remotesensing-logo

Journal Browser

Journal Browser

Antarctic Remote Sensing Applications (Second Edition)

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing Image Processing".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 4119

Special Issue Editors


E-Mail Website
Guest Editor
Instituto Superior de Engenharia, Universidade do Algarve, 8005-139 Faro, Portugal
Interests: GNSS; interferometric SAR; historical aerial frames; volcanism; landslides; ocean-tide loading
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Facultad de Ciencias, Universidad de Cádiz, 11519 Puerto Real, Cádiz, Spain
Interests: GNSS; visible-band satellite imagery; tectonics; volcanism
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Escuela Superior de Ingeniería, Universidad de Sevilla, 41092 Seville, Spain
Interests: cartography; GIS; DEM; hydrological and coastal geomorphology; machine learning applied to geodata; space-time studies

Special Issue Information

Dear Colleagues,

The remote and inhospitable Antarctica is one of the last frontiers on Earth. Due to limited human presence and mobility, Antarctica has been and currently is investigated through data acquired by remotely operated sensors deployed on the field or mounted on aerial or space platforms.

Several changes have occurred and are underway in Antarctica, mostly driven by climate change but also by tectonics, volcanism, and erosion, causing the adaptation of the Antarctic biota’s occupation and mobility, as well as human presence. Such changes may be detected through sensors, methods, techniques, and remote sensing data.

Thus, research based on data from sensors such as multiband, synthetic aperture radio detection and ranging (SAR), and light detection and ranging (LiDAR) multiplatform imagery, including photogrammetric flights and unmanned aerial vehicles (UAVs), satellite gravity gradiometers, and global navigation satellite systems (GNSSs), is customary for Antarctica.

Research papers focused on Antarctica that analyze data acquired by remotely operated sensors, within the scope of Remote Sensing, are welcome in this Special Issue. The following topics would be particularly relevant:

  • Antarctic climate change effects on icesheet and permafrost state and evolution;
  • Antarctic landform formation by tectonics, volcanism, and erosion;
  • Antarctic biota occupation and mobility;
  • Antarctic past and recent human presence.

Dr. Gonçalo Prates
Prof. Dr. Manuel Berrocoso Domínguez
Dr. Cristina Torrecillas
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antarctica
  • ice sheets change
  • permafrost state
  • landform dynamics
  • biota occupation
  • human presence
  • multi-sensor and multiplatform analysis
  • remote sensing applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

32 pages, 14893 KiB  
Article
Remote Mapping of Bedrock for Future Cosmogenic Nuclide Exposure Dating Studies in Unvisited Areas of Antarctica
by Jonathan R. Adams, Philippa J. Mason, Stephen J. Roberts, Dylan H. Rood, John L. Smellie, Keir A. Nichols, John Woodward and Joanne S. Johnson
Remote Sens. 2025, 17(2), 314; https://doi.org/10.3390/rs17020314 - 17 Jan 2025
Viewed by 907
Abstract
Cosmogenic nuclide exposure dating is an important technique for reconstructing glacial histories. Many of the most commonly applied cosmogenic nuclides are extracted from the mineral quartz, meaning sampling of felsic (silica-rich) rock is often preferred to sampling of mafic (silica-poor) rock for exposure [...] Read more.
Cosmogenic nuclide exposure dating is an important technique for reconstructing glacial histories. Many of the most commonly applied cosmogenic nuclides are extracted from the mineral quartz, meaning sampling of felsic (silica-rich) rock is often preferred to sampling of mafic (silica-poor) rock for exposure dating studies. Fieldwork in remote regions such as Antarctica is subject to time constraints and considerable logistical challenges, making efficient sample recovery critical to successful research efforts. Remote sensing offers an effective way to map the geology of large areas prior to fieldwork and expedite the sampling process. In this study, we assess the viability of multispectral remote sensing to distinguish felsic from mafic rock outcrops at visible-near infrared (VNIR) and shortwave infrared (SWIR) wavelengths using both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and very high-resolution Worldview-3 (WV-3) imagery. We applied a combination of spectral mapping and ground truth from spectral measurements of 17 rock samples from Mount Murphy in the Amundsen Sea sector of West Antarctica. Using this approach, we identified four dominant rock types which we used as a basis for felsic–mafic differentiation: felsic granites and gneisses, and mafic basalts and fragmental hydrovolcanic rocks. Supervised classification results indicate WV-3 performs well at differentiating felsic and mafic rock types and that ASTER, while coarser, could also achieve satisfactory results and be used in concert with more targeted WV-3 image acquisitions. Finally, we present a revised felsic–mafic geological map for Mt Murphy. Overall, our results highlight the potential of spectral mapping for preliminary reconnaissance when planning future cosmogenic nuclide sampling campaigns in remote, unvisited areas of the polar regions. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

18 pages, 14274 KiB  
Article
The Evolution of Powell Basin (Antarctica)
by Alberto Santamaría Barragán, Manuel Catalán and Yasmina M. Martos
Remote Sens. 2024, 16(21), 4053; https://doi.org/10.3390/rs16214053 - 31 Oct 2024
Viewed by 881
Abstract
Powell Basin is an ocean basin formed as a result of the Scotia Sea evolution. The existing tectonic models propose a variety of starting and ending ages for the spreading of the basin based on seafloor magnetic anomalies. Here, we use recent magnetic [...] Read more.
Powell Basin is an ocean basin formed as a result of the Scotia Sea evolution. The existing tectonic models propose a variety of starting and ending ages for the spreading of the basin based on seafloor magnetic anomalies. Here, we use recent magnetic field data obtained from eight magnetic profiles in Powell Basin to provide insights into the oceanic spreading evolution. The differences found between the number of anomalies on both sides of the axis and the asymmetry in the spreading rates suggest different opening models for different parts of the basin. We propose a spreading model starting in the late Eocene (38.08 Ma) and ending in the early Miocene (21.8 Ma) for the northern part of Powell Basin. For the southern part, the opening started in the late Eocene (38.08 Ma) and ended in the middle Paleogene (25.2 Ma). The magnetic data have been combined with gravity and sediment thickness data to better constrain the age models. The gravity and sediment thickness information allow us to more accurately locate the position of the extinct spreading axis. Geothermal heat flow measurements are used to understand the relationship between the low amplitudes of the magnetic anomalies and the heat beneath them. Our proposed oceanic spreading models suggest that the initial incursions of the Pacific mantle outflow into the Powell Basin occurred in the Oligocene, and the initial incursions of oceanic currents from the Weddell Sea occurred in the Eocene. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

Review

Jump to: Research

33 pages, 24705 KiB  
Review
Unmanned Aerial Vehicles for Real-Time Vegetation Monitoring in Antarctica: A Review
by Kaelan Lockhart, Juan Sandino, Narmilan Amarasingam, Richard Hann, Barbara Bollard and Felipe Gonzalez
Remote Sens. 2025, 17(2), 304; https://doi.org/10.3390/rs17020304 - 16 Jan 2025
Viewed by 1536
Abstract
The unique challenges of polar ecosystems, coupled with the necessity for high-precision data, make Unmanned Aerial Vehicles (UAVs) an ideal tool for vegetation monitoring and conservation studies in Antarctica. This review draws on existing studies on Antarctic UAV vegetation mapping, focusing on their [...] Read more.
The unique challenges of polar ecosystems, coupled with the necessity for high-precision data, make Unmanned Aerial Vehicles (UAVs) an ideal tool for vegetation monitoring and conservation studies in Antarctica. This review draws on existing studies on Antarctic UAV vegetation mapping, focusing on their methodologies, including surveyed locations, flight guidelines, UAV specifications, sensor technologies, data processing techniques, and the use of vegetation indices. Despite the potential of established Machine-Learning (ML) classifiers such as Random Forest, K Nearest Neighbour, and Support Vector Machine, and gradient boosting in the semantic segmentation of UAV-captured images, there is a notable scarcity of research employing Deep Learning (DL) models in these extreme environments. While initial studies suggest that DL models could match or surpass the performance of established classifiers, even on small datasets, the integration of these advanced models into real-time navigation systems on UAVs remains underexplored. This paper evaluates the feasibility of deploying UAVs equipped with adaptive path-planning and real-time semantic segmentation capabilities, which could significantly enhance the efficiency and safety of mapping missions in Antarctica. This review discusses the technological and logistical constraints observed in previous studies and proposes directions for future research to optimise autonomous drone operations in harsh polar conditions. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

Back to TopTop