Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential
Abstract
1. Introduction
2. Results and Discussion
2.1. Moisture Content
2.2. Extraction of Carotenoids
2.3. Volatile Compounds After Fermentation
2.3.1. Volatile Profile of Fermented Samples
2.3.2. Compound-Specific Effects of PEF on Volatiles
2.4. Sugar Content Analysis
2.5. The Effect of PEF on Catechin, Epicatechin, Tiliroside, and Robinin
2.6. Identification and Significance of Key Phenolic Compounds
2.7. Analytical Observations
- Catechin and epicatechin were detected as monomers (m/z 289.5) The presence of both structural isomers remains highly probable, though further confirmation via MS/MS or NMR is recommended.
- Tiliroside exhibited a clear signal at m/z 593.5 with a well-resolved peak, indicating its substantial abundance and importance within the flavonoid profile.
- Robinin, also present, reinforces rose hips’ therapeutic potential, given its antioxidant, anti-inflammatory, and cardioprotective roles.
2.8. Heat Map Analysis and Extraction Dynamics
2.8.1. Key Observations from Water-Based Extracts
2.8.2. Insights from Hydroalcoholic Extracts
- Phloridzin and taxifolin pentoside (m/z 435.1) showed a 4.5× increase with PEF treatment in non-fermented samples.
- Macrulin 3C (m/z 695.5) abundance rose significantly in the fermented PEF samples, compared with the fermented controls, suggesting the selective enhancement of complex phenolics.
2.8.3. General Trends from Heat Map Data
- Fermentation consistently lowers the abundance of acids and flavonoids, regardless of the extraction method.
- PEF selectively boosts the extraction of certain phenolic compounds, mainly in non-fermented conditions.
- The combination of fermentation and PEF yields the lowest total abundances, suggesting fermentation overrides PEF’s extraction advantage.
- Hydroalcoholic solvents outperform water alone in recovery efficiency, especially when paired with PEF.
3. Materials and Methods
3.1. Materials
3.1.1. Rose Hip Fruits
3.1.2. PEF Equipment
3.1.3. Yeast Strains
3.1.4. Chemicals
3.2. Methods
3.2.1. Moisture Content
3.2.2. Extraction of Phenolics
3.2.3. Analysis of Polyphenols Without Fermentation
3.2.4. Analysis of Polyphenols After Fermentation
3.2.5. Determination of Carotenoids
3.2.6. Fermentation Procedure
3.2.7. Volatile Compounds After Fermentation
3.2.8. Sugar Content
3.2.9. Liquid Chromatography Analysis
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kayahan, S.; Ozdemir, Y.; Gulbag, F. Functional Compounds and Antioxidant Activity of Rosa Species Grown In Turkey. Erwerbs-Obstbau 2023, 65, 1079–1086. [Google Scholar] [CrossRef]
- Belkhelladi, M. Effects of Daily Intake of Rosehip Extract on Low-Density Lipoprotein Cholesterol and Blood Glucose Levels: A Systematic Review. Cureus 2023, 15, e51225. [Google Scholar] [CrossRef]
- Andersson, U.; Berger, K.; Högberg, A.; Landin-Olsson, M.; Holm, C. Effects of Rose Hip Intake on Risk Markers of Type 2 Diabetes and Cardiovascular Disease: A Randomized, Double-Blind, Cross-over Investigation in Obese Persons. Eur. J. Clin. Nutr. 2012, 66, 585–590. [Google Scholar] [CrossRef]
- Marstrand, K.; Warholm, L.; Pedersen, F.; Winther, K. Dose Dependent Impact of Rose-Hip Powder in Patients Suffering From Osteoarthritis of the Hip And or Knee—A Double Blind, Randomized, Placebo Controlled, Parallel Group, Phase III Study. Int. J. Complement. Altern. Med. 2017, 7, 329–334. [Google Scholar] [CrossRef]
- Dabaghian, F.H.; Yazdani, D.; Hassanzadeh, K.; Emami, S.A. Anti-Hyperglycemic Effect of Aqueous Extract of Rosa Canina, L. Fruit in Type 2 Diabetic Patients: A Randomized Double- Blind Placebo Controlled Clinical Trial. Int. J. Biosci. IJB 2015, 7, 216–224. [Google Scholar] [CrossRef]
- Nagatomo, A.; Nishida, N.; Fukuhara, I.; Noro, A.; Kozai, Y.; Sato, H.; Matsuura, Y. Daily Intake of Rosehip Extract Decreases Abdominal Visceral Fat in Preobese Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Diabetes Metab. Syndr. Obes. Targets Ther. 2015, 8, 147–256. [Google Scholar] [CrossRef]
- Cavalera, M.; Axling, U.; Rippe, C.; Swärd, K.; Holm, C. Dietary Rose Hip Exerts Antiatherosclerotic Effects and Increases Nitric Oxide-Mediated Dilation in ApoE-Null Mice. J. Nutr. Biochem. 2017, 44, 52–59. [Google Scholar] [CrossRef]
- Kunc, N.; Mikulič-Petkovšek, M.; Hudina, M.; Bavcon, J.; Vreš, B.; Osterc, G.; Ravnjak, B. Autochthonous Rose Hybrid Rosa Pendulina × Spinosissima Overshines Main Genotype Rosa Pendulina in the Biochemical Characteristics of Their Hips. Horticulturae 2022, 8, 669. [Google Scholar] [CrossRef]
- Kunc, N.; Hudina, M.; Osterc, G.; Bavcon, J.; Ravnjak, B.; Mikulič-Petkovšek, M. Phenolic Compounds of Rose Hips of Some Rosa Species and Their Hybrids Native Grown in the South-West of Slovenia during a Two-Year Period (2020–2021). Foods 2023, 12, 1952. [Google Scholar] [CrossRef]
- Ninomiya, K.; Matsuda, H.; Kubo, M.; Morikawa, T.; Nishida, N.; Yoshikawa, M. Potent Anti-Obese Principle from Rosa Canina: Structural Requirements and Mode of Action of Trans-Tiliroside. Bioorg. Med. Chem. Lett. 2007, 17, 3059–3064. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis Vinifera, Sideritis Scardica and Crocus Sativus. ChemEngineering 2021, 5, 25. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Drosou, F.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Dourtoglou, V.G.; Elhakem, A.; Sami, R.; Ashour, A.A.; Shafie, A.; et al. Combination of Pulsed Electric Field and Ultrasound in the Extraction of Polyphenols and Volatile Compounds from Grape Stems. Appl. Sci. 2022, 12, 6219. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Tsapou, E.A.; Drosou, F.; Bozinou, E.; Lalas, S.; Tataridis, P.; Dourtoglou, V. Pulsed Electric Field Extraction of α and β-Acids From Pellets of Humulus Lupulus (Hop). Front. Bioeng. Biotechnol. 2020, 8, 297. [Google Scholar] [CrossRef]
- Carpentieri, S.; Režek Jambrak, A.; Ferrari, G.; Pataro, G. Pulsed Electric Field-Assisted Extraction of Aroma and Bioactive Compounds From Aromatic Plants and Food By-Products. Front. Nutr. 2022, 8, 792203. [Google Scholar] [CrossRef]
- Toulaki, A.K.; Bozinou, E.; Athanasiadis, V.; Chatzimitakos, T.; Mantanis, G.I.; Dourtoglou, V.G.; Lalas, S.I. Accelerating Xinomavro Red Wine Flavor Aging Using a Pulsed Electric Field and Various Wood Chips. Appl. Sci. Switz. 2023, 13, 12844. [Google Scholar] [CrossRef]
- Toulaki, A.K.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Roufas, K.; Mantanis, G.I.; Dourtoglou, V.G.; Lalas, S.I. Investigation of Xinomavro Red Wine Aging with Various Wood Chips Using Pulsed Electric Field. Beverages 2024, 10, 13. [Google Scholar] [CrossRef]
- Tsapou, E.A.; Ntourtoglou, G.; Drosou, F.; Tataridis, P.; Lalas, S.; Dourtoglou, V. Pulsed Electric Field: A “Green” Extraction Technology for Biomolecular Products from Glycerol with Fermentation of Non-Saccharomyces Yeasts. Front. Bioeng. Biotechnol. 2022, 10, 964174. [Google Scholar] [CrossRef]
- López, N.; Puértolas, E.; Condón, S.; Álvarez, I.; Raso, J. Effects of Pulsed Electric Fields on the Extraction of Phenolic Compounds during the Fermentation of Must of Tempranillo Grapes. Innov. Food Sci. Emerg. Technol. 2008, 9, 477–482. [Google Scholar] [CrossRef]
- Dong, X.; Li, X.; Ruan, X.; Kong, L.; Wang, N.; Gao, W.; Wang, R.; Sun, Y.; Jin, M. A Deep Insight into the Structure-Solubility Relationship and Molecular Interaction Mechanism of Diverse Flavonoids in Molecular Solvents, Ionic Liquids, and Molecular Solvent/Ionic Liquid Mixtures. J. Mol. Liq. 2023, 385, 122359. [Google Scholar] [CrossRef]
- Fauster, T.; Philipp, C.; Hanz, K.; Scheibelberger, R.; Teufl, T.; Nauer, S.; Scheiblhofer, H.; Jaeger, H. Impact of a Combined Pulsed Electric Field (PEF) and Enzymatic Mash Treatment on Yield, Fermentation Behaviour and Composition of White Wine. Eur. Food Res. Technol. 2020, 246, 609–620. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, T.; Zhang, Y.; Zhang, A.; Gai, L.; Niu, D. Potential Applications of Pulsed Electric Field in the Fermented Wine Industry. Front. Nutr. 2022, 9, 1048632. [Google Scholar] [CrossRef]
- Drosou, F.; Anastasakou, K.; Tataridis, P.; Dourtoglou, V.; Oreopoulou, V. Evaluation of Commercial Strains of Torulaspora delbrueckii in Beer Production. J. Am. Soc. Brew. Chem. 2023, 81, 211–220. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Method 925.10: Moisture in Dried Fruits; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Pataro, G.; Carullo, D.; Ferrari, G. Effect of Pef Pre-Treatment and Extraction Temperature on the Recovery of Carotenoids from Tomato Wastes. Chem. Eng. Trans. 2019, 75, 139–144. [Google Scholar] [CrossRef]
- Luengo, E.; Álvarez, I.; Raso, J. Improving Carotenoid Extraction from Tomato Waste by Pulsed Electric Fields. Front. Nutr. 2014, 1. [Google Scholar] [CrossRef]
- Dr. Duke’s Phytochemical and Ethnobotanical Databases; United States Department of Agriculture. Available online: https://phytochem.nal.usda.gov/ (accessed on 5 July 2025).
- KNApSAcK Family Database; Nara Institute of Science and Technology. Available online: https://www.knapsackfamily.com/KNApSAcK/ (accessed on 5 July 2025).
- Plant Secondary Compounds Database (PSCDB); Universidad de Talca. Available online: http://pscdb.appsbio.utalca.cl (accessed on 5 July 2025).
- Cunja, V.; Mikulic-Petkovsek, M.; Weber, N.; Jakopic, J.; Zupan, A.; Veberic, R.; Stampar, F.; Schmitzer, V. Fresh from the Ornamental Garden: Hips of Selected Rose Cultivars Rich in Phytonutrients. J. Food Sci. 2016, 81, C369–C379. [Google Scholar] [CrossRef]
- Stănilă, A.; Diaconeasa, Z.; Roman, I.; Sima, N.; Măniuțiu, D.; Roman, A.; Sima, R. Extraction and Characterization of Phenolic Compounds from Rose Hip (Rosa canina, L.) Using Liquid Chromatography Coupled with Electrospray Ionization–Mass Spectrometry. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 349–354. [Google Scholar] [CrossRef]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of Volatiles, Phenolic Compounds and Antioxidant Activities of Rose Hip (Rosa, L.) Fruits in Turkey. LWT–Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Nowak, R. Chemical Composition of Hips Essential Oils of Some Rosa L. Species December 13, 2004. Z. Naturforschung C 2005, 60, 369–378. [Google Scholar] [CrossRef]
- Deliorman Orhan, D.; Hartevioğlu, A.; Küpeli, E.; Yesilada, E. In Vivo Anti-Inflammatory and Antinociceptive Activity of the Crude Extract and Fractions from Rosa Canina, L. Fruits. J. Ethnopharmacol. 2007, 112, 394–400. [Google Scholar] [CrossRef]
- Jiménez, S.; Gascón, S.; Luquin, A.; Laguna, M.; Ancin-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Rosa Canina Extracts Have Antiproliferative and Antioxidant Effects on Caco-2 Human Colon Cancer. PLoS ONE 2016, 11, e0159136. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Vinkler, P.; Lakatos, B.; Illés, V.; Then, M. Rose Hip (Rosa Canina L.) Oil Obtained from Waste Hip Seeds by Different Extraction Methods. Bioresour. Technol. 2002, 82, 195–201. [Google Scholar] [CrossRef]
- Cazarolli, L.; Zanatta, L.; Alberton, E.; Bonorino Figueiredo, M.S.; Folador, P.; Damazio, R.; Pizzolatti, M.; Barreto Silva, F.R. Flavonoids: Prospective Drug Candidates. Mini-Rev. Med. Chem. 2008, 8, 1429–1440. [Google Scholar] [CrossRef]
- Han, R.; Yang, H.; Lu, L.; Lin, L. Tiliroside as a CAXII Inhibitor Suppresses Liver Cancer Development and Modulates E2Fs/Caspase-3 Axis. Sci. Rep. 2021, 11, 8626. [Google Scholar] [CrossRef] [PubMed]
- Bellavite, P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants 2023, 12, 280. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Studies on Chemical Constituents and Bioactivity of Rosa Micrantha: An Alternative Antioxidants Source for Food, Pharmaceutical, or Cosmetic Applications. J. Agric. Food Chem. 2010, 58, 6277–6284. [Google Scholar] [CrossRef] [PubMed]
- Drosou, F.; Mamma, D.; Tataridis, P.; Dourtoglou, V.; Oreopoulou, V. Metschnikowia Pulcherrima in Mono or Co-Fermentations in Brewing. BrewingScience 2022, 75, 69–78. [Google Scholar] [CrossRef]
Compounds | CTRL | PEF |
---|---|---|
Isoamyl alcohol | 10.30 ± 1.21a | 11.19 ± 1.53 a |
Active amyl alcohol | 4.24 ± 1.34 a | 3.86 ± 0.73 a |
Butanoic acid, 3-methyl- | 0.11 ± 0.02 a | 0.11 ± 0.04 a |
Butanoic acid, 2-methyl- | 0.11 ± 0.03 a | 0.11 ± 0.03 a |
1-Butanol, 3-methyl-, acetate | 0.21 ± 0.00 a | 0.10 ± 0.01b |
2H-Pyran-2,6(3H)-dione | 0.20 ± 0.06 a | 0.14 ± 0.07 a |
Hexanoic acid | 0.30 ± 0.20 a | 0.36 ± 0.09 a |
Hexanoic acid, ethyl ester | 0.10 ± 0.01 a | 0.13 ± 0.11 a |
Phenylethyl Alcohol | 5.96 ± 0.90 a | 8.85 ± 0.76 b |
Octanoic acid | 1.05 ± 0.04 a | 1.40 ± 0.26 b |
Octanoic acid ethyl ester | 0.13 ± 0.15 a | 0.26 ± 0.12 a |
Acetic acid, 2-phenylethyl ester | 0.06 ± 0.03 a | 0.09 ± 0.03 a |
Nonanoic acid | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
α-Ionone | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
Eugenol | 0.02 ± 0.00 a | 0.03 ± 0.01 a |
3-Decenoic acid, (E)- | 0.21 ± 0.02 a | 0.09 ± 0.00 b |
n-Decanoic acid | 0.16 ± 0.07 a | 0.22 ± 0.03 a |
Ethyl trans-4-decenoate | 0.02 ± 0.00 a | 0.03 ± 0.01 a |
Decanoic acid, ethyl ester | 0.01 ± 0.00 a | 0.03 ± 0.00 a |
Tyrosol | 0.69 ± 0.10 a | 0.58 ± 0.04 a |
Vanillic acid | 0.34 ± 0.02 a | 0.13 ± 0.07 b |
Tryptophol | 0.33 ± 0.13 a | 0.76 ± 0.08 b |
1H-Indole-3-ethanol, acetate (ester) | ND | 0.05 ± 0.00 a |
n-Hexadecanoic acid | 0.53 ± 0.09 a | 0.90 ± 0.34 b |
Stearic acid | 0.46 ± 0.09 a | 0.59 ± 0.16 a |
Category | Compound Type | Compound | Change Description | p-Value |
---|---|---|---|---|
Significant Increases | Aromatic Alcohols | Phenylethyl Alcohol | ↑ 48.5% (from 5.96 to 8.85) | 0.004 |
Indole Derivatives | Tryptophol | ↑ 130% (from 0.33 to 0.76) | 0.002 | |
Long-chain Fatty Acids | n-Hexadecanoic Acid | ↑ 69.8% (from 0.53 to 0.90) | 0.047 | |
Significant Decreases | Phenolic Acids | Vanillic Acid | ↓ 61.8% (from 0.34 to 0.13) | 0.011 |
Unsaturated Acids | 3-Decenoic Acid (E) | ↓ 57.1% (from 0.21 to 0.09) | 0.019 | |
New Compounds | Esters | 1H-Indole-3-ethanol, acetate | Detected only in PEF (0.05 ± 0.00) | - |
Stable Compounds | Short-chain Acids | Butanoic Acid | No change (0.11 in both treatments) | 0.615 |
Simple Alcohols | Isoamyl Alcohol | Minimal change (from 10.30 to 11.19) | 0.184 | |
Active Amyl Alcohol | Minimal change (from 4.24 to 3.86) | 0.278 |
Metabolic Category | Observed Effects of PEF Treatment |
---|---|
Aromatic Compounds | Strong enhancement |
Long-chain Fatty Acids | Moderate increase |
Simple Alcohols | Minimal impact |
Short-chain Acids | No significant change |
Phenolic Compounds | Mixed responses (compound-dependent) |
Esters | Slight overall increase |
Confidence Level | Representative Compounds | Notes |
---|---|---|
High Reliability | Phenylethyl Alcohol, Tryptophol, Vanillic Acid | Low standard deviation; consistent across replicates |
Moderate Reliability | n-Hexadecanoic Acid, Octanoic Acid | Acceptable variability; moderate standard deviation |
Low Reliability | Various compounds with high standard deviation relative to mean | Greater variability; interpret with caution |
Peak | Suggested Compound(s) | MW | Compound Class |
---|---|---|---|
1 | Citric acid or Quinic acid | 192 | Organic acids |
4 | Procyanidin dimers (B1, B2, B3, B4, B5, B7) | 740 | Flavan-3-ol dimers (tannins) |
5 | Epirosmanol, Rosmanol | 346 | Phenolic diterpenoids |
6 | Catechin, Epicatechin | 290 | Flavan-3-ols |
8 | Hyacinthin, Pelargonin | 595 | Anthocyanins |
10, 20 | 6-Hydroxyluteolin 7-O-rhamnoside, Homoorientin, Cynaroside, Trifolin, Astragalin, Quercitrin | 448 | Flavonoid glycosides |
11, 19 | Eriodictyol hexoside, Dihydrokaempferol hexoside, Apigenin derivative | 450 | Flavanone/flavonol glycosides |
12, 13, 15 | Quercetin-3-arabinofuranoside, Afzelin | 431 | Flavonol glycosides |
14, 17, 18 | Phloridzin (Phloretin 2′-O-glucoside) | 435 | Dihydrochalcone glycoside |
16 | Lutein, Epi-lutein | 568 | Carotenoids |
24 | Quercetin-acetylhexoside | 506 | Flavonol glycoside (acetylated) |
30 | Euscaphic acid, 3β,6α,19α-Trihydroxyurs-12-en-28-oic acid | 488 | Triterpenoid |
Compound Group | Key Constituents | Potential Bioactivities |
---|---|---|
Organic Acids | Citric Acid | Preservative, antioxidant, contributes tartness |
Flavonoid Glycosides | Robinin, Kaempferol Glycosides, Quercetin Derivatives | Antioxidant, anti-inflammatory, potential anticancer |
Procyanidins | Dimers B1–B7 | Cardiovascular health, potent antioxidants |
Diterpenes | Epirosmanol, Rosmanol | Antimicrobial, antioxidant |
Flavan-3-ols | Catechin, Epicatechin | Cognitive and cardiovascular protection |
Anthocyanins and Polyphenols | Cyanidin Glycosides, Vanillic Acid | Color compounds, antioxidants |
Phytoestrogens and Isoflavones | Formononetin, Coumestrol, Genistin | Hormonal modulation, anti-inflammatory |
Glycosylated Derivatives | Luteolin, Apigenin, Phloretin Variants | Anti-inflammatory, antioxidant, anticancer |
Complex Polyphenols | Maclurin Derivatives, Phytenal | Signaling molecules, membrane components |
Phenolic Acids | Protocatechuic Acid | Anti-inflammatory, neuroprotection |
Group Code | Pretreatment | Solvent | Processing | Fermentation |
---|---|---|---|---|
RH/H2O/CTRL | None | H2O | CTRL | No |
RH/H2O/PEF | None | H2O | PEF | No |
RH/H2O/CTRL/F | None | H2O | CTRL | Yes |
RH/H2O/PEF/F | None | H2O | PEF | Yes |
RH/KOH/H2O/CTRL | KOH (1 N) | H2O | CTRL | No |
RH/KOH/H2O/PEF | KOH (1 N) | H2O | PEF | No |
RH/KOH/H2O/CTRL/F | KOH (1 N) | H2O | CTRL | Yes |
RH/KOH/H2O/PEF/F | KOH (1 N) | H2O | PEF | Yes |
RH/KOH/H2O:EtOH/CTRL | KOH (1 N) | H2O:EtOH | CTRL | No |
RH/KOH/H2O:EtOH/PEF | KOH (1 N) | H2O:EtOH | PEF | No |
RH/KOH/H2O:EtOH/CTRL/F | KOH (1 N) | H2O:EtOH | CTRL | Yes |
RH/KOH/H2O:EtOH/PEF/F | KOH (1 N) | H2O:EtOH | PEF | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntourtoglou, G.; Bardouki, C.; Douros, A.; Gkanatsios, N.; Bozinou, E.; Athanasiadis, V.; Lalas, S.I.; Dourtoglou, V.G. Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential. Molecules 2025, 30, 3259. https://doi.org/10.3390/molecules30153259
Ntourtoglou G, Bardouki C, Douros A, Gkanatsios N, Bozinou E, Athanasiadis V, Lalas SI, Dourtoglou VG. Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential. Molecules. 2025; 30(15):3259. https://doi.org/10.3390/molecules30153259
Chicago/Turabian StyleNtourtoglou, George, Chaido Bardouki, Andreas Douros, Nikolaos Gkanatsios, Eleni Bozinou, Vassilis Athanasiadis, Stavros I. Lalas, and Vassilis G. Dourtoglou. 2025. "Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential" Molecules 30, no. 15: 3259. https://doi.org/10.3390/molecules30153259
APA StyleNtourtoglou, G., Bardouki, C., Douros, A., Gkanatsios, N., Bozinou, E., Athanasiadis, V., Lalas, S. I., & Dourtoglou, V. G. (2025). Enhancing Bioactive Compound Extraction from Rose Hips Using Pulsed Electric Field (PEF) Treatment: Impacts on Polyphenols, Carotenoids, Volatiles, and Fermentation Potential. Molecules, 30(15), 3259. https://doi.org/10.3390/molecules30153259