Efficient Energy Transfer Down-Shifting Material for Dye-Sensitized Solar Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Optical Band Gap Estimation
2.3. Estimation of Overlap Integral and Förster Distance
3. Results and Discussion
3.1. SEM Analysis
3.2. EDS Analysis
3.3. Optical Analysis
3.4. Photoluminescent Analysis
3.5. Energy Transfer Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EDS | Energy-dispersive X-ray spectroscopy |
DSSCs | Dye-sensitized solar cells |
FRET | Förster resonance energy transfer |
LDS | Luminescent down-shifting |
SEM | Scanning electron microscope |
UV | Ultraviolet |
References
- Maka, A.O.; Alabid, J.M. Solar energy technology and its roles in sustainable development. Clean Energy 2022, 6, 476–483. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. Int. J. Energy Res. 2020, 44, 4110–4131. [Google Scholar] [CrossRef]
- Onah, E.H.; Lethole, N.L.; Mukumba, P. Luminescent Materials for Dye-Sensitized Solar Cells: Advances and Directions. Appl. Sci. 2024, 14, 9202. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Son, M.-K.; Seo, H. Effect of Ultraviolet Radiation on the Long-Term Stability of Dye-Sensitized Solar Cells. Electron. Mater. Lett. 2020, 16, 556–563. [Google Scholar] [CrossRef]
- Kamat, P.V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2008, 112, 18737–18753. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Onah, E.H.; Lethole, N.; Mukumba, P. Optoelectronic Devices Analytics: MachineLearning-Driven Models for Predicting the Performance of a Dye-Sensitized Solar Cell. Electronics 2025, 14, 1948. [Google Scholar] [CrossRef]
- Ho, W.-J.; Shen, Y.-T.; Liu, J.-J.; You, B.-J.; Ho, C.-H. Enhancing photovoltaic performance using broadband luminescent down-shifting by combining multiple species of Eu-doped silicate phosphors. Nanomaterials 2017, 7, 340. [Google Scholar] [CrossRef]
- Hosseini, Z.; Taghavinia, N.; Diau, E.W.-G. Luminescent Spectral Conversion to Improve the Performance of Dye-Sensitized Solar Cells. Chemphyschem 2017, 18, 3292–3308. [Google Scholar] [CrossRef]
- Ju, T.; Li, Z. An Updated Review for Performance Enhancement of Solar Cells by Spectral Modification. Energies 2024, 17, 4492. [Google Scholar] [CrossRef]
- Rehman, A.U.; Aslam, M.; Khan, M.; Shahid, I.; Siddiq, A.; Iqbal, M.A.; Ahmed, S. Enhancing the photovoltaic performance of solid-state dye-sensitized solar cells with composite materials and luminescent down-shifting. J. Electron. Mater. 2020, 49, 6292–6299. [Google Scholar] [CrossRef]
- Hosseini, Z.; Huang, W.-K.; Tsai, C.-M.; Chen, T.-M.; Taghavinia, N.; Diau, E.W.-G. Enhanced light harvesting with a reflective luminescent down-shifting layer for dye-sensitized solar cells. Acs Appl. Mater. Inter. 2013, 5, 5397–5402. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, Y.; Yusoff, A.R.B.M.; Yu, Y.; Gao, P. Unlocking the Potential of Rare Earth-Doped Down-Conversion Materials for Enhanced Solar Cell Performance and Durability. Solar RRL 2025, 9, 2400798. [Google Scholar] [CrossRef]
- Rajeswari, R.; Islavath, N.; Raghavender, M.; Giribabu, L. Recent progress and emerging applications of rare earth doped phosphor materials for dye-sensitized and perovskite solar cells: A review. Chem. Rec. 2020, 20, 65–88. [Google Scholar] [CrossRef]
- Sehgal, P.; Narula, A.K. Improved optical, electrochemical and photovoltaic properties of dye-sensitized solar cell composed of rare earth-doped zinc oxide. J. Mater. Sci. Mater. Electron. 2021, 32, 16612–16622. [Google Scholar] [CrossRef]
- Terraschke, H.; Wickleder, C. UV, blue, green, yellow, red, and small: Newest developments on Eu2+-doped nanophosphors. Chem. Rev. 2015, 115, 11352–11378. [Google Scholar] [CrossRef]
- Parauha, Y.R.; Shirbhate, N.S.; Dhoble, S.J. Color-tunable luminescence by energy transfer mechanism in RE (RE = Eu2+, Tb3+)–doped Na2SrPO4F phosphors. J. Mater. Sci. Mater. Electron. 2022, 33, 15333–15345. [Google Scholar] [CrossRef]
- Lastusaari, M.; Jungner, H.; Kotlov, A.; Laamanen, T.; Rodrigues, L.C.; Brito, H.F.; Hölsä, J. Understanding persistent luminescence: Rare-earth-and Eu2+-doped Sr2MgSi2O7. Z. Für Naturforschung B 2014, 69, 171–182. [Google Scholar] [CrossRef]
- Jia, Y.; Sun, W.; Pang, R.; Ma, T.; Li, D.; Li, H.; Zhang, S.; Fu, J.; Jiang, L.; Li, C. Sunlight activated new long persistent luminescence phosphor BaSiO3: Eu2+, Nd3+, Tm3+ Optical properties and mechanism. Mater. Des. 2016, 90, 218–224. [Google Scholar] [CrossRef]
- Imran, M.; Rafiq, Q.; Rahman, A.U.; Azam, S. First-principles calculations of optoelectronic characteristics of Eu3+ & Tb3+ doped BaSiO3 for energy renewable devices applications. Comput. Condens. Matter 2024, 40, e00944. [Google Scholar]
- Sangiorgi, N.; Aversa, L.; Tatti, R.; Verucchi, R.; Sanson, A. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Opt. Mater. 2017, 64, 18–25. [Google Scholar] [CrossRef]
- Mannino, G.; Deretzis, I.; Smecca, E.; La Magna, A.; Alberti, A.; Ceratti, D.; Cahen, D. Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals. J. Phys. Chem. Lett. 2020, 11, 2490–2496. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Huang, C.; Tsilomelekis, G.; Celik, F.E. Differential Diffuse Reflectance Spectral Calculation of Crystalline Composition and Bandgap Energy in Metal Oxides Mixtures. J. Phys. Chem. C 2024, 128, 18051–18062. [Google Scholar] [CrossRef]
- Zanatta, A.R. Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Sci. Rep. 2019, 9, 11225. [Google Scholar] [CrossRef]
- Langhals, H. Determination of the Overlap Between UV Absorption Spectrum and Fluorescence Spectrum. University of Munich Repository. 2022. Available online: https://epub.ub.uni-muenchen.de/93849/1/3698_engl.pdf (accessed on 10 June 2025).
- Albinsson, B.; Mårtensson, J. Long-range electron and excitation energy transfer in donor–bridge–acceptor systems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 138–155. [Google Scholar] [CrossRef]
- Sreenath, K.; Yi, C.; Knappenberger, K.L.; Zhu, L. Distinguishing Förster resonance energy transfer and solvent-mediated charge-transfer relaxation dynamics in a zinc (II) indicator: A femtosecond time-resolved transient absorption spectroscopic study. Phys. Chem. Chem. Phys. 2014, 16, 5088–5092. [Google Scholar] [CrossRef]
- Lakowicz, J.R.R. Principles of Fluorzescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Sengupta, D.; Das, P.; Mondal, B.; Mukherjee, K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application–A review. Renew. Sustain. Energy Rev. 2016, 60, 356–376. [Google Scholar] [CrossRef]
- Low, F.W.; Lai, C.W. Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2018, 82, 103–125. [Google Scholar] [CrossRef]
- Joseph, I.; Louis, H.; Unimuke, T.; Etim, I.; Orosun, M.; Odey, J. An overview of the operational principles, light harvesting and trapping technologies, and recent advances of the dye sensitized solar cells. Appl. Sol. Energy 2020, 56, 334–363. [Google Scholar] [CrossRef]
- Song, W.; Gong, Y.; Tian, J.; Cao, G.; Zhao, H.; Sun, C. Novel photoanode for dye-sensitized solar cells with enhanced light-harvesting and electron-collection efficiency. Acs Appl. Mater. Inter. 2016, 8, 13418–13425. [Google Scholar] [CrossRef] [PubMed]
- Katyayan, S.; Agrawal, S. CaSiO3: Eu2+, Er3+, BaSiO3: Eu2+, Er3+ and SrSiO3: Eu2+, Er3+ phosphors: Molten salt synthesis, optical and thermal studies. J. Mater. Sci. Mater. Electron. 2020, 31, 8472–8480. [Google Scholar] [CrossRef]
- ALOthman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Farzaneh, A.; Abdi, M.R. CsI nanocrystal doped with Eu2+ ions for radiation detection. J. Lumin. 2018, 194, 424–427. [Google Scholar] [CrossRef]
- Li, Y.; Van Steen, J.; Van Krevel, J.; Botty, G.; Delsing, A.; DiSalvo, F.; De With, G.; Hintzen, H. Luminescence properties of red-emitting M2Si5N8: Eu2+ (M= Ca, Sr, Ba) LED conversion phosphors. J. Alloys Compd. 2006, 417, 273–279. [Google Scholar] [CrossRef]
- Zheng, D.; Yang, X.; Čuček, L.; Wang, J.; Ma, T.; Yin, C. Revolutionizing dye-sensitized solar cells with nanomaterials for enhanced photoelectric performance. J. Clean. Prod. 2024, 464, 142717. [Google Scholar] [CrossRef]
- Mehra, S.; Bishnoi, S.; Jaiswal, A.; Jagadeeswararao, M.; Srivastava, A.K.; Sharma, S.N.; Vashishtha, P. A review on spectral converting nanomaterials as a photoanode layer in dye-sensitized solar cells with implementation in energy storage devices. Energy Storage 2020, 2, e120. [Google Scholar] [CrossRef]
- Benetti, D.; Rosei, F. Alternative uses of luminescent solar concentrators. Nanoenergy Adv. 2022, 2, 222–240. [Google Scholar] [CrossRef]
- Gabr, A. Modelling and Characterization of Down-Conversion and Down-Shifting Processes for Photovoltaic Applications. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, USA, 2016. [Google Scholar]
- Nowsherwan, G.A.; Khan, M.; Nowsherwan, N.; Ikram, S.; Hussain, S.S.; Naseem, S.; Riaz, S. Emerging trends in lanthanide-based upconversion and downconversion material for PSCs & DSSCs. J. Mater. Sci. 2024, 59, 16411–16448. [Google Scholar]
- Zhu, Y.; Liang, Y.; Liu, S.; Li, H.; Chen, J.; Lei, W. Design of hierarchical composite silicate for full-color and high thermal stability phosphors. Chem. Eng. J. 2018, 345, 327–336. [Google Scholar] [CrossRef]
- Ferrari, A.M.; Orlando, R.; Rérat, M. Ab initio calculation of the ultraviolet–visible (UV-vis) absorption spectrum, electron-loss function, and reflectivity of solids. J. Chem. Theory Comput. 2015, 11, 3245–3258. [Google Scholar] [CrossRef]
- Pratiwi, D.; Nurosyid, F.; Supriyanto, A.; Suryana, R. Effect of composition of chlorophyll and ruthenium dyes mixture (hybrid) on the dye-sensitized solar cell performance. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Surakarta, Indonesia, 4–5 September 2017; IOP Publishing: Bristol, UK, 2018; p. 012030. [Google Scholar]
- Shirkavand, M.; Bavir, M.; Fattah, A.; Alaei, H.R.; Tayarani Najaran, M.H. The construction and comparison of dye-sensitized solar cells with blackberry and n719 dyes. J. Optoelectron. Nanostruct. 2018, 3, 79–92. [Google Scholar]
- Chandrasekharam, M.; Srinivasarao, C.; Suresh, T.; Reddy, M.A.; Raghavender, M.; Rajkumar, G.; Srinivasu, M.; Reddy, P.Y. High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells. J. Chem. Sci. 2011, 123, 37–46. [Google Scholar] [CrossRef]
- Park, J.H.; Ahn, W.; Kim, Y.J. Synthesis of Ba2SiO4: Eu2+ by a Hybrid Process and Its Luminescent Properties. J. Nanosci. Nanotechnol. 2015, 15, 8155–8160. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.B.; Chen, J.Y.; Sung, K.W.; Chen, T.M. Enhanced conversion efficiency of crystalline Si solar cells via luminescent down-shifting using Ba2SiO4: Eu2+ phosphor. J. Ceram. Process. Res. 2014, 15, 157–161. [Google Scholar]
- Ananthakumar, S.; Balaji, D.; Ram Kumar, J.; Moorthy Babu, S. Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells. SN Appl. Sci. 2019, 1, 186. [Google Scholar] [CrossRef]
- Bella, F.; Griffini, G.; Gerosa, M.; Turri, S.; Bongiovanni, R. Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings. J. Power Sources 2015, 283, 195–203. [Google Scholar] [CrossRef]
- Inamdar, S.R.; Pujar, G.; Sannaikar, M. FRET from ZnSe/ZnS QDs to coumarin dyes: Role of acceptor dipole moment and QD surface states on FRET efficiency. J. Lumin. 2018, 203, 67–73. [Google Scholar] [CrossRef]
- Kaur, A.; Kaur, P.; Ahuja, S. Förster resonance energy transfer (FRET) and applications thereof. Anal. Methods 2020, 12, 5532–5550. [Google Scholar] [CrossRef]
- Sapsford, K.E.; Berti, L.; Medintz, I.L. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor–acceptor combinations. Angew. Chem. Int. Ed. 2006, 45, 4562–4589. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, Q.; Ding, M.; Mao, Y.; Huang, X.; Song, L.; Bu, T. Fortified Donor–Acceptor Spectral Overlap Facilitated Fluorescence Quenching Efficiency for Developing Sensitive Nanometal Surface Energy Transfer-Based Immunochromatographic Test Strips. Anal. Chem. 2025, 97, 5209–5216. [Google Scholar] [CrossRef] [PubMed]
) | (nm) | ||||
---|---|---|---|---|---|
0.211 | 2/3 | 0.27 | 1.33 | 6.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onah, E.H.; Lethole, N.L.; Mukumba, P. Efficient Energy Transfer Down-Shifting Material for Dye-Sensitized Solar Cells. Materials 2025, 18, 3213. https://doi.org/10.3390/ma18143213
Onah EH, Lethole NL, Mukumba P. Efficient Energy Transfer Down-Shifting Material for Dye-Sensitized Solar Cells. Materials. 2025; 18(14):3213. https://doi.org/10.3390/ma18143213
Chicago/Turabian StyleOnah, Emeka Harrison, N. L. Lethole, and P. Mukumba. 2025. "Efficient Energy Transfer Down-Shifting Material for Dye-Sensitized Solar Cells" Materials 18, no. 14: 3213. https://doi.org/10.3390/ma18143213
APA StyleOnah, E. H., Lethole, N. L., & Mukumba, P. (2025). Efficient Energy Transfer Down-Shifting Material for Dye-Sensitized Solar Cells. Materials, 18(14), 3213. https://doi.org/10.3390/ma18143213