Effect of Far-UVC and Violet Irradiation on the Microbial Contamination of Spinach Leaves and Their Vitamin C and Chlorophyll Contents †
Abstract
1. Introduction
2. Materials and Methods
2.1. Microbial Irradiation Experiments
2.2. Determination of Vitamin C Concentration
2.3. Determination of Chlorophyll Concentration
3. Results
3.1. Microbial Irradiation Experiments
3.2. Determination of Vitamin C Concentration
3.3. Determination of Chlorophyll Concentration
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avery, S.V.; Singleton, I.; Magan, N.; Goldman, G.H. The fungal threat to global food security. Fungal Biol. 2019, 123, 555–557. [Google Scholar] [CrossRef]
- Davies, C.R.; Wohlgemuth, F.; Young, T.; Violet, J.; Dickinson, M.; Sanders, J.-W.; Vallieres, C.; Avery, S.V. Evolving challenges and strategies for fungal control in the food supply chain. Fungal Biol. Rev. 2021, 36, 15–26. [Google Scholar] [CrossRef]
- Fung, F.; Wang, H.-S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef]
- Pasteur, L. Études Sur le Vin: Ses Maladies, Causes Qui les Provoquent, Procédés Nouveaux Pour le Conserver et Pour le Vieillir, Impr; Impériale: Paris, France, 1866. [Google Scholar]
- Petersson, L.P.; Albrecht, U.-V.; Sedlacek, L.; Gemein, S.; Gebel, J.; Vonberg, R.-P. Portable UV light as an alternative for decontamination. Am. J. Infect. Control. 2014, 42, 1334–1336. [Google Scholar] [CrossRef]
- Rudhart, S.A.; Günther, F.; Dapper, L.I.; Gehrt, F.; Stuck, B.A.; Hoch, S. Analysis of bacterial contamination and the effectiveness of UV light-based reprocessing of everyday medical devices. PLoS ONE. 2022, 17, e0268863. [Google Scholar] [CrossRef]
- Eadie, E.; Barnard, I.M.R.; Ibbotson, S.H.; Wood, K. Extreme Exposure to Filtered Far-UVC: A Case Study†. Photochem. Photobiol. 2021, 97, 527–531. [Google Scholar] [CrossRef]
- Sliney, D.H.; Stuck, B.E. A Need to Revise Human Exposure Limits for Ultraviolet UV-C Radiation†. Photochem. Photobiol. 2021, 97, 485–492. [Google Scholar] [CrossRef]
- Buonanno, M.; Welch, D.; Brenner, D.J. Exposure of Human Skin Models to KrCl Excimer Lamps: The Impact of Optical Filtering†. Photochem. Photobiol. 2021, 97, 517–523. [Google Scholar] [CrossRef]
- Zwicker, P.; Schleusener, J.; Lohan, S.B.; Busch, L.; Sicher, C.; Einfeldt, S.; Kneissl, M.; Kühl, A.A.; Keck, C.M.; Witzel, C.; et al. Application of 233 nm far-UVC LEDs for eradication of MRSA and MSSA and risk assessment on skin models. Sci. Rep. 2022, 12, 2587. [Google Scholar] [CrossRef]
- Hessling, M.; Haag, R.; Sieber, N.; Vatter, P. The impact of far-UVC radiation (200–230 nm) on pathogens, cells, skin, and eyes—A collection and analysis of a hundred years of data. GMS Hyg. Infect. Control 2021, 16, Doc07. [Google Scholar] [CrossRef] [PubMed]
- Tomb, R.M.; White, T.A.; Coia, J.E.; Anderson, J.G.; MacGregor, S.J.; Maclean, M. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380–480 nm Violet-Blue Light. Photochem. Photobiol. 2018, 94, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Hessling, M.; Spellerberg, B.; Hoenes, K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths—A review on existing data. FEMS Microbiol. Lett. 2016, 364, 270. [Google Scholar] [CrossRef] [PubMed]
- Kleinpenning, M.M.; Smits, T.; Frunt, M.H.A.; van Erp, P.E.J.; van de Kerkhof, P.C.M.; Gerritsen, R.M.J.P. Clinical and histological effects of blue light on normal skin. Photodermatol. Photoimmunol. Photomed. 2010, 26, 16–21. [Google Scholar] [CrossRef]
- Bauer, R.; Hoenes, K.; Meurle, T.; Hessling, M.; Spellerberg, B. The effects of violet and blue light irradiation on ESKAPE pathogens and human cells in presence of cell culture media. Sci. Rep. 2021, 11, 24473. [Google Scholar] [CrossRef]
- Deutch, C.E. Transformation of Escherichia coli with the pGLO Plasmid: Going beyond the Kit. Am. Biol. Teach. 2019, 81, 52–55. [Google Scholar] [CrossRef]
- Park, S.; Navratil, S.; Gregory, A.; Bauer, A.; Srinath, I.; Jun, M.; Szonyi, B.; Nightingale, K.; Anciso, J.; Ivanek, R. Generic Escherichia coli contamination of spinach at the preharvest stage: Effects of farm management and environmental factors. Appl. Environ. Microbiol. 2013, 79, 4347–4358. [Google Scholar] [CrossRef]
- Luna-Guevara, J.J.; Arenas-Hernandez, M.M.P.; La Martínez de Peña, C.; Silva, J.L.; Luna-Guevara, M.L. The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. Int. J. Microbiol. 2019, 38, 1–10. [Google Scholar] [CrossRef]
- Maki, D.G. Don’t eat the spinach-controlling foodborne infectious disease. N. Engl. J. Med. 2006, 355, 1952–1955. [Google Scholar] [CrossRef]
- LEIFI Chemie. Quantitativer Nachweis von Vitamin C (Ascorbinsäure) mit Kaliumiodat. Available online: https://www.leifichemie.de/erdoel-und-organische-stoffklassen/carbonsaeuren/versuche/quantitativer-nachweis-von-vitamin-c-ascorbinsaeure-mit-kaliumiodat (accessed on 7 January 2025).
- Spanyár, P.; Kevei, P. Über die Stabilisierung von Vitamin C in Lebensmitteln. Z. Lebensm.-Unters. Forsch. 1963, 120, 1–17. [Google Scholar] [CrossRef]
- Staatsinstitut für Schulqualität und Bildungsforschung. Bestimmung des Ascorbinsäuregehalts einer Vitamin C-Brausetablette durch Redoxtitration. Available online: https://www.isb.bayern.de/fileadmin/user_upload/Gymnasium/ILV/Chemie/chemie_repetitorium_material.pdf (accessed on 7 January 2025).
- Roberts, J.L.; Moreau, R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct. 2016, 7, 3337–3353. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Escalona, V.H.; Robles, P.A.; Martínez-Hernández, G.B.; Artés, F. Effect of UV-C radiation on quality of minimally processed spinach leaves. J. Sci. Food Agric. 2009, 89, 414–421. [Google Scholar] [CrossRef]
- Escalona, V.H.; Aguayo, E.; Martínez-Hernández, G.B.; Artés, F. UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biol. Technol. 2010, 56, 223–231. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Lozano-Pastor, P.; Artés-Hernández, F.; Artés, F.; Aguayo, E. Preharvest UV-C treatment improves the quality of spinach primary production and postharvest storage. Postharvest Biol. Technol. 2019, 155, 130–139. [Google Scholar] [CrossRef]
- Kibar, H.; Kibar, B. Comparison of Ultraviolet A, B and C Treatments in Preserving the Quality and Nutritional Integrity of Fresh-Cut Spinach. Foods 2025, 14, 1374. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerdt, A.; Gierke, A.-M.; Vatter, P.; Hessling, M. Effect of Far-UVC and Violet Irradiation on the Microbial Contamination of Spinach Leaves and Their Vitamin C and Chlorophyll Contents. Biol. Life Sci. Forum 2025, 47, 1. https://doi.org/10.3390/blsf2025047001
Gerdt A, Gierke A-M, Vatter P, Hessling M. Effect of Far-UVC and Violet Irradiation on the Microbial Contamination of Spinach Leaves and Their Vitamin C and Chlorophyll Contents. Biology and Life Sciences Forum. 2025; 47(1):1. https://doi.org/10.3390/blsf2025047001
Chicago/Turabian StyleGerdt, Alexander, Anna-Maria Gierke, Petra Vatter, and Martin Hessling. 2025. "Effect of Far-UVC and Violet Irradiation on the Microbial Contamination of Spinach Leaves and Their Vitamin C and Chlorophyll Contents" Biology and Life Sciences Forum 47, no. 1: 1. https://doi.org/10.3390/blsf2025047001
APA StyleGerdt, A., Gierke, A.-M., Vatter, P., & Hessling, M. (2025). Effect of Far-UVC and Violet Irradiation on the Microbial Contamination of Spinach Leaves and Their Vitamin C and Chlorophyll Contents. Biology and Life Sciences Forum, 47(1), 1. https://doi.org/10.3390/blsf2025047001