Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,688)

Search Parameters:
Keywords = volatiles profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3036 KiB  
Article
Chemometric Approach for Discriminating the Volatile Profile of Cooked Glutinous and Normal-Amylose Rice Cultivars from Representative Japanese Production Areas Using GC × GC-TOFMS
by Takayoshi Tanaka, Junhan Zhang, Shuntaro Isoya, Tatsuro Maeda, Kazuya Hasegawa and Tetsuya Araki
Foods 2025, 14(15), 2751; https://doi.org/10.3390/foods14152751 - 6 Aug 2025
Abstract
Cooked-rice aroma strongly affects consumer choice, yet the chemical traits distinguishing glutinous rice from normal-amylose japonica rice remain underexplored because earlier studies targeted only a few dozen volatiles using one-dimensional gas chromatography–mass spectrometry (GC-MS). In this study, four glutinous and seven normal Japanese [...] Read more.
Cooked-rice aroma strongly affects consumer choice, yet the chemical traits distinguishing glutinous rice from normal-amylose japonica rice remain underexplored because earlier studies targeted only a few dozen volatiles using one-dimensional gas chromatography–mass spectrometry (GC-MS). In this study, four glutinous and seven normal Japanese cultivars were cooked under identical conditions, their headspace volatiles trapped with MonoTrap and qualitatively profiled by comprehensive GC × GC-TOFMS. The two-dimensional platform resolved 1924 peaks—about ten-fold previous coverage—and, together with hierarchical clustering, PCA, heatmap visualization and volcano plots, cleanly separated the starch classes (78.3% cumulative PCA variance; Euclidean distance >140). Volcano plots highlighted 277 compounds enriched in the glutinous cultivars and 295 in Koshihikari, including 270 compounds that were not previously documented in rice. Normal cultivars were dominated by ethers, aldehydes, amines and other nitrogenous volatiles associated with grainy, grassy and toasty notes. Glutinous cultivars showed abundant ketones, furans, carboxylic acids, thiols, steroids, nitro compounds, pyrroles and diverse hydrocarbons and aromatics, yielding sweeter, fruitier and floral accents. These results expand the volatile library for japonica rice, provide molecular markers for flavor-oriented breeding and demonstrate the power of GC × GC-TOFMS coupled with chemometrics for grain aroma research. Full article
16 pages, 1119 KiB  
Article
The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish
by Zhihao Yang, Chenlei Wang, Ye Jin, Wenjia Le, Liang Zhang, Lifei Wang, Bo Zhang, Yueying Guo, Min Zhang and Lin Su
Foods 2025, 14(15), 2748; https://doi.org/10.3390/foods14152748 - 6 Aug 2025
Abstract
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis [...] Read more.
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis confirmed moisture reduction (57.32 vs. 72.12 g/100 g)-concentrated protein/fat levels. Storage at −18 °C suppressed microbial growth (the total plate count (TPC), 3.73 vs. 4.80 log CFU/g at 28 days; p < 0.05) and lipid oxidation (thiobarbituric acid reactive substances (TBARS): 0.14 vs. 0.19 mg/kg) more effectively than storage at 4 °C. The total volatile basic nitrogen (TVB-N) kinetics projected a shelf life ≥90 days (4 °C) and ≥120 days (−18 °C). Microwave reheating after frozen storage (−18 °C) maximized the yield (86.21% vs. 75.90% boiling; p < 0.05) and preserved volatile profiles closest to those in the fresh samples (gas chromatography–mass spectrometry (GC-MS)/electronic nose). The combination of freezing storage and subsequent microwave reheating has been demonstrated to be an effective method for preserving the quality of a precooked lamb dish, thereby ensuring its nutritional value. Full article
Show Figures

Graphical abstract

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

14 pages, 1384 KiB  
Article
Volatile Essential Oils from Different Tree Species Influence Scent Impression and Physiological Response
by Eri Matsubara and Naoyuki Matsui
Molecules 2025, 30(15), 3288; https://doi.org/10.3390/molecules30153288 - 6 Aug 2025
Abstract
The large number of underutilized tree residues in Japan is a matter of concern, and their appropriate application needs to be promoted. Trees are very diverse, and there are differences in the volatile essential oil compounds and biological activities among different tree species. [...] Read more.
The large number of underutilized tree residues in Japan is a matter of concern, and their appropriate application needs to be promoted. Trees are very diverse, and there are differences in the volatile essential oil compounds and biological activities among different tree species. However, the effects of these tree species’ characteristics on human sensitivity and mental and physical functionality remain underexplored. This study investigated the effects of essential oils from multiple tree species on subjective and physiological responses. The essential oils from nine tree species were tested, subjective scent assessments were conducted, and their effect on autonomic nervous activity was measured. The volatile profiles of the oils were analyzed using gas chromatography–mass spectrometry. Our findings revealed clear differences in the composition of volatile essential oils among species, which influenced the scent evaluation and individual preferences. We suggest that scent preferences have the potential to influence physiological responses. The findings indicate that volatile essential oils could play a potential role in making use of tree resources effectively, and they may also be beneficial for maintaining human health. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

19 pages, 847 KiB  
Article
Characterization and Selection of Lycium barbarum Cultivars Based on Physicochemical, Bioactive, and Aromatic Properties
by Juan Carlos Solomando González, María José Rodríguez Gómez, María Ramos García, Noelia Nicolás Barroso and Patricia Calvo Magro
Horticulturae 2025, 11(8), 924; https://doi.org/10.3390/horticulturae11080924 (registering DOI) - 5 Aug 2025
Abstract
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties [...] Read more.
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties (total soluble solids, titratable acidity, and pH), bioactive compound (sugars and organic acids, total and individual phenolic and carotenoid compounds, and antioxidant activities (DPPH and CUPRAC assay)), and aromatic profiles (by GC-MS) to assess their suitability for fresh consumption or incorporation into food products. G4 exhibited the most favorable physicochemical characteristics, with the highest total soluble solids (20.2 °Brix) and sugar content (92.8 g 100 g−1 dw). G5 stood out for its lower titratable acidity (0.34%) and highest ripening index (54.8), indicating desirable flavor attributes. Concerning bioactive compounds, G3 and G4 showed the highest total phenolic content (17.9 and 19.1 mg GAE g−1 dw, respectively), with neochlorogenic acid being predominant. G4 was notable for its high carotenoid content, particularly zeaxanthin (1722.6 μg g−1 dw). These compounds significantly contributed to antioxidant activity. Volatile organic compound (VOC) profiles revealed alcohols and aldehydes as the dominant chemical families, with hexanal being the most abundant. G5 and G7 exhibited the highest total VOC concentrations. Principal component analysis grouped G3 and G4 based on their high sugar and phenolic content, while G5 and G7 were characterized by their complex aromatic profiles. Therefore, G3 and G4 are promising candidates for fresh consumption and potential functional applications, while G5 and G7 are particularly suitable for new product development due to their nutraceutical and aromatic value. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

26 pages, 449 KiB  
Review
The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
by Tainá Francisca Cordeiro de Souza, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca and Flávio Alves da Silva
Foods 2025, 14(15), 2739; https://doi.org/10.3390/foods14152739 - 5 Aug 2025
Abstract
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can [...] Read more.
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can impart distinct sensory characteristics and promote innovative maturation processes. This review examines the impact of alternative woods on the aging of beverages, such as wine, cachaça, tequila, and beer, focusing on their influence on aroma, flavor, color, and chemical composition. A bibliometric analysis highlights the increasing scientific attention toward wood diversification and emerging aging technologies, including ultrasound and micro-oxygenation, which accelerate maturation while preserving sensory complexity. The role of toasting techniques in modulating the release of phenolic and volatile compounds is also discussed, emphasizing their contribution to unique sensory profiles. Additionally, regulatory aspects and sustainability considerations are explored, suggesting that alternative woods can expand flavor possibilities while supporting environmentally sustainable practices. This review underscores the potential of non-traditional wood species to drive innovation in the aging of alcoholic beverages and provide new sensory experiences that align with evolving consumer preferences and market trends. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
18 pages, 903 KiB  
Article
Effect of Allyl-Isothiocyanate Release from Black Mustard (Brassica nigra) Seeds During Refrigerated Storage to Preserve Fresh Tench (Tinca tinca) Fillets
by María José Rodríguez Gómez, María Alejo Martínez, Raquel Manzano Durán, Daniel Martín-Vertedor and Patricia Calvo Magro
Fishes 2025, 10(8), 381; https://doi.org/10.3390/fishes10080381 - 5 Aug 2025
Abstract
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts [...] Read more.
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts of defatted mustard seed (300, 400 and 500 mg) were added to hermetic polypropylene trays. Microbiological, sensory, and gas chromatography with MS detection analysis were done. AITC release increased progressively until the third day of storage, significantly delaying the development of microorganisms in samples with higher mustard seed content. The tasting panel detected positive aromas at the beginning of the study, but these decreased and negative aromas appeared. The mustard seed treatment resulted in a higher positive aroma at the end of the storage, reducing rotting and ammonia odours. A total of 31 volatile compounds were detected and grouped into hydrocarbon, alcohol, benzenoid, isothiocyanate, ketone, acetate, aldehyde, and others. Butylated hydroxytoluene, an indicator of bacterial contamination, was the major aromatic compound found during storage. The release of AITC resulted in fewer organic compounds with negative aromas appearing during storage. PCA analysis allowed us to classify the assays during storage according to their volatile profiles, confirming the differences observed between treatments. Thus, adding mustard seed to fish packaging could be a viable alternative to extending the product’s shelf life and ensuring food safety. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
Show Figures

Graphical abstract

15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 (registering DOI) - 4 Aug 2025
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

23 pages, 3877 KiB  
Article
Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential
by George Ntourtoglou, Chaido Bardouki, Andreas Douros, Nikolaos Gkanatsios, Eleni Bozinou, Vassilis Athanasiadis, Stavros I. Lalas and Vassilis G. Dourtoglou
Molecules 2025, 30(15), 3259; https://doi.org/10.3390/molecules30153259 - 4 Aug 2025
Viewed by 47
Abstract
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, [...] Read more.
Rose hips are rich in polyphenols, making them a promising ingredient for the development of functional fruit-based beverages. This study aimed to evaluate the effect of Pulsed Electric Field (PEF) extraction treatment on rose hip (RH) pulp to enhance the extraction of polyphenols, carotenoids, and volatile compounds. Additionally, this study examined the impact of adding rose hip berries during different stages of carbohydrate fermentation on the resulting phenolic and aroma profiles. A control wort and four experimental formulations were prepared. Rose hip pulp—treated or untreated with PEF—was added either during fermentation or beforehand, and the volatiles produced were analyzed using GC-MS (in triplicate). Fermentation was carried out over 10 days at 20 °C using Saccharomyces cerevisiae and Torulaspora delbrueckii. At a 10:1 ratio, all beverage samples were subjected to physicochemical testing and HPLC analysis for polyphenols, organic acids, and carotenoids, as well as GC-MS analysis for aroma compounds. The results demonstrated that the use of PEF-treated rose hips significantly improved phenolic compound extraction. Moreover, the PEF treatment enhanced the aroma profile of the beverage, contributing to a more complex and appealing sensory experience. This research highlights the rich polyphenol content of rose hips and the potential of PEF-treated fruit as a natural ingredient to improve both the functional and sensory qualities of fruit-based beverages. Their application opens new possibilities for the development of innovative, health-promoting drinks in the brewing industry. Full article
Show Figures

Figure 1

18 pages, 2769 KiB  
Article
Characterization of the Flavors and Organoleptic Attributes of Petit Manseng Noble Rot Wines from the Eastern Foothills of Helan Mountain in Ningxia, China
by Fuqi Li, Fan Yang, Quan Ji, Longxuan Huo, Chen Qiao and Lin Pan
Foods 2025, 14(15), 2723; https://doi.org/10.3390/foods14152723 - 4 Aug 2025
Viewed by 101
Abstract
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into [...] Read more.
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into three groups based on infection status: uninfected, mildly infected, and severely infected with Botrytis cinerea. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and an electronic nose were employed to detect and analyze the aroma components of wines under the three infection conditions. Additionally, trained sensory panelists conducted sensory evaluations of the wine aromas. The results revealed that wines made from severely infected grapes exhibited the richest and most complex aroma profiles. A total of 70 volatile compounds were identified, comprising 32 esters, 17 alcohols, 5 acids, 8 aldehydes and ketones, 4 terpenes, and 4 other compounds. Among these, esters and alcohols accounted for the highest contents. Key aroma-active compounds included isoamyl acetate, ethyl decanoate, phenethyl acetate, ethyl laurate, hexanoic acid, linalool, decanoic acid, citronellol, ethyl hexanoate, and methyl octanoate. Sensory evaluation indicated that the “floral aroma”, “pineapple/banana aroma”, “honey aroma”, and “overall aroma intensity” were most pronounced in the severely infected group. These findings provide theoretical support for the harvesting of severely Botrytis cinerea-infected Petit Manseng grapes and the production of high-quality noble rot wine in this region. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

16 pages, 2968 KiB  
Article
Dissecting Organ-Specific Aroma-Active Volatile Profiles in Two Endemic Phoebe Species by Integrated GC-MS Metabolomics
by Ming Xu, Yu Chen and Guoming Wang
Metabolites 2025, 15(8), 526; https://doi.org/10.3390/metabo15080526 (registering DOI) - 3 Aug 2025
Viewed by 121
Abstract
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics [...] Read more.
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics approach combined with a relative odor activity value (rOAV) analysis to comprehensively profile and compare the volatile metabolite landscape in the seeds and leaves of both species. Results: In total, 1666 volatile compounds were putatively identified, of which 540 were inferred as key aroma-active contributors based on the rOAV analysis. A multivariate statistical analysis revealed clear tissue-related separation: the seeds were enriched in sweet, floral, and fruity volatiles, whereas the leaves contained higher levels of green leaf volatiles and terpenoids associated with ecological defense. KEGG pathway enrichment indicated that terpenoid backbone and phenylpropanoid biosynthesis pathways played major roles in shaping these divergent profiles. A Venn diagram analysis further uncovered core and unique volatiles underlying species and tissue specificity. Conclusions: These insights provide an integrated reference for understanding tissue-divergent volatile profiles in Phoebe species and offer a basis for fragrance-oriented selection, ecological trait evaluation, and the sustainable utilization of organ-related metabolic characteristics in breeding and conservation programs. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

24 pages, 913 KiB  
Article
Fermentation Efficiency and Profile of Volatile Compounds in Rye Grain Mashes from Crops Fertilised with Agrifood Waste Ashes
by Łukasz Ściubak, Andrzej Baryga, Maria Balcerek, Katarzyna Pielech-Przybylska, Urszula Dziekońska-Kubczak and Stanisław Brzeziński
Molecules 2025, 30(15), 3251; https://doi.org/10.3390/molecules30153251 - 2 Aug 2025
Viewed by 195
Abstract
The utilisation of agrifood waste ashes has the potential to enhance the nutrient content of cereal crops, thereby optimising both yield and grain quality. This study investigated rye grain composition, the fermentation efficiency, and volatile compounds in mashes made from crops fertilised with [...] Read more.
The utilisation of agrifood waste ashes has the potential to enhance the nutrient content of cereal crops, thereby optimising both yield and grain quality. This study investigated rye grain composition, the fermentation efficiency, and volatile compounds in mashes made from crops fertilised with agrifood waste ashes derived from the combustion of corn cob, wood chips, and biomass with defecation lime. The ashes were applied at 2, 4, and 8 t/ha, separately and as mixtures of corn cob (25%) with wood chips (75%) and corn cob (50%) with biomass and defecation lime (50%). Rye mashes were prepared using the pressureless starch liberation method. The starch content in the majority of the rye grains was comparable to the control sample (57.12 g/100 g). The range of ethanol concentrations observed in the fermented mashes was from 55.55 to 68.12 g/L, which corresponded to fermentation yields of 67.25–76.59% of theoretical. The lowest fermentation yield was exhibited by the mash derived from rye cultivated on soil fertilised with a 50:50 mixture of ashes from corn cob and biomass with defecation lime at 8 t/ha. This mash contained more than double the acetaldehyde concentration and total aldehyde content compared to the other samples. These findings demonstrate the potential of using waste biomass ash as a source of macro- and microelements for rye cultivation, enabling the production of agricultural distillates. To ensure high fermentation efficiency and low aldehyde levels, ash dosage and composition need to be established based on experimental optimisation. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

13 pages, 2838 KiB  
Article
Differential Effects of Two Herbivore-Induced Plant Volatiles on the Oviposition of Chilo suppressalis
by Xiaowei Yang, Chang Liu, Xixi Jia, Chen Zhang, Lanzhi Han, Wanlun Cai and Yunhe Li
Plants 2025, 14(15), 2384; https://doi.org/10.3390/plants14152384 - 2 Aug 2025
Viewed by 205
Abstract
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert [...] Read more.
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert opposing effects on the reproduction of Chilo suppressalis, a major rice pest. While both volatiles repelled adults, α-cedrene unexpectedly enhanced oviposition, whereas 2-heptanol significantly suppressed egg laying. To examine these effects, we conducted oviposition assays, preoviposition and longevity tests, combined with qPCR and transcriptome analyses to explore underlying molecular responses. Mechanistically, α-cedrene upregulated Kr-h1, a gene linked to juvenile hormone signaling and vitellogenesis, promoting reproductive investment. Transcriptomic profiling revealed divergent molecular responses: α-cedrene activated reproductive pathways, whereas 2-heptanol induced stress- and immune-related genes, suggesting a trade-off between stress defense and reproduction. These findings demonstrate that HIPVs can exert compound-specific reproductive effects beyond repellency. This work fills a key knowledge gap and highlights the potential of HIPVs as precision tools in pest management strategies that exploit behavioral and physiological vulnerabilities beyond repellency. Full article
Show Figures

Figure 1

37 pages, 9843 KiB  
Article
Soy Sauce Fermentation with Cordyceps militaris: Process Optimization and Functional Profiling
by Wanying Song, Xinyue Zhang, Huiyi Yang, Hanyu Liu and Baodong Wei
Foods 2025, 14(15), 2711; https://doi.org/10.3390/foods14152711 - 1 Aug 2025
Viewed by 229
Abstract
This study presents the development and optimization of a functional soy sauce fermented with Cordyceps militaris (C. militaris), a medicinal fungus known for its high cordycepin and polysaccharide content. Using C. militaris as the sole starter culture, the process aimed to [...] Read more.
This study presents the development and optimization of a functional soy sauce fermented with Cordyceps militaris (C. militaris), a medicinal fungus known for its high cordycepin and polysaccharide content. Using C. militaris as the sole starter culture, the process aimed to improve both nutritional and functional properties. Response surface methodology was employed to optimize the entire fermentation process. During the koji stage, temperature, aeration, and inoculum concentration were adjusted to maximize protease activity and cordycepin production. In the fermentation stage, temperature, brine concentration, and water-to-material ratio were optimized to increase amino acid nitrogen and bioactive compound levels. Under optimal conditions (24 °C, 679.60 LPM aeration, 9.6% inoculum for koji; 32 °C, 12% brine, 1.53:1 water-to-material ratio for fermentation), the resulting soy sauce contained 1.14 ± 0.05 g/100 mL amino acid nitrogen and 16.88 ± 0.47 mg/100 mL cordycepin. Compared with traditionally fermented soy sauce, the C. militaris product exhibited a darker color, enhanced umami taste, and a distinct volatile profile featuring linoleic acid, methyl palmitate, and niacinamide. These results demonstrate the feasibility of using C. militaris in soy sauce fermentation and its potential as a novel functional condiment with improved bioactivity and sensory quality. Full article
Show Figures

Figure 1

30 pages, 866 KiB  
Article
Balancing Profitability and Sustainability in Electric Vehicles Insurance: Underwriting Strategies for Affordable and Premium Models
by Xiaodan Lin, Fenqiang Chen, Haigang Zhuang, Chen-Ying Lee and Chiang-Ku Fan
World Electr. Veh. J. 2025, 16(8), 430; https://doi.org/10.3390/wevj16080430 - 1 Aug 2025
Viewed by 185
Abstract
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an [...] Read more.
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an adaptation of traditional underwriting models. The study employs a modified Delphi method with industry experts to identify key risk factors, including accident risk, repair costs, battery safety, driver behavior, and PCAF carbon impact. A sensitivity analysis was conducted to examine premium adjustments under different risk scenarios, categorizing EVs into four risk segments: Low-Risk, Low-Carbon (L1); Medium-Risk, Low-Carbon (M1); Medium-Risk, High-Carbon (M2); and High-Risk, High-Carbon (H1). Findings indicate that premium EVs (L1 and M2) exhibit lower volatility in underwriting costs, benefiting from advanced safety features, lower accident rates, and reduced carbon attribution penalties. Conversely, budget EVs (H1 and M1) experience higher premium fluctuations due to greater accident risks, costly repairs, and higher carbon costs under PCAF implementation. The worst-case scenario showed a 14.5% premium increase, while the best-case scenario led to a 10.5% premium reduction. The study recommends prioritizing premium EVs for insurance coverage due to their lower underwriting risks and carbon efficiency. For budget EVs, insurers should implement selective underwriting based on safety features, driver risk profiling, and energy efficiency. Additionally, incentive-based pricing such as telematics discounts, green repair incentives, and low-carbon charging rewards can mitigate financial risks and align with net-zero insurance commitments. This research provides a structured framework for insurers to optimize EV underwriting while ensuring long-term profitability and regulatory compliance. Full article
Show Figures

Figure 1

Back to TopTop