Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (813)

Search Parameters:
Keywords = visible spectral range

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4557 KiB  
Article
Potential of LiDAR and Hyperspectral Sensing for Overcoming Challenges in Current Maritime Ballast Tank Corrosion Inspection
by Sergio Pallas Enguita, Jiajun Jiang, Chung-Hao Chen, Samuel Kovacic and Richard Lebel
Electronics 2025, 14(15), 3065; https://doi.org/10.3390/electronics14153065 (registering DOI) - 31 Jul 2025
Abstract
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, [...] Read more.
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, especially under coatings. This paper critically examines these challenges and explores the potential of Light Detection and Ranging (LiDAR) and Hyperspectral Imaging (HSI) to form the basis of improved inspection approaches. We discuss LiDAR’s utility for accurate 3D mapping and providing a spatial framework and HSI’s potential for objective material identification and surface characterization based on spectral signatures along a wavelength range of 400-1000nm (visible and near infrared). Preliminary findings from laboratory tests are presented, demonstrating the basic feasibility of HSI for differentiating surface conditions (corrosion, coatings, bare metal) and relative coating thickness, alongside LiDAR’s capability for detailed geometric capture. Although these results do not represent a deployable system, they highlight how LiDAR and HSI could address key limitations of current practices and suggest promising directions for future research into integrated sensor-based corrosion assessment strategies. Full article
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
Evaluating the Effect of Thermal Treatment on Phenolic Compounds in Functional Flours Using Vis–NIR–SWIR Spectroscopy: A Machine Learning Approach
by Achilleas Panagiotis Zalidis, Nikolaos Tsakiridis, George Zalidis, Ioannis Mourtzinos and Konstantinos Gkatzionis
Foods 2025, 14(15), 2663; https://doi.org/10.3390/foods14152663 - 29 Jul 2025
Viewed by 210
Abstract
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) [...] Read more.
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) spectroscopy (350–2500 nm), integrated with machine learning (ML) algorithms. Random Forest models were employed to classify samples based on flour type, baking temperature, and phenolic concentration. The full spectral range yielded high classification accuracy (0.98, 0.98, and 0.99, respectively), and an explainability framework revealed the wavelengths most relevant for each class. To address concerns regarding color as a confounding factor, a targeted spectral refinement was implemented by sequentially excluding the visible region. Models trained on the 1000–2500 nm and 1400–2500 nm ranges showed minor reductions in accuracy, suggesting that classification is not solely driven by visible characteristics. Results indicated that legume and wheat flours retain higher total phenolic content (TPC) under mild thermal conditions, whereas grape seed flour (GSF) and olive stone flour (OSF) exhibited notable thermal stability of TPC even at elevated temperatures. These first findings suggest that the proposed non-destructive spectroscopic approach enables rapid classification and quality assessment of functional flours, supporting future applications in precision food formulation and quality control. Full article
Show Figures

Figure 1

25 pages, 5776 KiB  
Article
Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery
by Russell Main, Mark Jayson B. Felix, Michael S. Watt and Robin J. L. Hartley
Forests 2025, 16(8), 1240; https://doi.org/10.3390/f16081240 - 28 Jul 2025
Viewed by 256
Abstract
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost [...] Read more.
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost operations, particularly in steep or remote terrain. As uptake grows, tools for monitoring treatment effectiveness, particularly during the early stages of stress, will become increasingly important. This study evaluated the use of UAV-based multispectral and hyperspectral imagery to detect early herbicide-induced stress in a nine-year-old radiata pine (Pinus radiata D. Don) plantation, based on temporal changes in crown spectral signatures following treatment with metsulfuron-methyl. A staggered-treatment design was used, in which herbicide was applied to a subset of trees in six blocks over several weeks. This staggered design allowed a single UAV acquisition to capture imagery of trees at varying stages of herbicide response, with treated trees ranging from 13 to 47 days after treatment (DAT). Visual canopy assessments were carried out to validate the onset of visible symptoms. Spectral changes either preceded or coincided with the development of significant visible canopy symptoms, which started at 25 DAT. Classification models developed using narrow band hyperspectral indices (NBHI) allowed robust discrimination of treated and non-treated trees as early as 13 DAT (F1 score = 0.73), with stronger results observed at 18 DAT (F1 score = 0.78). Models that used multispectral indices were able to classify treatments with a similar accuracy from 18 DAT (F1 score = 0.78). Across both sensors, pigment-sensitive indices, particularly variants of the Photochemical Reflectance Index, consistently featured among the top predictors at all time points. These findings address a key knowledge gap by demonstrating practical, remote sensing-based solutions for monitoring and characterising herbicide-induced stress in field-grown radiata pine. The 13-to-18 DAT early detection window provides an operational baseline and a target for future research seeking to refine UAV-based detection of chemical thinning. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

13 pages, 788 KiB  
Article
Advancing Kiwifruit Maturity Assessment: A Comparative Study of Non-Destructive Spectral Techniques and Predictive Models
by Michela Palumbo, Bernardo Pace, Antonia Corvino, Francesco Serio, Federico Carotenuto, Alice Cavaliere, Andrea Genangeli, Maria Cefola and Beniamino Gioli
Foods 2025, 14(15), 2581; https://doi.org/10.3390/foods14152581 - 23 Jul 2025
Viewed by 216
Abstract
Gold kiwifruits from two different farms, harvested at different times, were analysed using both non-destructive and destructive methods. A computer vision system (CVS) and a portable spectroradiometer were used to perform non-destructive measurements of firmness, titratable acidity, pH, soluble solids content, dry matter, [...] Read more.
Gold kiwifruits from two different farms, harvested at different times, were analysed using both non-destructive and destructive methods. A computer vision system (CVS) and a portable spectroradiometer were used to perform non-destructive measurements of firmness, titratable acidity, pH, soluble solids content, dry matter, and soluble sugars (glucose and fructose), with the goal of building predictive models for the maturity index. Hyperspectral data from the visible–near-infrared (VIS–NIR) and short-wave infrared (SWIR) ranges, collected via the spectroradiometer, along with colour features extracted by the CVS, were used as predictors. Three different regression methods—Partial Least Squares (PLS), Support Vector Regression (SVR), and Gaussian process regression (GPR)—were tested to assess their predictive accuracy. The results revealed a significant increase in sugar content across the different harvesting times in the season. Regardless of the regression method used, the CVS was not able to distinguish among the different harvests, since no significant skin colour changes were measured. Instead, hyperspectral measurements from the near-infrared (NIR) region and the initial part of the SWIR region proved useful in predicting soluble solids content, glucose, and fructose. The models built using these spectral regions achieved R2 average values between 0.55 and 0.60. Among the different regression models, the GPR-based model showed the best performance in predicting kiwifruit soluble solids content, glucose, and fructose. In conclusion, for the first time, the effectiveness of a fully portable spectroradiometer measuring surface reflectance until the full SWIR range for the rapid, contactless, and non-destructive estimation of the maturity index of kiwifruits was reported. The versatility of the portable spectroradiometer may allow for field applications that accurately identify the most suitable moment to carry out the harvesting. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

21 pages, 2817 KiB  
Article
A Handheld IoT Vis/NIR Spectroscopic System to Assess the Soluble Solids Content of Wine Grapes
by Xu Zhang, Ziquan Qin, Ruijie Zhao, Zhuojun Xie and Xuebing Bai
Sensors 2025, 25(14), 4523; https://doi.org/10.3390/s25144523 - 21 Jul 2025
Viewed by 276
Abstract
The quality of wine largely depends on the quality of wine grapes, which is determined by their chemical composition. Therefore, measuring parameters related to grape ripeness, such as soluble solids content (SSC), is crucial for harvesting high-quality grapes. Visible–Near-Infrared (Vis/NIR) spectroscopy enables effective, [...] Read more.
The quality of wine largely depends on the quality of wine grapes, which is determined by their chemical composition. Therefore, measuring parameters related to grape ripeness, such as soluble solids content (SSC), is crucial for harvesting high-quality grapes. Visible–Near-Infrared (Vis/NIR) spectroscopy enables effective, non-destructive detection of SSC in grapes. However, commercial Vis/NIR spectrometers are often expensive, bulky, and power-consuming, making them unsuitable for on-site applications. This article integrated the AS7265X sensor to develop a low-cost handheld IoT multispectral detection device, which can collect 18 variables in the wavelength range of 410–940 nm. The data can be sent in real time to the cloud configuration, where it can be backed up and visualized. After simultaneously removing outliers detected by both Monte Carlo (MC) and principal component analysis (PCA) methods from the raw spectra, the SSC prediction model was established, resulting in an RV2 of 0.697. Eight preprocessing methods were compared, among which moving average smoothing (MAS) and Savitzky–Golay smoothing (SGS) improved the RV2 to 0.756 and 0.766, respectively. Subsequently, feature wavelengths were selected using UVE and SPA, reducing the number of variables from 18 to 5 and 6, respectively, further increasing the RV2 to 0.809 and 0.795. The results indicate that spectral data optimization methods are effective and essential for improving the performance of SSC prediction models. The IoT Vis/NIR Spectroscopic System proposed in this study offers a miniaturized, low-cost, and practical solution for SSC detection in wine grapes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

16 pages, 3339 KiB  
Article
Impact of Spectral Irradiance Control on Bioactive Compounds and Color Preservation in Solar-Dried Papaya
by Diana Paola García-Moreira, Erick César López-Vidaña, Ivan Moreno and Lucía Delgadillo-Ruiz
Processes 2025, 13(7), 2311; https://doi.org/10.3390/pr13072311 - 20 Jul 2025
Viewed by 800
Abstract
The quality effects of spectral irradiance conditions during papaya (Carica papaya L.) drying were investigated using three different dryers: a solar dryer with dynamic irradiance control (SDIC), a cylindrical solar dryer (CSD), and a solar simulator dryer (SSD). This study builds upon [...] Read more.
The quality effects of spectral irradiance conditions during papaya (Carica papaya L.) drying were investigated using three different dryers: a solar dryer with dynamic irradiance control (SDIC), a cylindrical solar dryer (CSD), and a solar simulator dryer (SSD). This study builds upon previous PDLC film applications in solar drying by specifically examining its impact on phytochemical preservation and color degradation, addressing gaps in spectral-specific effects on food quality parameters. The drying conditions were as follows: a temperature of 50 °C for each method, 700 w/m2 for both SDIC and solar simulator dryers (SSD), and full solar irradiance for the cylindrical solar dryer (CSD). The cylindrical solar dryer exhibited 210 min of drying time due to higher solar irradiance than SDIC (300 min), while SSD lasted 180 min. Drying rates were highest for CSD (0.056 g H2O/g d.m. min−1), followed by SDIC (0.027 g H2O/g d.m. min−1). Color analysis revealed that CSD resulted in the most significant color degradation, followed by SSD and SDIC. This was attributed to the varying spectral composition of radiation in each method. The CSD, with a full solar spectrum, including higher UV and visible radiation, induced more pronounced color changes than SDIC, which received lower intensity radiation in these ranges. Chemical analyses showed that SSD samples had the highest antioxidant activity (1432.91 µmol TE/g dw by ABTS) and phenolic content (58.92 mg GAE/100 g), suggesting simulated conditions may better preserve certain phytochemicals. SDIC maintained better carotenoid-related color parameters while showing intermediate antioxidant levels (1084.09 µmol TE/g dw). These results demonstrate that irradiance control significantly impacts drying efficiency and quality parameters. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

9 pages, 1253 KiB  
Proceeding Paper
Effect of Far-UVC and Violet Irradiation on the Microbial Contamination of Spinach Leaves and Their Vitamin C and Chlorophyll Contents
by Alexander Gerdt, Anna-Maria Gierke, Petra Vatter and Martin Hessling
Biol. Life Sci. Forum 2025, 47(1), 1; https://doi.org/10.3390/blsf2025047001 - 16 Jul 2025
Viewed by 192
Abstract
Microbial contamination of food can lead to faster spoilage and infections. Therefore, disinfection processes are required that have a low detrimental effect on the nutritional content. Concerning radiation disinfection, two spectral ranges have recently become important. The Far-UVC spectral range, with a wavelength [...] Read more.
Microbial contamination of food can lead to faster spoilage and infections. Therefore, disinfection processes are required that have a low detrimental effect on the nutritional content. Concerning radiation disinfection, two spectral ranges have recently become important. The Far-UVC spectral range, with a wavelength below 230 nm and visible violet light. In this study, leaf spinach was used to investigate the extent to which these radiations inactivate Escherichia coli, but also to determine if the vitamin C or chlorophyll content was reduced. Frozen spinach leaves (Spinacia oleracea) were contaminated with E. coli × pGLO and irradiated with either a 222 nm krypton chloride lamp or 405 nm LEDs. The achieved bacterial reduction was determined by plating the irradiated samples on agar plates and subsequent colony counting. The vitamin C concentration was determined by means of redox titration, and the concentrations of chlorophyll a and chlorophyll b were determined using spectrometry. Both irradiations exhibited a strong antimicrobial impact on E. coli. The average log reduction doses were about 19 mJ/cm2 (222 nm) and 87 J/cm2 (405 nm), respectively. The vitamin C concentration decreased by 30% (222 nm) or 20% (405 nm), and the chlorophyll concentrations decreased by about 25%. Both irradiation approaches are able to substantially reduce microorganisms on spinach leaves by two orders of magnitude, but this is associated with a reduction in the nutrient content. Full article
Show Figures

Figure 1

28 pages, 6267 KiB  
Article
Detection of Pine Wilt Disease Using a VIS-NIR Slope-Based Index from Sentinel-2 Data
by Jian Guo, Ran Kang, Tianhe Xu, Caiyun Deng, Li Zhang, Siqi Yang, Guiling Pan, Lulu Si, Yingbo Lu and Hermann Kaufmann
Forests 2025, 16(7), 1170; https://doi.org/10.3390/f16071170 - 16 Jul 2025
Viewed by 273
Abstract
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus Steiner & Buhrer (pine wood nematodes, PWN), impacts forest carbon sequestration and climate change. However, satellite-based PWD monitoring is challenging due to the limited spatial resolution of Sentinel’s MSI sensor, which reduces its sensitivity to [...] Read more.
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus Steiner & Buhrer (pine wood nematodes, PWN), impacts forest carbon sequestration and climate change. However, satellite-based PWD monitoring is challenging due to the limited spatial resolution of Sentinel’s MSI sensor, which reduces its sensitivity to subtle biochemical alterations in foliage. We have, therefore, developed a slope product index (SPI) for effective detection of PWD using single-date satellite imagery based on spectral gradients in the visible and near-infrared (VNIR) range. The SPI was compared against 15 widely used vegetation indices and demonstrated superior robustness across diverse test sites. Results show that the SPI is more sensitive to changes in chlorophyll content in the PWD detection, even under potentially confounding conditions such as drought. When integrated into Random Forest (RF) and Back-Propagation Neural Network (BPNN) models, SPI significantly improved classification accuracy, with the multivariate RF model achieving the highest performance and univariate with SPI in BPNN. The generalizability of SPI was validated across test sites in distinct climate zones, including Zhejiang (accuracyZ_Mean = 88.14%) and Shandong (accuracyS_Mean = 78.45%) provinces in China, as well as Portugal. Notably, SPI derived from Sentinel-2 imagery in October enables more accurate and timely PWD detection while reducing field investigation complexity and cost. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Graphical abstract

19 pages, 5180 KiB  
Article
In-Flight Calibration of Geostationary Meteorological Imagers Using Alternative Methods: MTG-I1 FCI Case Study
by Ali Mousivand, Christoph Straif, Alessandro Burini, Mounir Lekouara, Vincent Debaecker, Tim Hewison, Stephan Stock and Bojan Bojkov
Remote Sens. 2025, 17(14), 2369; https://doi.org/10.3390/rs17142369 - 10 Jul 2025
Viewed by 435
Abstract
The Flexible Combined Imager (FCI), developed as the next-generation imager for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat Third Generation (MTG) satellite series, represents a significant advancement over its predecessor, SEVIRI, on the Meteosat Second Generation (MSG) satellites. FCI [...] Read more.
The Flexible Combined Imager (FCI), developed as the next-generation imager for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat Third Generation (MTG) satellite series, represents a significant advancement over its predecessor, SEVIRI, on the Meteosat Second Generation (MSG) satellites. FCI offers more spectral bands, higher spatial resolution, and faster imaging capabilities, supporting a wide range of applications in weather forecasting, climate monitoring, and environmental analysis. On 13 January 2024, the FCI onboard MTG-I1 (renamed Meteosat-12 in December 2024) experienced a critical anomaly involving the failure of its onboard Calibration and Obturation Mechanism (COM). As a result, the use of the COM was discontinued to preserve operational safety, leaving the instrument dependent on alternative calibration methods. This loss of onboard calibration presents immediate challenges, particularly for the infrared channels, including image artifacts (e.g., striping), reduced radiometric accuracy, and diminished stability. To address these issues, EUMETSAT implemented an external calibration approach leveraging algorithms from the Global Space-based Inter-Calibration System (GSICS). The inter-calibration algorithm transfers stable and accurate calibration from the Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral instrument aboard Metop-B and Metop-C satellites to FCI’s infrared channels daily, ensuring continued data quality. Comparisons with Cross-track Infrared Sounder (CrIS) data from NOAA-20 and NOAA-21 satellites using a similar algorithm is then used to validate the radiometric performance of the calibration. This confirms that the external calibration method effectively compensates for the absence of onboard blackbody calibration for the infrared channels. For the visible and near-infrared channels, slower degradation rates and pre-anomaly calibration ensure continued accuracy, with vicarious calibration expected to become the primary source. This adaptive calibration strategy introduces a novel paradigm for in-flight calibration of geostationary instruments and offers valuable insights for satellite missions lacking onboard calibration devices. This paper details the COM anomaly, the external calibration process, and the broader implications for future geostationary satellite missions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

19 pages, 3941 KiB  
Article
Efficient Energy Transfer Down-Shifting Material for Dye-Sensitized Solar Cells
by Emeka Harrison Onah, N. L. Lethole and P. Mukumba
Materials 2025, 18(14), 3213; https://doi.org/10.3390/ma18143213 - 8 Jul 2025
Viewed by 255
Abstract
Dye-sensitized solar cells (DSSCs) are promising alternatives for power generation due to their environmental friendliness, cost effectiveness, and strong performance under diffused light. Conversely, their low spectral response in the ultraviolet (UV) region significantly obliterates their overall performance. The so-called luminescent down-shifting (LDS) [...] Read more.
Dye-sensitized solar cells (DSSCs) are promising alternatives for power generation due to their environmental friendliness, cost effectiveness, and strong performance under diffused light. Conversely, their low spectral response in the ultraviolet (UV) region significantly obliterates their overall performance. The so-called luminescent down-shifting (LDS) presents a practical solution by converting high-energy UV photons into visible light that can be efficiently absorbed by sensitizer dyes. Herein, a conventional solid-state technique was applied for the synthesis of an LDS, europium (II)-doped barium orthosilicate (BaSiO3:Eu2+) material. The material exhibited strong UV absorption, with prominent peaks near 400 nm and within the 200–300 nm range, despite a weaker response in the visible region. The estimated optical bandgap was 3.47 eV, making it well-suited for UV absorbers. Analysis of the energy transfer mechanism from the LDS material to the N719 dye sensitizer depicted a strong spectral overlap of 2×1010M1cm1nm4, suggesting efficient energy transfer from the donor to the acceptor. The estimated Förster distance was approximately 6.83 nm, which matches the absorption profile of the dye-sensitizer. Our findings demonstrate the potential of BaSiO3:Eu2+ as an effective LDS material for enhancing UV light absorption and improving DSSC performance through increased spectral utilization and reduced UV-induced degradation. Full article
(This article belongs to the Special Issue Advanced Luminescent Materials and Applications)
Show Figures

Figure 1

26 pages, 7645 KiB  
Article
Prediction of Rice Chlorophyll Index (CHI) Using Nighttime Multi-Source Spectral Data
by Cong Liu, Lin Wang, Xuetong Fu, Junzhe Zhang, Ran Wang, Xiaofeng Wang, Nan Chai, Longfeng Guan, Qingshan Chen and Zhongchen Zhang
Agriculture 2025, 15(13), 1425; https://doi.org/10.3390/agriculture15131425 - 1 Jul 2025
Viewed by 444
Abstract
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring [...] Read more.
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring at the canopy level. This study aimed to explore the feasibility of predicting rice canopy CHI using nighttime multi-source spectral data combined with machine learning models. In this study, ground truth CHI values were obtained using a SPAD-502 chlorophyll meter. Canopy spectral data were acquired under nighttime conditions using a high-throughput phenotyping platform (HTTP) equipped with active light sources in a greenhouse environment. Three types of sensors—multispectral (MS), visible light (RGB), and chlorophyll fluorescence (ChlF)—were employed to collect data across different growth stages of rice, ranging from tillering to maturity. PCA and LASSO regression were applied for dimensionality reduction and feature selection of multi-source spectral variables. Subsequently, CHI prediction models were developed using four machine learning algorithms: support vector regression (SVR), random forest (RF), back-propagation neural network (BPNN), and k-nearest neighbors (KNNs). The predictive performance of individual sensors (MS, RGB, and ChlF) and sensor fusion strategies was evaluated across multiple growth stages. The results demonstrated that sensor fusion models consistently outperformed single-sensor approaches. Notably, during tillering (TI), maturity (MT), and the full growth period (GP), fused models achieved high accuracy (R2 > 0.90, RMSE < 2.0). The fusion strategy also showed substantial advantages over single-sensor models during the jointing–heading (JH) and grain-filling (GF) stages. Among the individual sensor types, MS data achieved relatively high accuracy at certain stages, while models based on RGB and ChlF features exhibited weaker performance and lower prediction stability. Overall, the highest prediction accuracy was achieved during the full growth period (GP) using fused spectral data, with an R2 of 0.96 and an RMSE of 1.99. This study provides a valuable reference for developing CHI prediction models based on nighttime multi-source spectral data. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

13 pages, 1109 KiB  
Technical Note
Detection of Bacterial Leaf Spot Disease in Sesame (Sesamum indicum L.) Using a U-Net Autoencoder
by Minju Lee, Jeseok Lee, Amit Ghimire, Yegyeong Bae, Tae-An Kang, Youngnam Yoon, In-Jung Lee, Choon-Wook Park, Byungwon Kim and Yoonha Kim
Remote Sens. 2025, 17(13), 2230; https://doi.org/10.3390/rs17132230 - 29 Jun 2025
Viewed by 301
Abstract
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. [...] Read more.
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. In this study, we extend this framework to a binary classification by employing a U-Net based deterministic autoencoder augmented with attention blocks to analyze HSI data of sesame plants inoculated with Pseudomonas syringae pv. sesami. Single-band grayscale images across the full spectral range were used to train the model on healthy samples, while the presence of disease was classified by assessing the reconstruction error, which we refer to as the anomaly score. The average classification accuracy in the visible region spectrum (430–689 nm) exceeded 0.8, with peaks at 641 nm and 689 nm. In comparison, the near-infrared region (>700 nm) attained an accuracy of approximately 0.6. Several visible bands demonstrated potential for early disease detection. Some lesion samples showed a gradual increase in anomaly scores over time, and notably, Band 23 (689 nm) exhibited exceeded anomaly scores even at early stages before visible symptoms appeared. This supports the potential of this wavelength for the early-stage detection of bacterial leaf spots in sesame. Full article
Show Figures

Graphical abstract

23 pages, 10930 KiB  
Article
Geospatial Analysis of Patterns and Trends of Mangrove Forest in Saudi Arabia: Identifying At-Risk Zone-Based Land Use
by Amal H. Aljaddani
Sustainability 2025, 17(13), 5957; https://doi.org/10.3390/su17135957 - 28 Jun 2025
Viewed by 735
Abstract
Mangrove ecosystems are crucial coastal habitats that support life and regulate the Earth’s atmosphere. However, these ecosystems face prominent threats due to anthropogenic activities and environmental constraints. For instance, the Saudi Arabian coast is particularly vulnerable to species extinction and biodiversity loss due [...] Read more.
Mangrove ecosystems are crucial coastal habitats that support life and regulate the Earth’s atmosphere. However, these ecosystems face prominent threats due to anthropogenic activities and environmental constraints. For instance, the Saudi Arabian coast is particularly vulnerable to species extinction and biodiversity loss due to the fragility of the ecosystem; this highlights the need to understand the spatial and temporal dynamics of mangrove forests in desert environments. Hence, this is the first national study to quantify mangrove forests and analyze at-risk zone-based land use along Saudi Arabian coasts over 40 years. Thus, the primary contents of this research were (1) to produce a new long-term dataset covering the entire Saudi coastline, (2) to identify the patterns, analyze the trends, and quantify the change of mangrove areas, and (3) to determine vulnerability zoning of mangrove area-based land use and transportation networks. This study used Landsat satellite imagery via Google Earth Engine for national-scale mangrove mapping of Saudi Arabia between 1985 and 2024. Visible and infrared bands and seven spectral indices were employed as input features for the random forest classifier. The two classes used were mangrove and non-mangrove; the latter class included non-mangrove land-use and land-cover areas. Then, the study employed the output mangrove mapping to delineate vulnerable mangrove forest-based land use. The overall results showed a substantial increase in mangrove areas, ranging from 27.74 to 59.31 km2 in the Red Sea and from 1.05 to 8.65 km2 in the Arabian Gulf between 1985 and 2024, respectively. However, within this decadal trend, there were noticeable periods of decline. The spatial coverage of mangroves was larger on Saudi Arabia’s western coasts, especially the southwestern coasts, than on its eastern coasts. The overall accuracy, conducted annually, ranged between 91.00% and 98.50%. The results also show that expanding land uses and transportation networks within at-risk zones of mangrove forests may have a high potential effect. This study aimed to benefit the government, conservation agencies, coastal planners, and policymakers concerned with the preservation of mangrove habitats. Full article
Show Figures

Figure 1

19 pages, 4247 KiB  
Article
Field-Based Spectral and Metabolomic Analysis of Tea Geometrid (Ectropis grisescens) Feeding Stress
by Xuelun Luo, Wenkai Zhang, Zhenxiong Huang, Yong He, Jin Zhang and Xiaoli Li
Agriculture 2025, 15(13), 1349; https://doi.org/10.3390/agriculture15131349 - 24 Jun 2025
Viewed by 344
Abstract
Tea is one of the most widely consumed non-alcoholic beverages globally, yet its yield and quality are significantly impacted by herbivory from tea geometrids. To accurately detect herbivory stress in tea leaves, this study integrated metabolomics with visible-near-infrared spectroscopy (VIS-NIRS) to explore its [...] Read more.
Tea is one of the most widely consumed non-alcoholic beverages globally, yet its yield and quality are significantly impacted by herbivory from tea geometrids. To accurately detect herbivory stress in tea leaves, this study integrated metabolomics with visible-near-infrared spectroscopy (VIS-NIRS) to explore its in situ capabilities and underlying mechanisms. The results demonstrated that metabolomic data, combined with PCA-based linear dimensionality reduction, could effectively distinguish between tea leaves subjected to herbivory by different densities of tea geometrids. VIS-NIRS successfully identified herbivore-damaged leaves, achieving an optimal average classification accuracy of 0.857. Furthermore, VIS-NIRS was able to differentiate leaves subjected to herbivory on different days. The application of appropriate preprocessing techniques significantly enhanced temporal classification, achieving the highest average classification accuracy of 0.773. By integrating metabolomics and spectral band analysis, the spectral range of 800–2500 nm was found to more accurately identify leaves exposed to herbivory for a prolonged period. Compared to using the full spectrum, the model built within this wavelength range improved classification accuracy by 10%. In conclusion, this study provides a solid theoretical foundation for the in situ, rapid detection of tea geometrid herbivory stress in the field using VIS-NIRS, offering key technical support for future applications. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Graphical abstract

30 pages, 2752 KiB  
Review
Application of Hyperspectral Imaging for Early Detection of Pathogen-Induced Stress in Cabbage as Case Study
by Magdalena Szechyńska-Hebda, Ryszard Hołownicki, Grzegorz Doruchowski, Konrad Sas, Joanna Puławska, Anna Jarecka-Boncela, Magdalena Ptaszek and Agnieszka Włodarek
Agronomy 2025, 15(7), 1516; https://doi.org/10.3390/agronomy15071516 - 22 Jun 2025
Viewed by 683
Abstract
Cabbage (Brassica oleracea L.) is a globally significant vegetable crop that faces productivity challenges due to fungal and bacterial pathogens. This review highlights the potential of spectral imaging techniques, specifically multispectral and hyperspectral methods, in detecting biotic stress in cabbage, with a [...] Read more.
Cabbage (Brassica oleracea L.) is a globally significant vegetable crop that faces productivity challenges due to fungal and bacterial pathogens. This review highlights the potential of spectral imaging techniques, specifically multispectral and hyperspectral methods, in detecting biotic stress in cabbage, with a particular emphasis on pathogen-induced responses. These non-invasive approaches enable real-time assessment of plant physiological and biochemical changes, providing detailed spectral data to identify pathogens before visible symptoms appear. Hyperspectral imaging, with its high spectral resolution, allows for distinctions among different pathogens and the evaluation of stress responses, whereas multispectral imaging offers broad-scale monitoring suitable for field-level applications. The work synthesizes research in the existing literature while presenting novel experimental findings that validate and extend current knowledge. Significant spectral changes are reported in cabbage leaves infected by Alternaria brassicae and Botrytis cinerea. Early-stage detection was facilitated by alterations in flavonoids (400–450 nm), chlorophyll (430–450, 680–700 nm), carotenoids (470–520 nm), xanthophyll (520–600 nm), anthocyanin (550–560 nm, 700–710 nm, 780–790 nm), phenols/mycotoxins (700–750 nm, 718–722), water/pigments content (800–900 nm), and polyphenols/lignin (900–1000). The findings underscore the importance of targeting specific spectral ranges for early pathogen detection. By integrating these techniques with machine learning, this research demonstrates their applicability in advancing precision agriculture, improving disease management, and promoting sustainable production systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Back to TopTop