Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (264)

Search Parameters:
Keywords = vertical compressive stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8767 KiB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 (registering DOI) - 31 Jul 2025
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

30 pages, 10277 KiB  
Article
A Finite Element Formulation for True Coupled Modal Analysis and Nonlinear Seismic Modeling of Dam–Reservoir–Foundation Systems: Application to an Arch Dam and Validation
by André Alegre, Sérgio Oliveira, Jorge Proença, Paulo Mendes and Ezequiel Carvalho
Infrastructures 2025, 10(8), 193; https://doi.org/10.3390/infrastructures10080193 - 22 Jul 2025
Viewed by 173
Abstract
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical [...] Read more.
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical governing equation for the whole system with non-proportional damping. For the modal analysis, a state–space method is adopted to solve the coupled eigenproblem, and complex eigenvalues and eigenvectors are computed, corresponding to non-stationary vibration modes. For the seismic analysis, a time-stepping method is applied to the coupled dynamic equation, and the stress–transfer method is introduced to simulate the nonlinear behavior, innovatively combining a constitutive joint model and a concrete damage model with softening and two independent scalar damage variables (tension and compression). This formulation is implemented in the computer program DamDySSA5.0, developed by the authors. To validate the formulation, this paper provides the experimental and numerical results in the case of the Cahora Bassa dam, instrumented in 2010 with a continuous vibration monitoring system designed by the authors. The good comparison achieved between the monitoring data and the dam–reservoir–foundation model shows that the formulation is suitable for simulating the modal response (natural frequencies and mode shapes) for different reservoir water levels and the seismic response under low-intensity earthquakes, using accelerograms measured at the dam base as input. Additionally, the dam’s nonlinear seismic response is simulated under an artificial accelerogram of increasing intensity, showing the structural effects due to vertical joint movements (release of arch tensions near the crest) and the concrete damage evolution. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

23 pages, 8675 KiB  
Article
Research on the Deterioration Mechanism of PPF Mortar-Masonry Stone Structures Under Freeze–Thaw Conditions
by Jie Dong, Hongfeng Zhang, Zhenhuan Jiao, Zhao Yang, Shaohui Chu, Jinfei Chai, Song Zhang, Lunkai Gong and Hongyu Cui
Buildings 2025, 15(14), 2468; https://doi.org/10.3390/buildings15142468 - 14 Jul 2025
Viewed by 281
Abstract
Significant progress has been made in the low-temperature toughness and crack resistance of polypropylene fiber-reinforced composites. However, there is still a gap in the research on damage evolution under freeze–thaw cycles and complex stress ratios. To solve the problem of durability degradation of [...] Read more.
Significant progress has been made in the low-temperature toughness and crack resistance of polypropylene fiber-reinforced composites. However, there is still a gap in the research on damage evolution under freeze–thaw cycles and complex stress ratios. To solve the problem of durability degradation of traditional rubble masonry in cold regions, this paper focuses on the study of polypropylene fiber-mortar-masonry blocks with different fiber contents. Using acoustic emission and digital image technology, the paper conducts a series of tests on the scaled-down polypropylene fiber-mortar-masonry structure, including uniaxial compressive tests, three-point bending tests, freeze–thaw cycle tests, and tests with different stress ratios. Based on the Kupfer criterion, a biaxial failure criterion for polypropylene fiber mortar-masonry stone (PPF-MMS) was established under different freeze–thaw cycles. A freeze–thaw damage evolution model was also developed under different stress ratios. The failure mechanism of PPF-MMS structures was analyzed using normalized average deviation (NAD), RA-AF, and other parameters. The results show that when the dosage of PPF is 0.9–1.1 kg/m3, it is the optimal content. The vertical stress shows a trend of increasing first and then decreasing with the increase in the stress ratio, and when α = 0.5, the degree of strength increase reaches the maximum. However, the freeze–thaw cycle has an adverse effect on the internal structure of the specimens. Under the same number of freeze–thaw cycles, the strength of the specimens without fiber addition decreases more rapidly than that with fiber addition. The NAD evolution rate exhibits significant fluctuations during the middle loading period and near the damage failure, which can be considered precursors to specimen cracking and failure. RA-AF results showed that the specimens mainly exhibited tensile failure, but the occurrence of tensile failure gradually decreased as the stress ratio increased. Full article
Show Figures

Figure 1

22 pages, 6902 KiB  
Article
Numerical Analysis of Aspect Ratio Effects on the Mechanical Behavior of Perforated Steel Plates
by Thiago da Silveira, Eduardo Araujo Crestani, Elizaldo Domingues dos Santos and Liércio André Isoldi
Metals 2025, 15(7), 786; https://doi.org/10.3390/met15070786 - 11 Jul 2025
Viewed by 214
Abstract
Thin plates are commonly used in mechanical structures such as ship hulls, offshore platforms, aircraft, automobiles, and bridges. When subjected to in-plane compressive loads, these structures may experience buckling. In some applications, perforations are introduced, altering membrane stress distribution and buckling behavior. This [...] Read more.
Thin plates are commonly used in mechanical structures such as ship hulls, offshore platforms, aircraft, automobiles, and bridges. When subjected to in-plane compressive loads, these structures may experience buckling. In some applications, perforations are introduced, altering membrane stress distribution and buckling behavior. This study investigates the elasto-plastic buckling behavior of perforated plates using the Finite Element Method (FEM), Constructal Design (CD), and Exhaustive Search (ES) techniques. Simply supported thin rectangular plates with central elliptical perforations were analyzed under biaxial elasto-plastic buckling. Three shapes of holes were considered—circular, horizontal elliptical, and vertical elliptical—along with sixteen aspect ratios and two different materials. Results showed that higher yield stress leads to higher ultimate stress for perforated plates. Regardless of material, plates exhibited a similar trend: ultimate stress decreased as the aspect ratio dropped from 1.00 to around 0.40 and then increased from 0.35 to 0.25. A similar pattern was observed in the stress components along both horizontal (x) and vertical (y) directions, once the y-component became considerably higher than the x-component for the same range of 0.40 to 0.25. For longer plates, in general, the vertical elliptical hole brings more benefits in structural terms, due to the facility in the distribution of y-components of stress. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals (2nd Edition))
Show Figures

Figure 1

23 pages, 81584 KiB  
Article
GNSS-Based Models of Displacement, Stress, and Strain in the SHETPENANT Region: Impact of Geodynamic Activity from the ORCA Submarine Volcano
by Belén Rosado, Vanessa Jiménez, Alejandro Pérez-Peña, Rosa Martín, Amós de Gil, Enrique Carmona, Jorge Gárate and Manuel Berrocoso
Remote Sens. 2025, 17(14), 2370; https://doi.org/10.3390/rs17142370 - 10 Jul 2025
Viewed by 385
Abstract
The South Shetland Islands and Antarctic Peninsula (SHETPENANT region) constitute a geodynamically active area shaped by the interaction of major tectonic plates and active magmatic systems. This study analyzes GNSS time series spanning from 2017 to 2024 to investigate surface deformation associated with [...] Read more.
The South Shetland Islands and Antarctic Peninsula (SHETPENANT region) constitute a geodynamically active area shaped by the interaction of major tectonic plates and active magmatic systems. This study analyzes GNSS time series spanning from 2017 to 2024 to investigate surface deformation associated with the 2020–2021 seismic swarm near the Orca submarine volcano. Horizontal and vertical displacement velocities were estimated for the preseismic, coseismic, and postseismic phases using the CATS method. Results reveal significant coseismic displacements exceeding 20 mm in the horizontal components near Orca, associated with rapid magmatic pressure release and dike intrusion. Postseismic velocities indicate continued, though slower, deformation attributed to crustal relaxation. Stations located near the Orca exhibit nonlinear, transient behavior, whereas more distant stations display stable, linear trends, highlighting the spatial heterogeneity of crustal deformation. Stress and strain fields derived from the velocity models identify zones of extensional dilatation in the central Bransfield Basin and localized compression near magmatic intrusions. Maximum strain rates during the coseismic phase exceeded 200 νstrain/year, supporting a scenario of crustal thinning and fault reactivation. These patterns align with the known structural framework of the region. The integration of GNSS-based displacement and strain modeling proves essential for resolving active volcano-tectonic interactions. The findings enhance our understanding of back-arc deformation processes in polar regions and support the development of more effective geohazard monitoring strategies. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

16 pages, 5185 KiB  
Article
Analysis the Mechanical Response of Tunnels Under the Action of Vertical Jacking in Shield Construction and Research on Reinforcement
by Mingxun Hou, Chunshan Yang, Jiayi Yang, Yuefei Zeng and Zhigang Zhu
Buildings 2025, 15(13), 2321; https://doi.org/10.3390/buildings15132321 - 2 Jul 2025
Viewed by 243
Abstract
This research examines the effects of vertical jacking construction on the mechanical behavior of shield tunnels. Model tests simulating vertical jacking were performed utilizing a purpose-built apparatus to quantify the reaction forces generated by the diffusion block during the jacking operation. A systematic [...] Read more.
This research examines the effects of vertical jacking construction on the mechanical behavior of shield tunnels. Model tests simulating vertical jacking were performed utilizing a purpose-built apparatus to quantify the reaction forces generated by the diffusion block during the jacking operation. A systematic analysis was conducted on the mechanical responses of shield tunnel lining segments and their interconnecting joints. Utilizing Particle Flow Code (PFC) methodology, a deformation prediction model specifically tailored for vertical jacking conditions was formulated. Correlating simulation results with experimental measurements quantified the sensitivity of tunnel deformation to grouting reinforcement, enabling the identification of an optimal reinforcement zone. Key findings reveal that the jacking reaction force distribution exhibits pronounced nonlinearity: a substantial increase precedes failure, followed by rapid post-failure reduction and eventual stabilization in advanced jacking stages. Tunnel convergence deformation evolves through four distinct phases: significant growth, rapid attenuation, gradual diminution, and final stabilization. The primary zone of influence encompasses the opening ring and its two adjacent rings. Jacking induces longitudinal bending deformation, with maximum joint opening occurring at the opening ring. Abrupt longitudinal load fluctuations cause dislocation between the opening ring and neighboring rings. Internal segment stresses exhibit initial tensile and compressive increases followed by subsequent relaxation. Externally applied grouting reinforcement effectively attenuates jacking-induced tunnel deformation. An optimal reinforcement range was determined at the 60° position relative to the segment springline, substantially lowering resource consumption and construction risks compared to conventional reinforcement strategies. These outcomes furnish theoretical underpinnings and technical benchmarks for optimizing engineering design and facilitating the implementation of vertical jacking technology. Full article
Show Figures

Figure 1

22 pages, 3608 KiB  
Article
Influence Mechanism and Optimal Design of Flexible Spring-Tooth Reel Mechanism for Soybean Pod-Shattering Reduction
by Yuxuan Chen, Shiguo Wang, Bin Li, Yang Liu, Zhong Tang, Xiaoying He, Jianpeng Jing and Weiwei Zhou
Agriculture 2025, 15(13), 1378; https://doi.org/10.3390/agriculture15131378 - 27 Jun 2025
Viewed by 306
Abstract
As a vital oil and cereal crop in China, soybean requires efficient and low-loss harvesting to ensure food security and sustainable agricultural development. However, pod-shattering losses during soybean harvesting in Xinjiang remain severe due to low pod moisture content and poor mechanical strength, [...] Read more.
As a vital oil and cereal crop in China, soybean requires efficient and low-loss harvesting to ensure food security and sustainable agricultural development. However, pod-shattering losses during soybean harvesting in Xinjiang remain severe due to low pod moisture content and poor mechanical strength, while existing studies lack a systematic analysis of the interaction mechanism between reeling devices and pods. The current research on soybean harvester headers predominantly focuses on conventional rigid designs, with limited exploration of flexible reel mechanisms and their biomechanical interactions with soybean pods. To address this, this study proposes an optimization method for low-loss harvesting technology based on mechanical-crop interaction mechanisms, integrating dynamic simulation, contact mechanics theory, and field experiments. Texture analyzer tests revealed pod-shattering force characteristics under different compression directions, showing that vertical compression exhibited the highest shattering risk with an average force of 14.3271 N. A collision model between the spring tooth and pods was established based on Hertz contact theory, demonstrating that reducing the elastic modulus of the spring tooth and increasing the contact area significantly minimized mechanical damage. Simulation verified that the PVC-nylon spring tooth reduced the maximum equivalent stress on pods by 90.3%. Furthermore, the trajectory analysis of spring-tooth tips indicated that effective pod-reeling requires a reel speed ratio (Δ) exceeding 1.0. Field tests with a square flexible spring tooth showed that the optimized reel reduced header loss to 1.371%, a significant improvement over conventional rigid teeth. This study provides theoretical and technical foundations for developing low-loss soybean harvesting equipment. Future work should explore multi-parameter collaborative optimization to enhance adaptability in complex field conditions. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 8142 KiB  
Article
Influence of Principal Stress Orientation on Cyclic Degradation of Soft Clay Under Storm Wave Loading
by Chengcong Hu, Feng Gao, Biao Huang, Peipei Li, Zheng Hu and Kun Pan
J. Mar. Sci. Eng. 2025, 13(7), 1227; https://doi.org/10.3390/jmse13071227 - 26 Jun 2025
Viewed by 292
Abstract
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. [...] Read more.
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. This study employs hollow cylinder apparatus testing to investigate the undrained cyclic loading behavior of reconstituted soft clay under controlled α0 and PSR conditions, simulating storm wave-induced stress paths. Results demonstrate that α0 governs permanent pore pressure and vertical strain accumulation with distinct mechanisms, e.g., a tension-dominated response with gradual pore pressure rise at α0 < 45° transitions to a compression-driven rapid strain accumulation at α0 > 45°. Rotational loading with PSR significantly intensifies permanent strain accumulation and stiffness degradation rates, exacerbating soil’s anisotropic behavior. Furthermore, the stiffness degradation index tends to uniquely correlate with the permanent axial or shear strain, which can be quantified by an exponential relationship that is independent of α0 and PSR, providing a unified framework for normalizing stiffness evolution across diverse loading paths. These findings advance the understanding of storm wave-induced degradation behavior of soft clay and establish predictive tools for optimizing marine foundation design under cyclic loading. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

11 pages, 3736 KiB  
Article
Shear Force–Displacement Curve of a Steel Shear Wall Considering Compression
by Yi Liu, Yan He and Yang Lv
Buildings 2025, 15(12), 2112; https://doi.org/10.3390/buildings15122112 - 18 Jun 2025
Viewed by 324
Abstract
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors [...] Read more.
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors are critical for accurately assessing the shear capacity of SSWs during seismic events. In the current study, a method to calculate the shear force–displacement curve of a steel shear wall while considering the compression effect is presented, which incorporates both steel hardening and gravity effects. The analysis derives strains in tensile strips undergoing shear deformation using a strip model. Corresponding stresses are then determined using the stress–strain relationships obtained from tensile tests of the steel. Furthermore, the vertical stress induced by gravity loads is modeled using a three-segment distribution proposed before. For each tensile strip, the tension field stress is calculated by accounting for reductions due to vertical stress and the influence of steel hardening through the von Mises yield criterion. This approach enables the development of a shear force–displacement curve, which is subsequently validated against results from an experimentally verified finite element model. The findings demonstrate that the pushover curves predicted by this method closely align with those obtained from finite element analysis. Notably, the results indicate that the shear strength provided by the CAN/CSA-S16-01 equation may be overestimated by approximately 4%, 9%, and 18% when the vertical compression stresses are 50, 100, and 150 MPa for a wall with a slenderness of 150, respectively. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

22 pages, 11611 KiB  
Article
Analysis of Structural Internal Forces and Stratum Deformation in Shaft Construction Using Vertical Shaft Sinking Machine
by Hexige Baoyin, Zhibing Xu, Long Yu, Xu Zhang, Xiaoxiao Wang and Yang Liu
Buildings 2025, 15(12), 2043; https://doi.org/10.3390/buildings15122043 - 13 Jun 2025
Viewed by 446
Abstract
The use of the vertical shaft sinking machine (VSM) for shaft construction can effectively improve construction safety and efficiency. This study focused on analyzing the internal forces and deformation characteristics of a 50.3 m deep shaft constructed by the VSM method. Findings reveal [...] Read more.
The use of the vertical shaft sinking machine (VSM) for shaft construction can effectively improve construction safety and efficiency. This study focused on analyzing the internal forces and deformation characteristics of a 50.3 m deep shaft constructed by the VSM method. Findings reveal that the external pressure of the shaft is positively correlated with the excavation depth, increasing as the depth grows. Pumping water inside the shaft disrupts the balance of the soil behind it, leading to a reduction in the external pressure of the shaft wall. During the excavation and sinking stage, the bottom connecting beam mainly endures compression. After water pumping, the coupling and restrictive effect between the bottom connecting beam and the shaft wall strengthens, significantly boosting the internal compressive stress. The stress states of the segments above and below the shaft vary: the upper segments are under pure compression, while the lower ones may experience uneven deformation due to multiple factors. Moreover, the cast-in-place piles and surrounding stratum show a “bulging” deformation pattern during sinking, greatly influenced by the shaft’s attitude deviation, whereas grouting at the shaft bottom and internal water pumping have minimal impact on the surrounding stratum. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4627 KiB  
Article
Study of the Brittle–Ductile Characteristics and Fracture Propagation Laws of Ultra-Deep Tight Sandy Conglomerate Reservoirs
by Xianbo Meng, Zixi Jiao, Haiyan Zhu, Peng Zhao, Shijie Chen, Jun Zhou, Hongyu Xian and Yong Wang
Processes 2025, 13(6), 1880; https://doi.org/10.3390/pr13061880 - 13 Jun 2025
Viewed by 351
Abstract
Ultra-deep tight sandy conglomerate reservoirs in the Junggar Basin are characterized by vertically alternating lithologies that include mudstone, sandy conglomerate, and sandstone. High in situ stresses and formation temperatures contribute to a brittle–ductile transition process in the reservoir rocks. However, the brittle behavior [...] Read more.
Ultra-deep tight sandy conglomerate reservoirs in the Junggar Basin are characterized by vertically alternating lithologies that include mudstone, sandy conglomerate, and sandstone. High in situ stresses and formation temperatures contribute to a brittle–ductile transition process in the reservoir rocks. However, the brittle behavior and ductile hydraulic fracture propagation mechanisms under in situ conditions remain inadequately understood. In this study, ultra-deep core samples were subjected to triaxial compression tests under varying confining pressures and temperatures to simulate different burial depths and evaluate their brittleness. A three-dimensional hydraulic fracture propagation model was developed in ABAQUS 2023 finite element software, incorporating a cohesive zone ductile constitutive model. Numerical simulations were conducted, considering interlayer horizontal stress differences, injection rate, and fracturing fluid viscosity, to systematically analyze the influence of geological and engineering factors on ductile fracture propagation. A fracture length–height competition diagram was constructed to illustrate the propagation mechanisms. The results reveal that high temperatures significantly accelerate the brittle–ductile transition, which occurs at confining pressures between 55 and 65 MPa. Following this transition, failure modes shift from single-shear failure to a multi-localized fracture with bulging deformation. Interlayer horizontal stress differences were found to strongly influence fracture penetration, with larger stress differences hindering vertical growth. Increasing injection rates promoted the uniform distribution of lateral fractures and fracture tip development, while medium- to high-viscosity fracturing fluids enhanced fracture width and vertical stimulation uniformity. These findings provide important insights for optimizing fracturing strategies and expanding the effective stimulation volume in the ultra-deep tight sandy conglomerate reservoirs of the Junggar Basin. Full article
(This article belongs to the Special Issue Advanced Fracturing Technology for Oil and Gas Reservoir Stimulation)
Show Figures

Figure 1

22 pages, 3288 KiB  
Review
Recent Developments on Biomineralization for Erosion Control
by Shan Liu, Changrui Dong, Yongqiang Zhu, Zichun Wang, Yujie Li and Guohui Feng
Appl. Sci. 2025, 15(12), 6591; https://doi.org/10.3390/app15126591 - 11 Jun 2025
Viewed by 558
Abstract
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing [...] Read more.
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing biomineralization efficiency, multi-scale erosion control, and field-scale MICP implementations in marine dynamic conditions. Key findings include the following: (1) Kinetic analysis of Ca2+ conversion confirmed complete ion utilization within 24 h under optimized PA concentration (3%), resulting in a compressive strength of 2.76 MPa after five treatment cycles in ISO-standard sand. (2) Field validations in Ahoskie and Sanya demonstrated the efficacy of MICP in coastal erosion control through tailored delivery systems and environmental adaptations. Sanya’s studies highlighted seawater-compatible MICP solutions, achieving maximum 1743 kPa penetration resistance in the atmospheric zone and layered “M-shaped” CaCO3 precipitation in tidal regions. (3) Experimental studies revealed that MICP treatments (2–4 cycles) reduced maximum scour depth by 84–100% under unidirectional currents (0.3 m/s) with the maximum surface CaCO3 content reaching 3.8%. (4) Numerical simulations revealed MICP enhanced seabed stability by increasing vertical effective stress and reducing pore pressure. Comparative analysis demonstrates that while the destabilization depth of untreated seabed exhibits a linear correlation with wave height increments, MICP-treated seabed formations maintain exceptional stability through cohesion-enhancing properties, even when subjected to progressively intensified wave forces. This review supports the use of biomineralization as a sustainable alternative for shoreline protection, seabed stabilization, and offshore foundation integrity. Full article
(This article belongs to the Special Issue Sustainable Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

18 pages, 3095 KiB  
Article
Study on the Evolution Law of Overlying Rock Collapse Induced by Mining Based on BOTDR
by Chenrui Huang, Chaomin Mu, Hui Zhou and Quanmin Xie
Appl. Sci. 2025, 15(11), 6369; https://doi.org/10.3390/app15116369 - 5 Jun 2025
Viewed by 404
Abstract
Based on Brillouin optical time-domain reflectometry (BOTDR) technology, this study integrates laboratory tensile tests and similarity simulation experiments to systematically investigate the relationship between overlying strata collapse and fiber strain during coal seam mining. An analytical expression was established to describe the correlation [...] Read more.
Based on Brillouin optical time-domain reflectometry (BOTDR) technology, this study integrates laboratory tensile tests and similarity simulation experiments to systematically investigate the relationship between overlying strata collapse and fiber strain during coal seam mining. An analytical expression was established to describe the correlation between overlying strata displacement and fiber strain. The horizontal fiber monitoring results indicate that fiber strain accurately captures the evolution of overlying strata collapse and exhibits strong agreement with actual displacement height. When the working face advanced to 115 m and 155 m, the rock strata primarily underwent stress adjustment with minimal failure. At 195 m, the collapse zone expanded significantly, resulting in a notable increase in fiber strain. By 240 m, severe roof failure occurred, forming a complete caving zone in the goaf. The fiber strain curve exhibited a characteristic “double convex peak” pattern, with peak positions closely corresponding to rock fracture locations, further validating the feasibility of fiber monitoring in coal seam mining. Vertical fiber monitoring clearly delineated the evolution of the “three-zone” structure (caving zone, fracture zone, and bending subsidence zone) in the overlying strata. The fiber strain underwent a staged transformation from compressive strain to tensile strain, followed by stable compaction. The “stepped” characteristics of the strain curve effectively represented the heights of the three zones, highlighting the progressive and synchronized nature of rock failure. These findings demonstrate that fiber strain effectively characterizes the collapse height and evolution of overlying strata, enabling precise identification of rock fracture locations. This research provides scientific insights and technical support for roof stability assessment and mine safety management in coal seam mining. Full article
Show Figures

Figure 1

19 pages, 28674 KiB  
Article
Innovative Stress Release Stimulation Through Sequential Cavity Completion for CBM Reservoir Enhancement
by Huaibin Zhen, Haifeng Zhao, Kai Wei, Yulong Liu, Shuguang Li, Zhenji Wei, Chengwang Wang and Gaojie Chen
Processes 2025, 13(5), 1567; https://doi.org/10.3390/pr13051567 - 19 May 2025
Viewed by 348
Abstract
China holds substantial coalbed methane resources, yet low single-well productivity persists. While horizontal well cavity completion offers a permeability-enhancing solution through stress release, its effectiveness remains limited by the incomplete knowledge of stress redistribution and permeability evolution during stress release. To bridge this [...] Read more.
China holds substantial coalbed methane resources, yet low single-well productivity persists. While horizontal well cavity completion offers a permeability-enhancing solution through stress release, its effectiveness remains limited by the incomplete knowledge of stress redistribution and permeability evolution during stress release. To bridge this gap, a fully coupled hydromechanical 3D discrete element model (FLC3D) was developed to investigate stress redistribution and permeability evolution in deep coalbed methane reservoirs under varying cavity spacings and fluid pressures, and a novel sequential cavity completion technique integrated with hydraulic fracturing was proposed to amplify stress release zones and mitigate stress concentration effects. Key findings reveal that cavity-induced stress release zones predominantly develop proximal to the working face, exhibiting radial attenuation with increasing distance. Vertical stress concentrations at cavity termini reach peak intensities of 2.54 times initial stress levels, forming localized permeability barriers with 50–70% reduction. Stress release zones demonstrate permeability enhancement directly proportional to stress reduction magnitude, achieving a maximum permeability of 5.8 mD (483% increase from baseline). Prolonged drainage operations reduce stress release zone volumes by 17% while expanding stress concentration zones by 31%. The developed sequential cavity hydraulic fracturing technology demonstrates, through simulation, that strategically induced hydraulic fractures elevate fluid pressures in stress-concentrated regions, effectively neutralizing compressive stresses and restoring reservoir permeability. These findings provide actionable insights for optimizing stress release stimulation strategies in deep coalbed methane reservoirs, offering a viable pathway toward sustainable and efficient resource development. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

27 pages, 49480 KiB  
Article
Analyzing Recent Tectonic Activity Along the Karak Wadi Al Fayha Fault System Using Seismic, Earthquake, and Remote Sensing Data
by Mu’ayyad Al Hseinat, Malek AlZidaneen and Ghassan Sweidan
Geosciences 2025, 15(5), 177; https://doi.org/10.3390/geosciences15050177 - 14 May 2025
Viewed by 1078
Abstract
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been [...] Read more.
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been previously mapped using field observations, gravity, magnetic, and reflection seismic methods. However, these approaches lacked the vertical resolution necessary to characterize its shallow structure, leaving its influence on recent deposits and surface topography poorly understood. This study employs reflection seismic sections integrated with a Digital Elevation Model to refine terrain analysis and enhance fault mechanism solutions for determining the regional stress field pattern. Our results provide compelling evidence of the KWF’s upward propagation into the surface, as demonstrated by deformation of the uppermost Cretaceous and Cenozoic successions, distinct geomorphic features in the Digital Elevation Model, alignment of earthquake epicenters along the fault, and active landslides associated with its movement. We suggest that the reactivation of the KWF has been influenced by changing stress fields from the Late Cretaceous (Turonian) to the present. The Northwestern Arabian plate has undergone multiple tectonic stress transitions, including WNW–ESE compression associated with the Syrian Arc Fold-Belt system (Turonian–Plio-Pleistocene) and subsequent NNE–SSW extension linked to Red Sea rifting (Neogene–present). The analysis of fault mechanism solutions suggests that the latest fault movements result from the continued activity of the Irbid Rift event (Eocene) and the Dead Sea Transform Fault since the Miocene. Full article
(This article belongs to the Special Issue Applied Geophysics for Geohazards Investigations)
Show Figures

Figure 1

Back to TopTop