Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Overview of Methods
2.3. Data Collection
2.3.1. Experimental Design
2.3.2. Collection of Visual Assessment Data
2.3.3. Remote Sensing Datasets
LiDAR and RGB Data
Multispectral Data
Hyperspectral Data
2.4. Data Analysis and Statistical Methods
2.4.1. Visual Assessment Analysis
2.4.2. Spectral Data Analysis
2.4.3. Classification and Accuracy
3. Results
3.1. Visual Assessment Results
3.2. Spectral Response to Herbicide Treatment
3.2.1. Multispectral Indicators of Herbicide Response
3.2.2. Hyperspectral Indicators of Herbicide Response
3.3. Discrimination of Treated vs. Untreated Trees
3.3.1. Classification Using Multispectral Data
3.3.2. Classification Using Hyperspectral Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Indices | Index Code | Equation | Reference |
---|---|---|---|
Hyperspectral Indices | |||
Structural indices | |||
Enhanced Vegetation Index | EVI | [66] | |
Modified Chlorophyll Abs. Index | MCARI | [67] | |
Modified Chlorophyll Abs. Index 1 | MCARI1 | [68] | |
Modified Simple Ratio | MSR | [69] | |
Modified Triangular Veg. Index 1 | MTVI1 | [70] | |
Normalized Difference Veg. Index | NDVI | [71] | |
Optimized Soil-Adjusted Veg. Index | OSAVI | [72] | |
Renormalized Difference Veg. Index | RDVI | [73] | |
Simple Ratio | SR | [74] | |
Triangular Vegetation Index | TVI | [75] | |
Pigment indices | |||
Carter Index | CAR | [76] | |
Chlorophyll Index Red Edge | CI | [77] | |
Modified Carotenoid Reflectance Index | mCRI | [78] | |
Carotenoid Reflectance Indices | CRI550 | [47,78] | |
Carotenoid Reflectance Indices | CRI550_515 | [79] | |
Carotenoid Reflectance Indices | CRI700 | [47,79] | |
Carotenoid Reflectance Indices | CRI700_515 | [79] | |
Reflectance band ratio indices | DCab | [48] | |
Reflectance band ratio indices | DNIRCab | [48] | |
Gitelson and Merzlyak index 1 | GM1 | [80] | |
Gitelson and Merzlyak index 2 | GM2 | [80] | |
Pigment Specific Normalized Difference a | PSNDa | [81] | |
Pigment Specific Normalized Difference b635 | PSNDb(635) | [81] | |
Pigment Specific Normalized Difference b650 | PSNDb(650) | [81] | |
Pigment Specific Normalized Difference c | PSNDc | [81] | |
Plant Senescence Reflectance Index | PSRI | [82] | |
Pigment Specific Simple Ratio Chlorophyll a | PSSR_a | [81] | |
Pigment Specific Simple Ratio Carotenoids c | PSSR_c | [81] | |
Carotenoid Reflectance Index | RNIR_CRI550 | [47,79] | |
Carotenoid Reflectance Index | RNIR_CRI700 | [47,79] | |
Structure-Intensive Pigment Index | SIPI | [83] | |
Transformed Chlorophyll Absorption in Reflectance Index | TCARI | [84] | |
Transformed Chlorophyll Absorption in Reflectance Index/Optimized Soil-Adjusted Vegetation Index | TCARI_OSAVI | [84] | |
Vogelmann indices | VOG | [14] | |
Vogelmann indices | VOG2 | [14] | |
Vogelmann indices | VOG3 | [14] | |
Simple Ratio | SR510_770 | [62] | |
Simple Ratio | SR510_574 | [62] | |
Simple Ratio | SR528_574 | [62] | |
Simple Ratio | SR800_635 | [62] | |
Normalized Difference | ND636_770 | [62] | |
Normalized Pigments Index | NPCI | [83] | |
Reflectance Curvature Index | CUR | [85] | |
Carotenoid/Chlorophyll Ratio Index | PRICI | [86] | |
Photochemical Refl. Index (515) | PRI515 | [87] | |
Photochemical Refl. Index (570) | PRI570 | [49] | |
Photochemical Refl. Index (512) | PRIm1 | [87] | |
Photochemical Refl. Index (600) | PRIm2 | [49] | |
Photochemical Refl. Index (670) | PRIm3 | [49] | |
Photochemical Refl. Index (670 and 570) | PRIm4 | [87] | |
Normalized Photoch. Refl. Index | PRIn | [88] | |
Normalized Difference | ND510_770 | [62] | |
R/G/B indices | |||
Blue Index | B | [89] | |
Blue/green index | BGI | [90] | |
Blue/red index | BRI | [91] | |
Greenness Index | G | [89] | |
Lichtenthaler Index 1 | LIC1 | [92] | |
Lichtenthaler Index 2 | LIC2 | [92] | |
Lichtenthaler Index 3 | LIC3 | [92] | |
Lichtenthaler Index 4 | LIC4 | [92] | |
Lichtenthaler Index 5 | LIC5 | [92] | |
Lichtenthaler Index 6 | LIC6 | [92] | |
Lichtenthaler Index 7 | LIC7 | [92] | |
Redness Index | R | [93] | |
Ratio Analysis of Reflectance Spectra | RARS | [94] | |
Red/green indices | RGI | [90] | |
Plant disease index | |||
Healthy-index | HI | [95] | |
Multispectral indices | |||
Normalized Difference Vegetation Index | NDVI | [71] | |
Normalized Difference Vegetation Index | NDVI2 | [96] | |
Green Normalized Difference Vegetation Index | GNDVI | [80] | |
Green Normalized Difference Vegetation Index | GNDVI2 | [80] | |
Normalized Difference Red Edge | NDRE | [97] | |
Green Ratio Vegetation Index | GRVI | [98] | |
Normalized Difference Water Index | NDWI | [99] | |
Physiological Reflectance Index | PRI | [100] | |
Foliar Moisture Content Index | FMCI | [96] |
Index | Control | 13 DAT | 18 DAT | 27 DAT | 32 DAT | 41 DAT | 47 DAT |
---|---|---|---|---|---|---|---|
PRI | 0.859 | 0.024 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
NDVI2 | 0.958 | 0.255 | 0.039 | 0.000 | 0.000 | 0.000 | 0.000 |
NDVI | 0.845 | 0.317 | 0.053 | 0.000 | 0.000 | 0.000 | 0.000 |
GNDVI | 0.745 | 0.312 | 0.114 | 0.000 | 0.002 | 0.000 | 0.000 |
NDWI | 0.745 | 0.312 | 0.114 | 0.000 | 0.002 | 0.000 | 0.000 |
NDRE | 0.863 | 0.361 | 0.104 | 0.000 | 0.001 | 0.000 | 0.000 |
GNDVI2 | 0.740 | 0.372 | 0.199 | 0.000 | 0.005 | 0.000 | 0.000 |
GRVI | 0.521 | 0.581 | 0.439 | 0.195 | 0.002 | 0.000 | 0.000 |
RE | 0.887 | 0.995 | 0.317 | 0.019 | 0.000 | 0.000 | 0.000 |
FMCI | 0.544 | 0.900 | 0.804 | 0.190 | 0.982 | 0.004 | 0.000 |
Category | Index | Control. | 13 DAT | 18 DAT | 27 DAT | 32 DAT | 41 DAT | 47 DAT | Rank |
---|---|---|---|---|---|---|---|---|---|
Disease | HI | 0.093 | 0.043 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 5 |
Pigment | PRICI | 0.244 | 0.009 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 1 |
PRIn | 0.644 | 0.009 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 2 | |
PRI570 | 0.144 | 0.019 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 3 | |
SR528_574 | 0.384 | 0.030 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 4 | |
PSRI | 0.012 | 0.070 | 0.013 | 0.000 | 0.000 | 0.000 | 0.000 | 6 | |
CAR | 0.197 | 0.056 | 0.056 | 0.000 | 0.000 | 0.000 | 0.000 | 7 | |
ND636_770 | 0.231 | 0.086 | 0.050 | 0.000 | 0.000 | 0.000 | 0.000 | 10 | |
PSNDb635 | 0.230 | 0.082 | 0.058 | 0.000 | 0.000 | 0.000 | 0.000 | 11 | |
PRIm2 | 0.115 | 0.111 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | 12 | |
PSNDb650 | 0.176 | 0.091 | 0.068 | 0.000 | 0.000 | 0.000 | 0.000 | 13 | |
VOG | 0.780 | 0.040 | 0.128 | 0.000 | 0.000 | 0.000 | 0.000 | 16 | |
NPCI | 0.057 | 0.128 | 0.070 | 0.000 | 0.000 | 0.000 | 0.000 | 20 | |
PSNDa | 0.130 | 0.101 | 0.113 | 0.000 | 0.000 | 0.000 | 0.000 | 22 | |
SR510_574 | 0.307 | 0.107 | 0.002 | 0.014 | 0.117 | 0.000 | 0.000 | 25 | |
CI | 0.808 | 0.045 | 0.202 | 0.000 | 0.000 | 0.000 | 0.000 | 26 | |
VOG2 | 0.829 | 0.033 | 0.251 | 0.000 | 0.000 | 0.000 | 0.000 | 28 | |
GM2 | 0.702 | 0.057 | 0.241 | 0.000 | 0.000 | 0.000 | 0.000 | 29 | |
VOG3 | 0.851 | 0.035 | 0.267 | 0.000 | 0.000 | 0.000 | 0.000 | 30 | |
SIPI | 0.223 | 0.114 | 0.190 | 0.000 | 0.000 | 0.000 | 0.000 | 31 | |
PRIm3 | 0.019 | 0.262 | 0.117 | 0.000 | 0.000 | 0.000 | 0.000 | 33 | |
SR510_769 | 0.344 | 0.130 | 0.301 | 0.000 | 0.000 | 0.000 | 0.000 | 34 | |
SR800_635 | 0.666 | 0.101 | 0.336 | 0.000 | 0.000 | 0.000 | 0.000 | 35 | |
ND510_770 | 0.352 | 0.131 | 0.308 | 0.000 | 0.000 | 0.000 | 0.000 | 36 | |
GM1 | 0.743 | 0.084 | 0.368 | 0.000 | 0.001 | 0.000 | 0.000 | 37 | |
PSSRa | 0.511 | 0.121 | 0.359 | 0.000 | 0.000 | 0.000 | 0.000 | 38 | |
PSNDc | 0.403 | 0.208 | 0.653 | 0.000 | 0.000 | 0.000 | 0.000 | 43 | |
PSSRc | 0.692 | 0.180 | 0.894 | 0.000 | 0.000 | 0.000 | 0.000 | 46 | |
mCRI | 0.668 | 0.225 | 0.862 | 0.000 | 0.000 | 0.000 | 0.000 | 47 | |
RNIR_CRI550 | 0.642 | 0.253 | 0.867 | 0.000 | 0.000 | 0.000 | 0.000 | 48 | |
RNIR_CRI700 | 0.659 | 0.338 | 0.876 | 0.000 | 0.001 | 0.000 | 0.000 | 49 | |
TCA_OSA | 0.437 | 0.287 | 0.500 | 0.000 | 0.480 | 0.000 | 0.001 | 50 | |
PRI515 | 0.401 | 0.758 | 0.771 | 0.000 | 0.000 | 0.000 | 0.000 | 53 | |
PRIm4 | 0.038 | 0.893 | 0.668 | 0.001 | 0.000 | 0.000 | 0.000 | 54 | |
DCab | 0.235 | 0.607 | 0.478 | 0.453 | 0.003 | 0.062 | 0.000 | 55 | |
PRIm1 | 0.285 | 0.910 | 0.730 | 0.000 | 0.000 | 0.000 | 0.000 | 57 | |
CRI700 | 0.275 | 0.918 | 0.226 | 0.003 | 0.263 | 0.024 | 0.256 | 58 | |
DNIRCab | 0.304 | 0.252 | 0.703 | 0.000 | 0.905 | 0.000 | 0.000 | 60 | |
CRI550_515 | 0.283 | 0.989 | 0.405 | 0.000 | 0.762 | 0.000 | 0.000 | 61 | |
CRI550 | 0.286 | 0.951 | 0.354 | 0.000 | 0.877 | 0.000 | 0.000 | 62 | |
CRI700_515 | 0.270 | 0.852 | 0.234 | 0.010 | 0.156 | 0.089 | 0.875 | 63 | |
TCARI | 0.429 | 0.655 | 0.952 | 0.013 | 0.369 | 0.012 | 0.592 | 65 | |
CUR | 0.058 | 0.989 | 0.624 | 0.573 | 0.494 | 0.003 | 0.000 | 66 | |
R/G/B | BRI | 0.060 | 0.058 | 0.066 | 0.000 | 0.000 | 0.000 | 0.000 | 8 |
LIC5 | 0.011 | 0.095 | 0.033 | 0.000 | 0.000 | 0.000 | 0.000 | 9 | |
LIC7 | 0.141 | 0.092 | 0.072 | 0.000 | 0.000 | 0.000 | 0.000 | 14 | |
LIC2 | 0.147 | 0.082 | 0.097 | 0.000 | 0.000 | 0.000 | 0.000 | 17 | |
LIC1 | 0.155 | 0.096 | 0.107 | 0.000 | 0.000 | 0.000 | 0.000 | 21 | |
RGI | 0.030 | 0.218 | 0.097 | 0.000 | 0.000 | 0.000 | 0.000 | 32 | |
LIC6 | 0.744 | 0.160 | 0.477 | 0.000 | 0.000 | 0.000 | 0.000 | 40 | |
RARS | 0.614 | 0.150 | 0.507 | 0.000 | 0.000 | 0.000 | 0.000 | 41 | |
G | 0.036 | 0.465 | 0.364 | 0.000 | 0.000 | 0.000 | 0.000 | 42 | |
LIC3 | 0.490 | 0.365 | 0.557 | 0.000 | 0.000 | 0.000 | 0.000 | 44 | |
LIC4 | 0.989 | 0.270 | 0.417 | 0.003 | 0.216 | 0.001 | 0.036 | 45 | |
BGI | 0.992 | 0.245 | 0.219 | 0.439 | 0.046 | 0.177 | 0.185 | 51 | |
B | 0.116 | 0.273 | 0.410 | 0.000 | 0.699 | 0.000 | 0.000 | 52 | |
R | 0.034 | 0.966 | 0.786 | 0.000 | 0.000 | 0.000 | 0.000 | 59 | |
Structural | RDVI | 0.986 | 0.119 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 15 |
OSAVI | 0.762 | 0.131 | 0.055 | 0.000 | 0.000 | 0.000 | 0.000 | 18 | |
NDVI | 0.126 | 0.096 | 0.100 | 0.000 | 0.000 | 0.000 | 0.000 | 19 | |
MCARI1 | 0.619 | 0.168 | 0.059 | 0.001 | 0.000 | 0.001 | 0.000 | 23 | |
MTVI1 | 0.619 | 0.168 | 0.059 | 0.001 | 0.000 | 0.001 | 0.000 | 24 | |
TVI | 0.582 | 0.215 | 0.052 | 0.002 | 0.000 | 0.001 | 0.000 | 27 | |
SR | 0.457 | 0.143 | 0.438 | 0.000 | 0.000 | 0.000 | 0.000 | 39 | |
MSR | 0.044 | 0.872 | 0.756 | 0.000 | 0.000 | 0.000 | 0.000 | 56 | |
MCARI | 0.746 | 0.575 | 0.859 | 0.398 | 0.060 | 0.328 | 0.014 | 64 | |
EVI | 0.803 | 0.738 | 0.146 | 0.115 | 0.225 | 0.964 | 0.686 | 67 |
References
- Martín-Benito, D.; Del Río, M.; Heinrich, I.; Helle, G.; Cañellas, I. Response of Climate-Growth Relationships and Water Use Efficiency to Thinning in a Pinus nigra Afforestation. For. Ecol. Manag. 2010, 259, 967–975. [Google Scholar] [CrossRef]
- Willoughby, I.H.; Stokes, V.J.; Connolly, T. Using Ecoplugs Containing Glyphosate Can Be an Effective Method of Killing Standing Trees. For. Int. J. For. Res. 2017, 90, 719–727. [Google Scholar] [CrossRef]
- Beveridge, A.E.; Hedderwick, G.W. Chemical Methods of Vegetation Control in New Zealand Forestry. In Proceedings of the Discussion on Chemical Methods of Vegetation Control, Rotorua, New Zealand, 24–26 July 1962. [Google Scholar]
- Tustin, J.R. Thinning Planted Radiata Pine to Waste in State Forestry. N. Z. J. For. 1969, 14, 210–218. [Google Scholar]
- Maclaren, P.; Baker, G.; Dean, M.; Straker, A. Chemical Thinning of Radiata Pine. N. Z. J. For. 1999, 44, 19–22. [Google Scholar]
- Tubby, K.V.; Willoughby, I.H.; Forster, J. The Efficacy of Chemical Thinning Treatments on Pinus sylvestris and Larix kaempferi and Subsequent Incidence and Potential Impact of Heterobasidion annosum Infection in Standing Trees. For. Int. J. For. Res. 2017, 90, 728–736. [Google Scholar] [CrossRef]
- Holt, L.; Dickinson, Y. Current Practices and Challenges in NZ Thinning Operations: Results of a Survey and Workshop in 2023; Forest Growers Research Precision Silviculture Programme PSP-T022; Forest Growers Research: Bay of Plenty, New Zealand, 2024. [Google Scholar]
- Sherwani, S.I.; Arif, I.A.; Khan, H.A.; Sherwani, S.I.; Arif, I.A.; Khan, H.A. Modes of Action of Different Classes of Herbicides. In Herbicides, Physiology of Action, and Safety; IntechOpen: London, UK, 2015; ISBN 978-953-51-2217-3. [Google Scholar]
- Scholten, R.C.; Hill, J.; Werner, W.; Buddenbaum, H.; Dash, J.P.; Gomez Gallego, M.; Rolando, C.A.; Pearse, G.D.; Hartley, R.; Estarija, H.J.; et al. Hyperspectral VNIR-Spectroscopy and Imagery as a Tool for Monitoring Herbicide Damage in Wilding Conifers. Biol. Invasions 2019, 21, 3395–3413. [Google Scholar] [CrossRef]
- Blackburn, G.A. Relationships between Spectral Reflectance and Pigment Concentrations in Stacks of Deciduous Broadleaves. Remote Sens. Environ. 1999, 70, 224–237. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral Remote Sensing of Plant Pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, G.; Pan, Y.; Yang, X.; Chen, L.; Zhao, C. A Review of Advanced Technologies and Development for Hyperspectral-Based Plant Disease Detection in the Past Three Decades. Remote Sens. 2020, 12, 3188. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Yang, C.; De La Guardia, M.; Zhang, W.; Li, X.; He, Y. Proximal Hyperspectral Sensing of Abiotic Stresses in Plants. Sci. Total Environ. 2023, 861, 160652. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red Edge Spectral Measurements from Sugar Maple Leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Carter, G.A.; Miller, R.L. Early Detection of Plant Stress by Digital Imaging within Narrow Stress-Sensitive Wavebands. Remote Sens. Environ. 1994, 50, 295–302. [Google Scholar] [CrossRef]
- Coops, N.; Stanford, M.; Old, K.; Dudzinski, M.; Culvenor, D.; Stone, C. Assessment of Dothistroma Needle Blight of Pinus Radiata Using Airborne Hyperspectral Imagery. Phytopathology 2003, 93, 1524–1532. [Google Scholar] [CrossRef] [PubMed]
- Behmann, J.; Steinrücken, J.; Plümer, L. Detection of Early Plant Stress Responses in Hyperspectral Images. ISPRS J. Photogramm. Remote Sens. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing -Part I—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Oerke, E.-C. Remote Sensing of Diseases. Annu. Rev. Phytopathol. 2020, 58, 225–252. [Google Scholar] [CrossRef]
- Le, T.S.; Harper, R.; Dell, B. Application of Remote Sensing in Detecting and Monitoring Water Stress in Forests. Remote Sens. 2023, 15, 3360. [Google Scholar] [CrossRef]
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.-J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing Very High Resolution UAV Imagery for Monitoring Forest Health during a Simulated Disease Outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging Spectrometry for Earth Remote Sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Watt, M.S.; Estarija, H.J.C.; Bartlett, M.; Main, R.; Pasquini, D.; Yorston, W.; McLay, E.; Zhulanov, M.; Dobbie, K.; Wardhaugh, K.; et al. Early Detection of Myrtle Rust on Pōhutukawa Using Indices Derived from Hyperspectral and Thermal Imagery. Remote Sens. 2024, 16, 1050. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Camino, C.; Beck, P.S.A.; Calderon, R.; Hornero, A.; Hernández-Clemente, R.; Kattenborn, T.; Montes-Borrego, M.; Susca, L.; Morelli, M.; et al. Previsual Symptoms of Xylella Fastidiosa Infection Revealed in Spectral Plant-Trait Alterations. Nat. Plants 2018, 4, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Watt, M.S.; Poblete, T.; De Silva, D.; Estarija, H.J.C.; Hartley, R.J.L.; Leonardo, E.M.C.; Massam, P.; Buddenbaum, H.; Zarco-Tejada, P.J. Prediction of the Severity of Dothistroma Needle Blight in Radiata Pine Using Plant Based Traits and Narrow Band Indices Derived from UAV Hyperspectral Imagery. Agric. For. Meteorol. 2023, 330, 109294. [Google Scholar] [CrossRef]
- Kim, Y.; Glenn, D.M.; Park, J.; Ngugi, H.K.; Lehman, B.L. Hyperspectral Image Analysis for Water Stress Detection of Apple Trees. Comput. Electron. Agric. 2011, 77, 155–160. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Stern, O.; Paschmionka, B.; Hass, E.; Gattung, T.; Stoffels, J.; Hill, J.; Werner, W. Using VNIR and SWIR Field Imaging Spectroscopy for Drought Stress Monitoring of Beech Seedlings. Int. J. Remote Sens. 2015, 36, 4590–4605. [Google Scholar] [CrossRef]
- Felix, M.J.B.; Main, R.; Watt, M.S.; Arpanaei, M.-M.; Patuawa, T. Early Detection of Water Stress in Kauri Seedlings Using Multitemporal Hyperspectral Indices and Inverted Plant Traits. Remote Sens. 2025, 17, 463. [Google Scholar] [CrossRef]
- Watt, M.S.; Pearse, G.D.; Dash, J.P.; Melia, N.; Leonardo, E.M.C. Application of Remote Sensing Technologies to Identify Impacts of Nutritional Deficiencies on Forests. ISPRS J. Photogramm. Remote Sens. 2019, 149, 226–241. [Google Scholar] [CrossRef]
- Watt, M.S.; Buddenbaum, H.; Leonardo, E.M.C.; Estarija, H.J.; Bown, H.E.; Gomez-Gallego, M.; Hartley, R.J.L.; Pearse, G.D.; Massam, P.; Wright, L.; et al. Monitoring Biochemical Limitations to Photosynthesis in N and P-Limited Radiata Pine Using Plant Functional Traits Quantified from Hyperspectral Imagery. Remote Sens. Environ. 2020, 248, 112003. [Google Scholar] [CrossRef]
- Lassalle, G. Monitoring Natural and Anthropogenic Plant Stressors by Hyperspectral Remote Sensing: Recommendations and Guidelines Based on a Meta-Review. Sci. Total Environ. 2021, 788, 147758. [Google Scholar] [CrossRef]
- Pan, J.; Lin, J.; Xie, T. Exploring the Potential of UAV-Based Hyperspectral Imagery on Pine Wilt Disease Detection: Influence of Spatio-Temporal Scales. Remote Sens. 2023, 15, 2281. [Google Scholar] [CrossRef]
- da Silva, S.D.P.; de Paula Amaral, L.; Aparecida Fantinel, R.; Coelho Eugenio, F. RPAS-Based Forest Plantation Health Monitoring: An Overview of Recent Progress. Int. J. Remote Sens. 2024, 45, 9131–9161. [Google Scholar] [CrossRef]
- Watt, M.S.; Jayathunga, S.; Hartley, R.J.L.; Pearse, G.D.; Massam, P.D.; Cajes, D.; Steer, B.S.C.; Estarija, H.J.C. Use of a Consumer-Grade UAV Laser Scanner to Identify Trees and Estimate Key Tree Attributes across a Point Density Range. Forests 2024, 15, 899. [Google Scholar] [CrossRef]
- Khosravipour, A.; Skidmore, A.K.; Isenburg, M.; Wang, T.; Hussin, Y.A. Generating Pit-Free Canopy Height Models from Airborne Lidar. Photogramm. Eng. Remote Sens. 2014, 80, 863–872. [Google Scholar] [CrossRef]
- Plowright, A. ForestTools: Tools for Analyzing Remote Sensing Forest Data. 2023. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- OpenDroneMap Authors ODM. A Command Line Toolkit to Generate Maps, Point Clouds, 3D Models and DEMs from Drone, Balloon or Kite Images. OpenDroneMap/ODM GitHub Page. 2020. Available online: https://github.com/OpenDroneMap/ODM (accessed on 12 October 2024).
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1999; ISBN 978-0-387-98780-4. [Google Scholar]
- Honkavaara, E.; Näsi, R.; Oliveira, R.; Viljanen, N.; Suomalainen, J.; Khoramshahi, E.; Hakala, T.; Nevalainen, O.; Markelin, L.; Vuorinen, M.; et al. Using Multitemporal Hyper- and Multispectral Uav Imaging for Detecting Bark Beetle Infestation on Norway Spruce. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 429–434. [Google Scholar] [CrossRef]
- Poblete, T.; Camino, C.; Beck, P.S.A.; Hornero, A.; Kattenborn, T.; Saponari, M.; Boscia, D.; Navas-Cortes, J.A.; Zarco-Tejada, P.J. Detection of Xylella fastidiosa Infection Symptoms with Airborne Multispectral and Thermal Imagery: Assessing Bandset Reduction Performance from Hyperspectral Analysis. ISPRS J. Photogramm. Remote Sens. 2020, 162, 27–40. [Google Scholar] [CrossRef]
- Duarte, A.; Borralho, N.; Cabral, P.; Caetano, M. Recent Advances in Forest Insect Pests and Diseases Monitoring Using UAV-Based Data: A Systematic Review. Forests 2022, 13, 911. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Z.; Zheng, L.; Han, C.; Wang, X.; Xu, J.; Wang, X. Research Progress on the Early Monitoring of Pine Wilt Disease Using Hyperspectral Techniques. Sensors 2020, 20, 3729. [Google Scholar] [CrossRef]
- Slaton, M.R.; Raymond Hunt, E.; Smith, W.K. Estimating Near-infrared Leaf Reflectance from Leaf Structural Characteristics. Am. J. Bot. 2001, 88, 278–284. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll A+b, and Total Carotenoid Content in Eucalyptus Leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A Narrow-Waveband Spectral Index That Tracks Diurnal Changes in Photosynthetic Efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The Photochemical Reflectance Index (PRI) and the Remote Sensing of Leaf, Canopy and Ecosystem Radiation Use efficiencies: A Review and Meta-Analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Russell, M.H.; Saladini, J.L.; Lichtner, F. Sulfonylurea Herbicides. Pestic. Outlook 2002, 13, 166–173. [Google Scholar] [CrossRef]
- Traxler, C.; Gaines, T.A.; Küpper, A.; Luemmen, P.; Dayan, F.E. The Nexus between Reactive Oxygen Species and the Mechanism of Action of Herbicides. J. Biol. Chem. 2023, 299, 105267. [Google Scholar] [CrossRef]
- Riethmuller-Haage, I.; Bastiaans, L.; Harbinson, J.; Kempenaar, C.; Kropff, M.J. Influence of the Acetolactate Synthase Inhibitor Metsulfuron-Methyl on the Operation, Regulation and Organisation of Photosynthesis in Solanum nigrum. Photosynth. Res. 2006, 88, 331–341. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early Detection of Pine Wilt Disease Using Deep Learning Algorithms and UAV-Based Multispectral Imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Arapostathi, E.; Panopoulou, C.; Antonopoulos, A.; Katsileros, A.; Karellas, K.; Dimopoulos, C.; Tsagkarakis, A. Early Detection of Potential Infestation by Capnodis tenebrionis (L.) (Coleoptera: Buprestidae), in Stone and Pome Fruit Orchards, Using Multispectral Data from a UAV. Agronomy 2024, 14, 20. [Google Scholar] [CrossRef]
- Bozzini, A.; Huo, L.; Brugnaro, S.; Morgante, G.; Persson, H.J.; Finozzi, V.; Battisti, A.; Faccoli, M. Multispectral Drone Images for the Early Detection of Bark Beetle Infestations: Assessment over Large Forest Areas in the South-Eastern Alps. Front. For. Glob. Change 2025, 8, 1532954. [Google Scholar] [CrossRef]
- Bhattarai, R.; Rahimzadeh-Bajgiran, P.; Weiskittel, A.; MacLean, D.A. Sentinel-2 Based Prediction of Spruce Budworm Defoliation Using Red-Edge Spectral Vegetation Indices. Remote Sens. Lett. 2020, 11, 777–786. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Hornero, A.; Mottus, M.; Penuelas, J.; González-Dugo, V.; Jiménez, J.C.; Suárez, L.; Alonso, L.; Zarco-Tejada, P.J. Early Diagnosis of Vegetation Health from High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned from Empirical Relationships and Radiative Transfer Modelling. Curr. For. Rep. 2019, 5, 169–183. [Google Scholar] [CrossRef]
- Smigaj, M.; Gaulton, R.; Suárez, J.C.; Barr, S.L. Combined Use of Spectral and Structural Characteristics for Improved Red Band Needle Blight Detection in Pine Plantation Stands. For. Ecol. Manag. 2019, 434, 213–223. [Google Scholar] [CrossRef]
- Still, C.; Powell, R.; Aubrecht, D.; Kim, Y.; Helliker, B.; Roberts, D.; Richardson, A.D.; Goulden, M. Thermal Imaging in Plant and Ecosystem Ecology: Applications and Challenges. Ecosphere 2019, 10, e02768. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating Evapotranspiration and Drought Stress with Ground-Based Thermal Remote Sensing in Agriculture: A Review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Tsujimoto, K.; Ogawa, T.; Noda, H.M.; Hikosaka, K. Correction of Photochemical Reflectance Index (PRI) by Optical Indices to Predict Non-Photochemical Quenching (NPQ) across Various Species. Remote Sens. Environ. 2024, 305, 114062. [Google Scholar] [CrossRef]
- Smigaj, M.; Agarwal, A.; Bartholomeus, H.; Decuyper, M.; Elsherif, A.; de Jonge, A.; Kooistra, L. Thermal Infrared Remote Sensing of Stress Responses in Forest Environments: A Review of Developments, Challenges, and Opportunities. Curr. For. Rep. 2023, 10, 56–76. [Google Scholar] [CrossRef]
- Davenhill, N.A. Forest Weed Control Manual: A Guide to Herbicide Use in Forests; FRI Bulletin; New Zealand Forest Research Institute Ltd.: Rotorua, New Zealand, 1997; Volume 180. [Google Scholar]
- Kudsk, P.; Kristensen, J.L. Effect of Environmental Factors on Herbicide Performance. In Proceedings of the First International Weed Control Congress, Melbourne, Australia, 17–21 February 1992. [Google Scholar]
- Liu, J.; Huete, A.R. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating Chlorophyll Content from Hyperspectral Vegetation Indices: Modeling and Validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Bréon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Carter, G.A.; Cibula, W.G.; Dell, T.R. Spectral Reflectance Characteristics and Digital Imagery of a Pine Needle Blight in the Southeastern United States. Can. J. For. Res. 1996, 26, 402–407. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and Model Inversion Methods with Narrowband Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-Band Model for Noninvasive Estimation of Chlorophyll, Carotenoids, and Anthocyanin Contents in Higher Plant Leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote Estimation of Chlorophyll Content in Higher Plant Leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral Indices for Estimating Photosynthetic Pigment Concentrations: A Test Using Senescent Tree Leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive Optical Detection of Pigment Changes during Leaf Senescence and Fruit Ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Peñuelas, J.; Baret, F.; Filella, I. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll a Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L. Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance: I. Leaf-Level Measurements and Model Simulation. Remote Sens. Environ. 2000, 74, 582–595. [Google Scholar] [CrossRef]
- Garrity, S.R.; Eitel, J.U.H.; Vierling, L.A. Disentangling the Relationships between Plant Pigments and the Photochemical Reflectance Index Reveals a New Approach for Remote Estimation of Carotenoid Content. Remote Sens. Environ. 2011, 115, 628–635. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Suárez, L.; Morales, F.; Zarco-Tejada, P.J. Assessing Structural Effects on PRI for Stress Detection in Conifer Forests. Remote Sens. Environ. 2011, 115, 2360–2375. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Morales, A.; Testi, L.; Villalobos, F.J. Spatio-Temporal Patterns of Chlorophyll Fluorescence and Physiological and Structural Indices Acquired from Hyperspectral Imagery as Compared with Carbon Fluxes Measured with Eddy Covariance. Remote Sens. Environ. 2013, 133, 102–115. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-Resolution Airborne Hyperspectral and Thermal Imagery for Early Detection of Verticillium Wilt of Olive Using Fluorescence, Temperature and Narrow-Band Spectral Indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; Lopez-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; de Frutos, A. Assessing Vineyard Condition with Hyperspectral Indices: Leaf and Canopy Reflectance Simulation in a Row-Structured Discontinuous Canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, Temperature and Narrow-Band Indices Acquired from a UAV Platform for Water Stress Detection Using a Micro-Hyperspectral Imager and a Thermal Camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Vegetation Stress: An Introduction to the Stress Concept in Plants. J. Plant Physiol. 1996, 148, 4–14. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Yacobi, Y.Z.; Schalles, J.F.; Rundquist, D.C.; Han, L.; Stark, R.; Etzion, D. Remote Estimation of Phytoplankton Density in Productive Waters. Adv. Limnol. 2000, 55, 121–136. [Google Scholar]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E. Ratio Analysis of Reflectance Spectra (RARS): An Algorithm for the Remote Estimation of the Concentrations of Chlorophyll A, Chlorophyll B, and Carotenoids in Soybean Leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Rumpf, T.; Welke, P.; Dehne, H.-W.; Plümer, L.; Steiner, U.; Oerke, E.-C. Development of Spectral Indices for Detecting and Identifying Plant Diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Lad, L.E.; Tinkham, W.T.; Sparks, A.M.; Smith, A.M.S. Evaluating Predictive Models of Tree Foliar Moisture Content for Application to Multispectral UAS Data: A Laboratory Study. Remote Sens. 2023, 15, 5703. [Google Scholar] [CrossRef]
- Filella, I.; Peñuelas, J. The Red Edge Position and Shape as Indicators of Plant Chlorophyll Content, Biomass, and Hydric Status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Shibayama, M.; Salli, A.; Häme, T.; Iso-Iivari, L.; Heino, S.; Alanen, M.; Morinaga, S.; Inoue, Y.; Akiyama, T. Detecting Phenophases of Subarctic Shrub Canopies by Using Automated Reflectance Measurements. Remote Sens. Environ. 1999, 67, 160–180. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency across Species, Functional Types, and Nutrient Levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
Date | Activity | 1st Visual on 13 December 2024 | UAV Captures on 15 December 2024 | 2nd Visual on 24 January 2025 |
---|---|---|---|---|
Days After Treatment (DAT) | ||||
17 October 2024 | Pre-treatment Visual Assessment | - | - | - |
Control Block | - | - | - | |
29 October 2024 | Block 1 Treatment | 45 | 47 | 87 |
4 November 2024 | Block 2 Treatment | 39 | 41 | 81 |
13 November 2024 | Block 3 Treatment | 30 | 32 | 72 |
18 November 2024 | Block 4 Treatment | 25 | 27 | 67 |
27 November 2024 | Block 5 Treatment | 16 | 18 | 58 |
2 December 2024 | Block 6 Treatment | 11 | 13 | 53 |
Sensor | DAT | Confusion Matrix (%) | Classification Statistics | Important Variables (Norm. Score) | |||||
---|---|---|---|---|---|---|---|---|---|
TN | FP | FN | TP | Prec. | Rec. | F1 | |||
Multi. | 13 | 36.8 | 13.2 | 23.0 | 27.0 | 0.67 | 0.54 | 0.60 | R842 (1.0), R705 (0.84), PRI (0.21) |
18 | 42.9 | 7.1 | 13.4 | 36.6 | 0.84 | 0.73 | 0.78 | PRI (1.0), GRVI (0.78), R650 (0.73) | |
27 | 47.4 | 2.6 | 8.1 | 41.9 | 0.94 | 0.84 | 0.89 | PRI (1.0), NDRE (0.67), R444 (0.61) | |
32 | 41.8 | 8.2 | 4.4 | 45.6 | 0.85 | 0.91 | 0.88 | PRI (1.0), R842 (0.89), RE (0.60) | |
41 | 46.8 | 3.2 | 10.9 | 39.1 | 0.92 | 0.78 | 0.85 | GNDVI (1.0), FMCI (0.40), PRI (0.29) | |
47 | 50.0 | 0.0 | 5.4 | 44.6 | 1.00 | 0.89 | 0.94 | NDVI2 (1.0), PRI (0.25), FMCI (0.1) | |
Hyp. | 13 | 38.5 | 11.5 | 14.3 | 35.7 | 0.76 | 0.71 | 0.73 | R (1.0), OSAVI (0.67), SR510_574 (0.5) |
18 | 41.3 | 8.7 | 12.1 | 37.9 | 0.81 | 0.76 | 0.78 | PSSRc (1.0), HI (0.89), CRI700_515 (0.75) | |
27 | 47.9 | 2.1 | 10.3 | 39.7 | 0.95 | 0.79 | 0.86 | PRI570 (1.0), B (0.42), PSRI (0.38) | |
32 | 48.8 | 1.2 | 2.6 | 47.4 | 0.98 | 0.95 | 0.96 | SR528_574 (1.0), PRICI (0.83), TCARI (0.82) | |
41 | 48.5 | 1.5 | 4.7 | 45.3 | 0.97 | 0.91 | 0.94 | PRICI (1.0), DCab (0.89), LIC6 (0.78) | |
47 | 49.8 | 0.2 | 3.6 | 46.4 | 1.00 | 0.93 | 0.96 | PRIm2 (1.0), DCab (0.31), SR510_574 (0.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Main, R.; Felix, M.J.B.; Watt, M.S.; Hartley, R.J.L. Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery. Forests 2025, 16, 1240. https://doi.org/10.3390/f16081240
Main R, Felix MJB, Watt MS, Hartley RJL. Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery. Forests. 2025; 16(8):1240. https://doi.org/10.3390/f16081240
Chicago/Turabian StyleMain, Russell, Mark Jayson B. Felix, Michael S. Watt, and Robin J. L. Hartley. 2025. "Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery" Forests 16, no. 8: 1240. https://doi.org/10.3390/f16081240
APA StyleMain, R., Felix, M. J. B., Watt, M. S., & Hartley, R. J. L. (2025). Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery. Forests, 16(8), 1240. https://doi.org/10.3390/f16081240