Detection of Pine Wilt Disease Using a VIS-NIR Slope-Based Index from Sentinel-2 Data
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Used
2.2.1. Satellite Data
2.2.2. Field Measurements in China
2.2.3. Observed Data of PWD in Portugal
2.3. Methods
2.3.1. Genetic Analysis of Samples for PWN Identification
2.3.2. Design of the Slope Product Index (SPI)
2.3.3. Selection of Common Indices for Comparative Analyses
2.3.4. Evaluation of Index Effectiveness
2.3.5. Machine Learning-Based Classification Models
- Random forest (RF)
- 2.
- Back-propagation neural network (BPNN)
2.3.6. Model Performance Assessment
3. Results
3.1. Analysis of Index Correlation and Model Impact
3.1.1. Correlation Analysis Based on Multimetric Weighting
3.1.2. The Contribution of Indices to Machine Learning Models
3.2. Classification Accuracy of Univariate Machine Learning Algorithms
3.3. Classification Accuracy of Multivariate Machine Learning Algorithms
3.4. Inversion of PWD in Portugal Based on the SPI
4. Discussion
4.1. The Ability of the SPI to Distinguish Between PWD and Other Stress Factors
4.2. Feasibility of Early Detection of PWD Using Indices That Respond to Chlorophyll Content
4.3. Issues That Need to Be Addressed Further
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mantas, V.; Fonseca, L.; Baltazar, E.; Canhoto, J.; Abrantes, I. Detection of tree decline (Pinus pinaster Aiton) in European forests using Sentinel-2 data. Remote Sens. 2022, 14, 2028. [Google Scholar] [CrossRef]
- Kuang, J.J.; Yu, L.F.; Zhou, Q.; Wu, D.W.; Ren, L.L.; Luo, Y.Q. Identification of pine wilt disease-infested stands based on single-and multi-temporal medium-resolution satellite data. Forests 2024, 15, 596. [Google Scholar] [CrossRef]
- Tan, C.; Lin, Q.N.; Du, H.Q.; Chen, C.; Hu, M.C.; Chen, J.J.; Huang, Z.H.; Xu, Y.X. Detection of the Infection Stage of Pine Wilt Disease and Spread Distance Using Monthly UAV-Based Imagery and a Deep Learning Approach. Remote Sens. 2024, 16, 364. [Google Scholar] [CrossRef]
- Matsuhashi, S.; Hirata, A.; Akiba, M.; Nakamura, K.; Oguro, M.; Takano, K.T.; Nakao, K.; Hijioka, Y.; Matsui, T. Developing a point process model for ecological risk assessment of pine wilt disease at multiple scales. Forest Ecol. Manag. 2020, 463, 118010. [Google Scholar] [CrossRef]
- Mota, M.M.; Braasch, H.; Bravo, M.A.; Penas, A.C.; Burgermeister, W.; Metge, K.; Sousa, E. First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1999, 1, 727–734. [Google Scholar] [CrossRef]
- Abelleira, A.; Picoaga, A.; Mansilla, J.; Aguin, O. Detection of Bursaphelenchus xylophilus, causal agent of pine wilt disease on Pinus pinaster in Northwestern Spain. Plant Dis. 2011, 95, 776. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.; Cobacho Arcos, S.; Escuer, M.; Santiago Merino, R.; Esparrago, G.; Abelleira, A.; Navas, A. Incidence of the pinewood nematode Bursaphelenchus xylophlius Steiner & Buhrer, 1934 (Nickle, 1970) in Spain. Nematology 2011, 13, 755. [Google Scholar] [CrossRef]
- Liu, F.; Su, H.; Ding, T.; Huang, J.; Liu, T.; Ding, N.; Fang, G. Refined assessment of economic loss from pine wilt disease at the subcompartment scale. Forests 2023, 14, 139. [Google Scholar] [CrossRef]
- Calvao, T.; Duarte, C.M.; Pimentel, C.S. Climate and landscape patterns of pine forest decline after invasion by the pinewood nematode. Forest Ecol. Manag. 2019, 433, 43–51. [Google Scholar] [CrossRef]
- Pimentel, C.S.; Gonçalves, E.V.; Firmino, P.N.; Calvao, T.; Fonseca, L.; Abrantes, I.; Correia, O.; Máguas, C. Differences in constitutive and inducible defences in pine species determining susceptibility to pinewood nematode. Plant Pathol. 2017, 66, 131–139. [Google Scholar] [CrossRef]
- Back, M.A.; Bonifácio, L.; Inácio, M.L.; Mota, M.; Boa, E. Pine wilt disease: A global threat to forestry. Plant Pathol. 2024, 73, 1026–1041. [Google Scholar] [CrossRef]
- Yazaki, K.; Takanashi, T.; Kanzaki, N.; Komatsu, M.; Levia, D.F.; Kabeya, D.; Tobita, H.; Kitao, M.; Ishida, A. Pine wilt disease causes cavitation around the resin canals and irrecoverable xylem conduit dysfunction. J. Exp. Bot. 2018, 69, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.C.; Huang, Y.B.; Pu, R.L.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.H.; Huang, W.J. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ehsani, R.; Abd-Elrahma, A.; Ampatzidis, Y. A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Comput. Electron. Agric. 2019, 156, 549–557. [Google Scholar] [CrossRef]
- Ghobadifar, F.; Aimrun, W.; Jebur, M.N. Development of an early warning system for brown planthopper (BPH) (Nilaparvata lugens) in rice farming using multispectral remote sensing. Precis. Agric. 2016, 17, 377–391. [Google Scholar] [CrossRef]
- Zhou, M. Analysis on dynamic changes of forest resources in Anhui province based on forest resources inventory system. Anhui For. Sci. Technol 2018, 44, 44–46. [Google Scholar]
- Li, M.; Li, H.; Ding, X.L.; Wang, L.C.; Wang, X.Y.; Chen, F.M. The detection of pine wilt disease: A literature review. Int. J. Mol. Sci. 2022, 23, 10797. [Google Scholar] [CrossRef]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Li, X.Y.; Tong, T.; Luo, T.; Wang, J.X.; Rao, Y.M.; Li, L.Y.; Jin, D.C.; Wu, D.W.; Huang, H.G. Retrieving the infected area of pine wilt disease-disturbed pine forests from medium-resolution satellite images using the stochastic radiative transfer theory. Remote Sens. 2022, 14, 1526. [Google Scholar] [CrossRef]
- Pan, J.; Lin, J.Y.; Xie, T.Y. Exploring the potential of UAV-based hyperspectral imagery on pine wilt disease detection: Influence of spatio-temporal scales. Remote Sens. 2023, 15, 2281. [Google Scholar] [CrossRef]
- Wang, S.K.; Cao, X.W.; Wu, M.Q.; Yi, C.B.; Zhang, Z.; Fei, H.; Zheng, H.W.; Jiang, H.R.; Jiang, Y.C.; Zhao, X.F.; et al. Detection of Pine Wilt Disease Using Drone Remote Sensing Imagery and Improved YOLOv8 Algorithm: A Case Study in Weihai, China. Forests 2023, 14, 2052. [Google Scholar] [CrossRef]
- You, J.; Zhang, R.R.; Lee, J. A deep learning-based generalized system for detecting pine wilt disease using RGB-based UAV images. Remote Sens. 2021, 14, 150. [Google Scholar] [CrossRef]
- Deng, X.L.; Tong, Z.J.; Lan, Y.B.; Huang, Z.X. Detection and location of dead trees with pine wilt disease based on deep learning and UAV remote sensing. Agriengineering 2020, 2, 294–307. [Google Scholar] [CrossRef]
- Zhang, S.L.; Huang, H.; Huang, Y.B.; Cheng, D.D.; Huang, J.L. A GA and SVM classification model for pine wilt disease detection using UAV-based hyperspectral imagery. Appl. Sci. 2022, 12, 6676. [Google Scholar] [CrossRef]
- Takenaka, Y.; Katoh, M.; Deng, S.; Cheung, K. Detecting forests damaged by pine wilt disease at the individual tree level using airborne laser data and worldview-2/3 images over two seasons. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-3/W3, 181–184. [Google Scholar] [CrossRef]
- Zhou, H.W.; Yuan, X.P.; Zhou, H.Y.; Shen, H.Y.; Ma, L.; Sun, L.P.; Fang, G.F.; Sun, H. Surveillance of pine wilt disease by high resolution satellite. J. Forestry Res. 2022, 33, 1401–1408. [Google Scholar] [CrossRef]
- Wu, K.J.; Zhang, J.T.; Yin, X.C.; Wen, S.; Lan, Y.B. An improved YOLO model for detecting trees suffering from pine wilt disease at different stages of infection. Remote Sens. Lett. 2023, 14, 114–123. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, W.K.; Lim, C.H.; Kim, M.; Kafatos, M.C.; Lee, S.H.; Lee, S.S. Hyperspectral analysis of pine wilt disease to determine an optimal detection index. Forests 2018, 9, 115. [Google Scholar] [CrossRef]
- Iordache, M.D.; Mantas, V.; Baltazar, E.; Pauly, K.; Lewyckyj, N. A machine learning approach to detecting pine wilt disease using airborne spectral imagery. Remote Sens. 2020, 12, 2280. [Google Scholar] [CrossRef]
- de la Fuentes, B.; Beck, P. Invasive Species May Disrupt Protected Area Networks: Insights from the Pine Wood Nematode Spread in Portugal. Forests 2018, 9, 282. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.N.; Li, C.C.; Wang, J.; Huang, H.B.; Clinton, N.; Ji, L.Y.; Li, W.Y.; Bai, Y.Q.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Loginova, A.D. Glass or plastic? Influence of funnel material on the efficiency of nematode extraction using the Baermann method. Russ. J. Ecol. 2024, 55, 66–69. [Google Scholar] [CrossRef]
- Fonseca, L.; Cardoso, J.M.S.; Lopes, A.; Pestana, M.; Abreu, F.; Nunes, N.; Mota, M.; Abrantes, I. The pinewood nematode, Bursaphelenchus xylophilus, in Madeira Island. Helminthologia 2012, 49, 96–103. [Google Scholar] [CrossRef]
- Zhang, H. Study on Hyperspectral Characteristic Response Mechanism of Pine Under Different Stress Types. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2015. (In Chinese). [Google Scholar]
- Zandi, A.; Hosseinirad, S.; Zadeh, H.K.; Tavakolian, K.; Cho, B.K.; Vasefi, F.; Kim, M.S.; Tavakolian, P. A systematic review of multi-mode analytics for enhanced plant stress evaluation. Front. Plant Sci. 2025, 16, 1545025. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Niu, Z.; Gao, S. The potential of the satellite derived green chlorophyll index for estimating midday light use efficiency in maize, coniferous forest and grassland. Ecol. Indic. 2012, 14, 66–73. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Rem. S. 1977, 43, 1541–1552. Available online: https://www.asprs.org/wp-content/uploads/pers/1977journal/dec/1977_dec_1541-1552.pdf (accessed on 15 April 2025).
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado. In Proceedings of the Eighth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 2–5 October 1972; Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19740715986 (accessed on 15 April 2025).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Greenbelt, MD, USA, 10–14 December 1973; Available online: https://www.scribd.com/document/686840243/Monitoring-vegetation-systems-in-the-great-plains-with-ERTS (accessed on 15 April 2025).
- Delegido, J.; Alonso, L.; González, G.; Moreno, J. Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int. J. Appl. Earth Obs. 2010, 12, 165–174. [Google Scholar] [CrossRef]
- Chen, Y.F.; Luo, Y.H.; Mammides, C.; Cao, K.F.; Zhu, S.D.; Goodale, E. The relationship between acoustic indices, elevation, and vegetation, in a forest plot network of southern China. Ecol. Indic. 2021, 129, 107942. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comp. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.N.D.; Sexton, R.S. Comparing backpropagation with a genetic algorithm for neural network training. Omega 1999, 27, 679–684. [Google Scholar] [CrossRef]
- Luo, J.H.; Huang, W.J.; Zhao, J.L.; Zhang, J.C.; Ma, R.H.; Huang, M.Y. Predicting the probability of wheat aphid occurrence using satellite remote sensing and meteorological data. Optik 2014, 125, 5660–5665. [Google Scholar] [CrossRef]
- Alegria, C.; Roque, N.; Albuquerque, T.; Gerassis, S.; Fernandez, P.; Ribeiro, M.M. Species Ecological Envelopes under Climate Change Scenarios: A Case Study for the Main Two Wood-Production Forest Species in Portugal. Forests 2020, 11, 880. [Google Scholar] [CrossRef]
- Li, H.; Kaufmann, H.; Xu, G. Modeling spatio-temporal drought events based on multi-temporal, multi-source remote sensing data calibrated by soil humidity. Chin. Geogr. Sci. 2021, 32, 127–141. [Google Scholar] [CrossRef]
- Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. Available online: https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769 (accessed on 15 April 2025). [CrossRef]
- Hódar, J.A.; Castro, J.; Zamora, R. Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol. Conserv. 2003, 110, 123–129. [Google Scholar] [CrossRef]
- Biology and Management of Pine Needle Scale. Available online: https://www.canr.msu.edu/uploads/files/e2812.pdf (accessed on 15 April 2025).
- Pine Diseases in Kansas: Tip Blight, Dothistroma Needle Blight, and Pine Wilt. Available online: https://bookstore.ksre.ksu.edu/pubs/L722.pdf (accessed on 15 April 2025).
- Feret, J.-B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; Le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Féret, J.-B.; François, C.; Gitelson, A.; Asner, G.P.; Barry, K.M.; Panigada, C.; Richardson, A.D.; Jacquemoud, S. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sens. Environ. 2011, 115, 2742–2750. [Google Scholar] [CrossRef]
Study Area | Satellite Data | Auxiliary Data | ||
---|---|---|---|---|
Sentinel-2 | Sentinel-2 | GF-5B | Landsat-8 | |
Zhejiang Province, China | 10 October2022 | 3 May 2022, 7 June 2022, 17 June 2022, 27 June 2022, 17 July 2022, 27 July 2022, 1 February 2022, 6 August 2022, 11 August 2022, 16 August 2022, 21 August 2022, 26 August 2022 | 1 October 2022, 28 July 2022 | * |
Zhejiang Province, China | 5 September 2022, 10 September 2022, 20 September 2022, 25 September 2022, 30 September 2022 | |||
Shandong Province, China | 25 October 2022 | 25 September 2022, 28 May 2022. 1 October 2019 | 24 September 2022, 31 May 2022 | 10 October 2014 |
Portugal | 27 September 2016, 7 October 2016 | * | * | * |
Spectral Index | Definition | Vegetation Index | Definition |
---|---|---|---|
SGR | slope of the curve from the green band to the red band (see Equation (1)) | GCI | |
SRRe | slope of the curve from the red band to the near-infrared (see Equation (2)) | VIgreen | |
SPI | SIPI | ||
SDI | ARVI | ||
G | VARI | ||
R | DVI | ||
Re | RVI | ||
RES | NDVI |
Study Area | Lishui, Zhejiang Province | Weihai, Shandong Province | ||||||
---|---|---|---|---|---|---|---|---|
Model | RF | BPNN | RF | BPNN | ||||
Accuracy (%) | Max | Mean | Max | Mean | Max | Mean | Max | Mean |
SPI | 93.22 | 82.39 | 96.61 | 84.07 | 79.51 | 74.52 | 81.92 | 76.41 |
SDI | 81.36 | 73.73 | 79.66 | 75.32 | 76.09 | 72.61 | 75.11 | 71.30 |
SGR | 88.13 | 79.07 | 91.53 | 82.02 | 78.91 | 73.70 | 80.09 | 74.08 |
SRRe | 62.73 | 56.99 | 61.11 | 59.69 | 58.44 | 55.13 | 61.27 | 56.44 |
G | 69.17 | 65.24 | 62.55 | 60.43 | 65.81 | 63.09 | 61.44 | 58.49 |
R | 63.22 | 62.50 | 53.14 | 47.92 | 60.73 | 59.47 | 54.08 | 47.17 |
Re | 72.91 | 66.41 | 69.43 | 65.95 | 68.44 | 62.17 | 68.96 | 64.33 |
RES | 77.97 | 68.22 | 73.05 | 69.95 | 49.90 | 49.72 | 50.10 | 49.62 |
GCI | 74.64 | 61.88 | 72.88 | 56.46 | 59.02 | 55.62 | 66.13 | 53.32 |
VIgreen | 79.66 | 64.42 | 79.66 | 64.81 | 51.27 | 50.10 | 50.91 | 50.34 |
SIPI | 62.50 | 58.43 | 60.16 | 53.74 | 58.97 | 56.44 | 55.31 | 51.07 |
ARVI | 74.75 | 70.59 | 76.27 | 64.71 | 64.30 | 61.35 | 64.91 | 57.45 |
VARI | 68.73 | 61.24 | 65.79 | 62.33 | 63.22 | 60.17 | 60.94 | 58.43 |
DVI | 77.97 | 67.54 | 76.36 | 68.83 | 73.02 | 64.90 | 72.06 | 65.23 |
RVI | 63.47 | 58.29 | 60.47 | 55.58 | 59.41 | 56.04 | 59.91 | 56.48 |
NDVI | 74.96 | 68.37 | 66.44 | 59.09 | 70.11 | 63.19 | 60.01 | 56.19 |
Study Area | Lishui, Zhejiang Province | Weihai, Shandong Province | ||||||
---|---|---|---|---|---|---|---|---|
Model | RF | BPNN | RF | BPNN | ||||
Indicators | F1 | Kappa | F1 | Kappa | F1 | Kappa | F1 | Kappa |
SPI | 0.84 | 0.66 | 0.85 | 0.70 | 0.75 | 0.49 | 0.76 | 0.53 |
SDI | 0.78 | 0.49 | 0.75 | 0.49 | 0.73 | 0.45 | 0.72 | 0.43 |
SGR | 0.79 | 0.59 | 0.83 | 0.62 | 0.74 | 0.47 | 0.73 | 0.48 |
SRRe | 0.60 | 0.16 | 0.61 | 0.19 | 0.54 | 0.10 | 0.56 | 0.13 |
G | 0.64 | 0.29 | 0.62 | 0.22 | 0.63 | 0.26 | 0.56 | 0.17 |
R | 0.61 | 0.26 | 0.49 | −0.05 | 0.59 | 0.19 | 0.45 | −0.05 |
Re | 0.66 | 0.32 | 0.69 | 0.32 | 0.62 | 0.24 | 0.95 | 0.29 |
RES | 0.68 | 0.36 | 0.70 | 0.39 | 0.48 | −0.01 | 0.50 | −0.01 |
GCI | 0.59 | 0.25 | 0.55 | 0.12 | 0.55 | 0.11 | 0.53 | 0.07 |
VIgreen | 0.66 | 0.29 | 0.62 | 0.29 | 0.51 | 0.01 | 0.50 | 0.00 |
SIPI | 0.58 | 0.15 | 0.56 | 0.09 | 0.55 | 0.13 | 0.52 | 0.02 |
ARVI | 0.73 | 0.43 | 0.66 | 0.29 | 0.63 | 0.23 | 0.59 | 0.15 |
VARI | 0.62 | 0.22 | 0.61 | 0.26 | 0.60 | 0.20 | 0.57 | 0.17 |
DVI | 0.71 | 0.36 | 0.68 | 0.39 | 0.66 | 0.30 | 0.65 | 0.31 |
RVI | 0.56 | 0.15 | 0.55 | 0.12 | 0.56 | 0.12 | 0.56 | 0.13 |
NDVI | 0.67 | 0.36 | 0.57 | 0.19 | 0.64 | 0.27 | 0.55 | 0.12 |
Accuracy (%) | Lishui, Zhejiang | Weihai, Shandong | ||
---|---|---|---|---|
RF | BPNN | RF | BPNN | |
Max | 96.61 | 93.22 | 82.15 | 80.73 |
Mean | 88.14 | 84.75 | 78.45 | 72.82 |
Accuracy (%) | Lishui, Zhejiang | Weihai, Shandong | ||
---|---|---|---|---|
RF | BPNN | RF | BPNN | |
Max | 83.26 | 76.34 | 78.44 | 75.49 |
Mean | 74.91 | 68.23 | 69.73 | 62.17 |
Including SPI | Excluding SPI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | RF | BPNN | RF | BPNN | ||||||||
Indicators | OA | F1 | Kappa | OA | F1 | Kappa | OA | F1 | Kappa | OA | F1 | Kappa |
Fold1 | 85.50 | 0.86 | 0.71 | 76.08 | 0.74 | 0.52 | 71.73 | 0.74 | 0.44 | 63.76 | 0.61 | 0.27 |
Fold2 | 80.43 | 0.79 | 0.61 | 73.91 | 0.74 | 0.48 | 68.84 | 0.67 | 0.38 | 59.42 | 0.60 | 0.19 |
Fold3 | 81.88 | 0.82 | 0.64 | 77.53 | 0.76 | 0.55 | 68.11 | 0.70 | 0.37 | 63.76 | 0.68 | 0.32 |
Fold4 | 86.23 | 0.86 | 0.72 | 80.43 | 0.81 | 0.61 | 71.01 | 0.69 | 0.42 | 61.59 | 0.63 | 0.23 |
Fold5 | 82.61 | 0.81 | 0.65 | 75.36 | 0.76 | 0.51 | 65.21 | 0.68 | 0.31 | 60.86 | 0.63 | 0.22 |
Mean | 83.33 | 0.83 | 0.67 | 76.67 | 0.76 | 0.53 | 68.98 | 0.67 | 0.38 | 61.88 | 0.63 | 0.25 |
Type | Stressors | Time | Symptom | Speed | |
---|---|---|---|---|---|
Change Color | Defoliation | ||||
Pest | PWD | May to Oct. | reddish-brown | No | Rapid |
PPC | Jan. to Aug. | Yellow | Yes | Moderate | |
PNS | May to Sep. | White specks | Yes | Moderate | |
Fungus | DNB | Late summer | Half-needle scorch, defoliation, especially on lower, interior branches | Yes | Slow |
Environment | Drought | Any season | Brown | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Kang, R.; Xu, T.; Deng, C.; Zhang, L.; Yang, S.; Pan, G.; Si, L.; Lu, Y.; Kaufmann, H. Detection of Pine Wilt Disease Using a VIS-NIR Slope-Based Index from Sentinel-2 Data. Forests 2025, 16, 1170. https://doi.org/10.3390/f16071170
Guo J, Kang R, Xu T, Deng C, Zhang L, Yang S, Pan G, Si L, Lu Y, Kaufmann H. Detection of Pine Wilt Disease Using a VIS-NIR Slope-Based Index from Sentinel-2 Data. Forests. 2025; 16(7):1170. https://doi.org/10.3390/f16071170
Chicago/Turabian StyleGuo, Jian, Ran Kang, Tianhe Xu, Caiyun Deng, Li Zhang, Siqi Yang, Guiling Pan, Lulu Si, Yingbo Lu, and Hermann Kaufmann. 2025. "Detection of Pine Wilt Disease Using a VIS-NIR Slope-Based Index from Sentinel-2 Data" Forests 16, no. 7: 1170. https://doi.org/10.3390/f16071170
APA StyleGuo, J., Kang, R., Xu, T., Deng, C., Zhang, L., Yang, S., Pan, G., Si, L., Lu, Y., & Kaufmann, H. (2025). Detection of Pine Wilt Disease Using a VIS-NIR Slope-Based Index from Sentinel-2 Data. Forests, 16(7), 1170. https://doi.org/10.3390/f16071170