions. Simulation results conducted under EUDC validate the effectiveness of the MFOGSAPSO-based DSMC framework, confirming its superior tracking, faster convergence, and stable voltage control under transients making it a robust and high-performance solution for FCHEV. Full article
(This article belongs to the Special Issue Vehicle Control and Drive Systems for Electric Vehicles)
Show Figures

Figure 1

Back to TopTop