Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = variable-speed pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8620 KB  
Article
Hardware-in-the-Loop Simulation Research on Adaptive Control Strategy for Traveling Power of Hydrostatic Harvesters
by Jichen Xie, Wenxing Ma, Zhongshan Wang, Haoji Song and Xin Wang
Agriculture 2025, 15(24), 2594; https://doi.org/10.3390/agriculture15242594 - 15 Dec 2025
Viewed by 92
Abstract
Conventional harvesters usually depend on the operator’s expertise to manually manage the power allocation between the harvesting and traveling system, which results in problems like high subjectivity, labor intensity, and sensitivity to terrain. To overcome issues such as inadequate power and power mismatches [...] Read more.
Conventional harvesters usually depend on the operator’s expertise to manually manage the power allocation between the harvesting and traveling system, which results in problems like high subjectivity, labor intensity, and sensitivity to terrain. To overcome issues such as inadequate power and power mismatches between harvesting and traveling on gentle slopes, this study introduces a hydrostatic four-wheel-drive system featuring a single variable pump paired with two variable motors, improving the vehicle’s capability to handle complex terrains. Building on this system, an adaptive power allocation method for traveling is proposed. This method dynamically adjusts the power distribution between traveling and harvesting according to changing terrain conditions, giving priority to harvesting power while controlling vehicle and engine speeds to avoid engine stalls, thereby enhancing operational quality and efficiency. A model of the full vehicle system is created using Amesim 2410, and a comparation of adaptive control and constant speed control is modeled under a hardware-in-the-loop environment. The simulation results show that the proposed control approach effectively manages power distribution across different slopes and speeds, and avoids engine stalling, providing valuable technical guidance for power coordination control in harvesters working on gentle slopes. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 6707 KB  
Article
Study on Transient Characteristics of New-Type Series-Parallel Emergency Drainage Pump During Unexpected Shutdown Process
by Ding Tian, Kun Zhang, Yuanzhe Ju, Yong Zhang, Peng Wang and Qiaorui Si
Water 2025, 17(23), 3406; https://doi.org/10.3390/w17233406 - 28 Nov 2025
Viewed by 375
Abstract
As key emergency equipment, high-flow pump devices play a vital role in urban flood control and drainage, and their hydraulic performance directly influences the safety and stability of the entire system. To meet diverse drainage demands during emergency operations, a new type of [...] Read more.
As key emergency equipment, high-flow pump devices play a vital role in urban flood control and drainage, and their hydraulic performance directly influences the safety and stability of the entire system. To meet diverse drainage demands during emergency operations, a new type of high-flow drainage pump, capable of operating in series, parallel, and variable-speed modes, has been developed. Using the SST k-ω turbulence model combined with entropy production theory and pressure pulsation analysis, unsteady numerical simulations were conducted to investigate the transient internal flow under series and parallel operating conditions. The numerical model was verified through comparison with experimental hydraulic-performance data, demonstrating good agreement. The results show that under series operation, the pump speed decreases from 1500 r/min to 193 r/min before reversing to −1748 r/min, while under parallel operation the runaway speed reaches −1657 r/min. The flow rate and torque exhibit strong nonlinear variations, with reverse flow and oscillatory behavior appearing in the impeller passages. During the runaway stage, entropy production peaks at 28.17 W/K under series conditions and 29.09 W/K under parallel conditions, with turbulent dissipation accounting for more than 69% of the total. High-entropy regions extend toward the impeller outlet, while energy losses are predominantly concentrated in the secondary suction chamber, contributing 47.56% and 57.12% under the respective conditions. Pressure pulsation analysis indicates that the dominant frequency components are concentrated at the blade-passing frequency (100 Hz) and its harmonics, with the strongest fluctuations near the primary impeller outlet. These results provide theoretical and engineering guidance for improving the efficiency and stability of emergency drainage systems. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

31 pages, 6234 KB  
Article
Research on Cavitation Characteristics of the Fluid Domain of the Single-Plunger Two-Dimensional Electro-Hydraulic Pump
by Xinguo Qiu, Jiahui Wang and Haodong Lu
Machines 2025, 13(12), 1100; https://doi.org/10.3390/machines13121100 - 27 Nov 2025
Viewed by 307
Abstract
A single-plunger two-dimensional electro-hydraulic pump is an integrated unit in which a two-dimensional plunger pump is embedded inside the rotor of a permanent magnet synchronous motor, significantly improving the power density and power-to-weight ratio of electro-hydraulic pumps. The pursuit of a higher power-to-weight [...] Read more.
A single-plunger two-dimensional electro-hydraulic pump is an integrated unit in which a two-dimensional plunger pump is embedded inside the rotor of a permanent magnet synchronous motor, significantly improving the power density and power-to-weight ratio of electro-hydraulic pumps. The pursuit of a higher power-to-weight ratio has made high-speed operation and high-pressure output persistent research priorities. However, during the iterative design process of electro-hydraulic pumps, cavitation has been identified as a common issue, leading to difficulties in oil suction and even severe backflow. Based on the structure and motion characteristics of the single-plunger two-dimensional electro-hydraulic pump, a CFD numerical model was established to analyze the influence of different working conditions on the cavitation characteristics inside the pump. The study shows that cavitation mainly occurs in the plunger chamber, the distribution groove, and the triangular damping groove. The location and intensity of cavitation are directly reflected by the gas volume fraction. The simulation analysis of variable operating conditions has verified that suction pressure and rotational speed have a significant impact on cavitation—an increase in suction pressure can effectively suppress cavitation, while an increase in rotational speed will exacerbate cavitation development. Specifically, the non-cavitation working boundary of this type of pump was determined through theoretical derivation, and the coupling relationship between critical suction pressure and critical speed was clarified. This work provides an important theoretical basis for the optimization design of the new integrated electro-hydraulic pump. Full article
(This article belongs to the Special Issue Unsteady Flow Phenomena in Fluid Machinery Systems)
Show Figures

Figure 1

33 pages, 4386 KB  
Article
Research Based on a Fuzzy Algorithm for Energy Saving Single-Phased Powered Pumps
by Wangsheng Sun, Haiqing Si, Haibo Wang and Gen Li
Machines 2025, 13(11), 1070; https://doi.org/10.3390/machines13111070 - 20 Nov 2025
Viewed by 419
Abstract
Water pumps consume roughly 20% of global electricity, yet 60–70% of pumps operate below optimal efficiency, leading to substantial energy waste. Improving pump efficiency is therefore critical. A major contributor to these losses is the low efficiency of the driving motor at reduced [...] Read more.
Water pumps consume roughly 20% of global electricity, yet 60–70% of pumps operate below optimal efficiency, leading to substantial energy waste. Improving pump efficiency is therefore critical. A major contributor to these losses is the low efficiency of the driving motor at reduced speeds and the lack of variable-speed capability—especially in single-phase pumps. This paper presents a fuzzy-logic–FOC (field oriented control) permanent magnet synchronous motor (PMSM) pump system that can run on either three-phase or single-phase power. The system maintains high efficiency across a wide speed range and saves energy not only through variable-speed operation but also via an intelligent control strategy termed “constant flow, variable pressure.” To assess performance, we conducted experiments comparing the proposed fuzzy-logic FOC controlled PMSM pump and a conventional AC asynchronous induction motor pump. The results show that the new system overcomes the inherent lack of speed regulation in traditional single-phase pumps and significantly improves efficiency across diverse operating conditions. Moreover, by implementing the “constant flow, variable pressure” strategy, the system achieves average energy savings estimated at 30–50% compared with a conventional AC asynchronous motor-driven pump. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

16 pages, 5273 KB  
Article
A Streamlined Polynomial Regression-Based Modeling of Speed-Driven Hermetic-Reciprocating Compressors
by Jay Wang and Wei Lu
Appl. Sci. 2025, 15(22), 12016; https://doi.org/10.3390/app152212016 - 12 Nov 2025
Viewed by 354
Abstract
This study presents a streamlined and accurate approach for modeling the performance of hermetic reciprocating compressors under variable-speed conditions. Traditional compressor models often neglect the influence of motor frequency, leading to considerable deviations at low-speed operation. To address these limitations, a frequency-dependent numerical [...] Read more.
This study presents a streamlined and accurate approach for modeling the performance of hermetic reciprocating compressors under variable-speed conditions. Traditional compressor models often neglect the influence of motor frequency, leading to considerable deviations at low-speed operation. To address these limitations, a frequency-dependent numerical framework was developed using one-dimensional (1-D) and two-dimensional (2-D) polynomial regressions to represent volumetric efficiency (ηv) and isentropic efficiency (ηisentr) as functions of compression ratio (r) and motor speed frequency (f). The proposed model integrates manufacturer data and thermodynamic property databases to predict compressor behavior across a wide range of operating conditions. Validation using the Bitzer 4HTE-20K CO2 compressor demonstrated strong agreement with experimental data, maintaining prediction errors within ±10% for both power input and discharge temperature. Moreover, the model enhanced accuracy by up to 19.4% in the low-frequency range below 40 Hz, where conventional models typically fail. The proposed method provides a practical and computationally efficient tool for accurately simulating the performance of hermetic reciprocating compressors that support improved design, optimization, and control of refrigeration and heat pump systems. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

18 pages, 15549 KB  
Article
Mechanism of Pressure Fluctuations and Flow Patterns Under Steady Operating Conditions of a Variable Speed Pump-Turbine
by Zhiyan Yang, Chunjian Cao, Jie Fang, Baoyong Zhang, Chengjun Li and Xiaoxia Hou
Processes 2025, 13(11), 3511; https://doi.org/10.3390/pr13113511 - 1 Nov 2025
Viewed by 328
Abstract
The variable speed pump-turbine is usually used to adjust the rotational speed to improve the efficiency in turbine mode and change the input power in pump mode because its rotational speed can vary within a certain range. In order to explore the evolutions [...] Read more.
The variable speed pump-turbine is usually used to adjust the rotational speed to improve the efficiency in turbine mode and change the input power in pump mode because its rotational speed can vary within a certain range. In order to explore the evolutions of pressure pulsation and flow patterns caused by changes in the rotational speeds, the steady operating conditions under different rotational speeds in turbine and pump modes were investigated by using three-dimensional numerical simulations. The results show that as the pump-turbine operates with the highest efficiency at the rated rotational speed, the change in the rotational speed leads to the variation in macro-parameters, deterioration of the flow patterns, and increase in pressure pulsations. In addition, under a certain guide vane opening, with the increase in the rotational speed, the torque, power, and discharge increase in the turbine mode, while these parameters decrease in the pump mode. And when the rotational speed is too high or too low, it causes an obvious increase in pressure pulsations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 14889 KB  
Article
Canopy-Wind-Induced Pressure Fluctuations Drive Soil CO2 Transport in Forest Ecosystems
by Taolve Chen, Junjie Jiang, Lingxia Feng, Junguo Hu and Yixi Liu
Forests 2025, 16(11), 1637; https://doi.org/10.3390/f16111637 - 26 Oct 2025
Viewed by 413
Abstract
Although accurate quantification of forest soil CO2 emissions is critical for improving global carbon cycle models, traditional chamber and gradient methods often underestimate fluxes under windy conditions. Based on long-term field observations in a subtropical maple forest, we quantified the interaction between [...] Read more.
Although accurate quantification of forest soil CO2 emissions is critical for improving global carbon cycle models, traditional chamber and gradient methods often underestimate fluxes under windy conditions. Based on long-term field observations in a subtropical maple forest, we quantified the interaction between canopy-level winds and soil pore air pressure fluctuations in regulating vertical CO2 profiles. The results demonstrate that canopy winds, rather than subcanopy airflow, dominate deep soil CO2 dynamics, with stronger explanatory power for concentration variability. The observed “wind-pumping effect” operates through soil pressure fluctuations rather than direct wind speed, thereby enhancing advective CO2 transport. Soil pore air pressure accounted for 33%–48% of CO2 variation, far exceeding the influence of near-surface winds. These findings highlight that, even in dense forests with negligible understory airflow, canopy turbulence significantly alters soil–atmosphere carbon exchange. We conclude that integrating soil pore air pressure into flux calculation models is essential for reducing underestimation bias and improving the accuracy of forest carbon cycle assessments. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 8425 KB  
Article
A Novel Optimal Control Method for Building Cooling Water Systems with Variable Speed Condenser Pumps and Cooling Tower Fans
by Xiao Chen, Lingjun Guan, Chaoyue Yang, Peihong Ge and Jinrui Xia
Buildings 2025, 15(19), 3568; https://doi.org/10.3390/buildings15193568 - 2 Oct 2025
Viewed by 609
Abstract
The optimal control of cooling water systems is of great significance for energy saving in chiller plants. Previously optimal control methods optimize the flow rate, temperature or temperature difference setpoints but cannot control pumps and cooling tower fans directly. This study proposes a [...] Read more.
The optimal control of cooling water systems is of great significance for energy saving in chiller plants. Previously optimal control methods optimize the flow rate, temperature or temperature difference setpoints but cannot control pumps and cooling tower fans directly. This study proposes a direct optimal control method for pumps and fans based on derivative control strategy by decoupling water flow rate optimization and airflow rate optimization, which can make the total power of chillers, pumps and fans approach a minimum. Simulations for different conditions were performed for the validation and performance analysis of the optimal control strategy. The optimization algorithms and implementation methods of direct optimal control were developed and validated by experiment. The simulation results indicate that total power approaches a minimum when the derivative of total power with respect to water/air flow rate approaches zero. The power-saving rate of the studied chiller plant is 13.2% at a plant part-load ratio of 20% compared to the constant-speed pump/fan mode. The experimental results show that the direct control method, taking power frequency as a controlled variable, can make variable frequency drives regulate their output frequencies to be equal to the optimized power frequencies of pumps and fans in a timely manner. Full article
Show Figures

Figure 1

18 pages, 3921 KB  
Article
One Innovative Method for Improving the Power Density and Efficiency of Electro-Hydrostatic Actuators
by Zhenfei Ling, Fengqi Zhou, Hao Liu, Bo Yang and Xiaoping Ouyang
Actuators 2025, 14(10), 467; https://doi.org/10.3390/act14100467 - 25 Sep 2025
Viewed by 710
Abstract
Although electro-hydrostatic actuators (EHAs) hold broad application prospects in more-electric aircraft and high-end equipment, they face a difficult trade-off between dynamic response and energy efficiency. To simultaneously enhance the dynamic response and energy efficiency of the EHA, this paper designs an innovative variable [...] Read more.
Although electro-hydrostatic actuators (EHAs) hold broad application prospects in more-electric aircraft and high-end equipment, they face a difficult trade-off between dynamic response and energy efficiency. To simultaneously enhance the dynamic response and energy efficiency of the EHA, this paper designs an innovative variable pump displacement and variable motor speed (VPVM) configuration that utilizes an electro-hydraulic servo valve for active displacement control. To address the flow mismatch problem associated with traditional asymmetric single-rod cylinders without reducing the power density of EHA, this paper also designs an innovative symmetric single-rod cylinder configuration. Based on the above two innovative configurations, this paper further develops a corresponding EHA prototype with a rated power density of 0.72 kW/kg. Simulation and experimental results demonstrate that compared to the traditional EHA with the fixed pump displacement and variable motor speed configuration (FPVM-EHA), the EHA with the proposed VPVM configuration (VPVM-EHA) not only improves energy efficiency and reduces motor heat generation under low-speed and heavy-load conditions, but also achieves a dynamic response close to that of the FPVM-EHA under fast dynamic response conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

21 pages, 4287 KB  
Article
Performance Enhancement and Control Strategy for Dual-Stator Bearingless Switched Reluctance Motors in Magnetically Levitated Artificial Hearts
by Chuanyu Sun, Tao Liu, Chunmei Wang, Qilong Gao, Xingling Xiao and Ning Han
Electronics 2025, 14(19), 3782; https://doi.org/10.3390/electronics14193782 - 24 Sep 2025
Viewed by 389
Abstract
Magnetically levitated artificial hearts impose stringent requirements on the blood-pump motor: zero friction, minimal heat generation and full biocompatibility. Traditional mechanical-bearing motors and permanent-magnet bearingless motors fail to satisfy all of these demands simultaneously. A bearingless switched reluctance motor (BSRM), whose rotor contains [...] Read more.
Magnetically levitated artificial hearts impose stringent requirements on the blood-pump motor: zero friction, minimal heat generation and full biocompatibility. Traditional mechanical-bearing motors and permanent-magnet bearingless motors fail to satisfy all of these demands simultaneously. A bearingless switched reluctance motor (BSRM), whose rotor contains no permanent magnets, offers a simple structure, high thermal tolerance, and inherent fault-tolerance, making it an ideal drive for implantable circulatory support. This paper proposes an 18/15/6-pole dual-stator BSRM (DSBSRM) that spatially separates the torque and levitation flux paths, enabling independent, high-precision control of both functions. To suppress torque ripple induced by pulsatile blood flow, a variable-overlap TSF-PWM-DITC strategy is developed that optimizes commutation angles online. In addition, a grey-wolf-optimized fast non-singular terminal sliding-mode controller (NRLTSMC) is introduced to shorten rotor displacement–error convergence time and to enhance suspension robustness against hydraulic disturbances. Co-simulation results under typical artificial heart operating conditions show noticeable reductions in torque ripple and speed fluctuation, as well as smaller rotor radial positioning error, validating the proposed motor and control scheme as a high-performance, biocompatible, and reliable drive solution for next-generation magnetically levitated artificial hearts. Full article
Show Figures

Figure 1

18 pages, 6260 KB  
Article
Operational Mechanisms and Energy Analysis of Variable-Speed Pumping Stations
by Yan Li, Jilong Lin, Yonggang Lu, Zhiwang Liu, Litao Qu, Fanxiao Jiao, Zhengwei Wang and Qingchang Meng
Water 2025, 17(17), 2620; https://doi.org/10.3390/w17172620 - 4 Sep 2025
Viewed by 1303
Abstract
The spatiotemporal uneven distribution of water resources conflicts sharply with human demands, with pumping stations facing efficiency decline due to aging infrastructure and complex hydraulic interactions. This study employs numerical simulation to investigate operational mechanisms in a parallel pump system at the Yanhuanding [...] Read more.
The spatiotemporal uneven distribution of water resources conflicts sharply with human demands, with pumping stations facing efficiency decline due to aging infrastructure and complex hydraulic interactions. This study employs numerical simulation to investigate operational mechanisms in a parallel pump system at the Yanhuanding Yanghuang Cascade Pumping Station. Using ANSYS Fluent 2024 R1 and the SST k-ω turbulence model, we demonstrate that variable-speed control expands the adjustable flow range to 1.17–1.26 m3/s while maintaining system efficiency at 83–84% under head differences of 77.8–79.8 m. Critically, energy losses (δH) at the 90° outlet pipe junction escalate from 3.8% to 18.2% of total energy with increasing flow, while Q-criterion vortex analysis reveals a 63% vortex area reduction at lower speeds. Furthermore, a dual-mode energy dissipation mechanism was identified: at 0.90n0 speed, turbulent kinetic energy surges by 115% with minimal dissipation change, indicating large-scale vortex dominance, whereas at 0.80n0, turbulent dissipation rate increases drastically by 39%, signifying a shift to small-scale viscous dissipation. The novelty of this work lies in the first systematic quantification of junction energy losses and the revelation of turbulent energy transformation mechanisms in parallel pump systems. These findings provide a physics-based foundation for optimizing energy efficiency in high-lift cascade pumping stations. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 9282 KB  
Article
Electromagnetic Vibration Characteristics Analysis of Large-Scale Doubly Fed Induction Machines Under Multiple Operating Conditions
by Haoyu Kang, Yiming Ma, Liyang Liu, Fanqi Huang and Libing Zhou
Machines 2025, 13(9), 777; https://doi.org/10.3390/machines13090777 - 30 Aug 2025
Viewed by 629
Abstract
The electromagnetic vibration characteristics of doubly fed induction machines (DFIMs) employed in variable-speed pumped storage units, which must accommodate frequent power response and operational mode transitions, serve as critical indicators for assessing unit safety and stability. Nevertheless, there persists a significant research gap [...] Read more.
The electromagnetic vibration characteristics of doubly fed induction machines (DFIMs) employed in variable-speed pumped storage units, which must accommodate frequent power response and operational mode transitions, serve as critical indicators for assessing unit safety and stability. Nevertheless, there persists a significant research gap regarding generalized vibration analysis models and comprehensive investigations into their steady-state and dynamic vibration performance. To address this challenge, this study develops a universal analytical model for electromagnetic excitation forces in DFIMs using Maxwell’s stress tensor method, explicitly incorporating operational conditions such as rotor eccentricity and load imbalance. Using a 300 MW DFIM as a case study, we employ a hybrid numerical-analytical approach to examine the detrimental effects of harmonic currents generated by rotor-side converters. Furthermore, we systematically analyze how spatial harmonics induced by mechanical faults and temporal harmonics arising from electrical faults collectively influence the electromagnetic vibration behavior. Experimental validation conducted on a 10 MW DFIM prototype through vibration displacement measurements confirms the efficacy of the proposed analytical framework. Full article
Show Figures

Figure 1

19 pages, 4287 KB  
Article
Steady-State Reactive Power Capability Analysis of Doubly-Fed Variable Speed Pumped Storage Unit Considering the Unit’s Operating Characteristics
by Bo Yi, Zheyuan Zhang, Chuang Dong, Chunyang Gao, Sijia Sun, Jiawei Gu and Qiming Yan
Water 2025, 17(17), 2519; https://doi.org/10.3390/w17172519 - 24 Aug 2025
Viewed by 1036
Abstract
Based on the actual data of a 300 MW doubly-fed variable speed pumped storage units (DFVSPSUs) in China, the reactive power characteristics of both the stator side and the grid-side converter are analyzed, and the reactive power regulation capability of the unit is [...] Read more.
Based on the actual data of a 300 MW doubly-fed variable speed pumped storage units (DFVSPSUs) in China, the reactive power characteristics of both the stator side and the grid-side converter are analyzed, and the reactive power regulation capability of the unit is discussed. First, the power coupling relationship is analyzed, demonstrating that the reactive power-regulation capability is jointly composed of the stator side and the grid-side converter, without direct coupling between them. Next, we determine the doubly-fed induction generator (DFIG) capacity, explaining that the capacity of the DFIG exceeds the rated capacity of the unit. Then, we note that the stator-side reactive power regulation capability is limited by prime mover power, stator current, and rotor current, while the grid-side converter regulation capability is influenced by converter capacity and rotor-side real power. Furthermore, the stator-side, grid-side converter and total reactive power-regulation capabilities of the unit under different water heads and real power conditions are determined. The results demonstrate that fully considering the grid-side converter can increase the unit’s reactive power regulation capability by 12% to 26%. Finally, by comparing the reactive power operating ranges of fixed-speed and variable-speed units, the reactive power advantages of the variable-speed unit are quantified. Full article
Show Figures

Figure 1

21 pages, 2828 KB  
Article
A Novel Loss-Balancing Modulation Strategy for ANPC Three-Level Inverter for Variable-Speed Pump Storage Applications
by Yali Wang, Liyang Liu, Tao Liu, Yikai Li, Kai Guo and Yiming Ma
Electronics 2025, 14(15), 2944; https://doi.org/10.3390/electronics14152944 - 23 Jul 2025
Viewed by 915
Abstract
The non-uniform thermal distribution in the active neutral-point clamped (ANPC) topology causes significant thermal gradients during high-power operation, restricting its use in large-capacity power conversion systems like variable-speed pumped storage. This study introduces a novel hybrid fundamental frequency modulation strategy. Through a dynamic [...] Read more.
The non-uniform thermal distribution in the active neutral-point clamped (ANPC) topology causes significant thermal gradients during high-power operation, restricting its use in large-capacity power conversion systems like variable-speed pumped storage. This study introduces a novel hybrid fundamental frequency modulation strategy. Through a dynamic allocation mechanism based on a reference signal, this strategy alternates inner and outer power switches at the fundamental frequency, ensuring balanced switching frequency across devices. Consequently, it effectively mitigates the inherent loss imbalance in conventional ANPC topologies. Quantitative analysis using a power device loss model shows that, compared to conventional carrier phase-shift modulation, the proposed method reduces total system losses by 39.98% and improves the loss-balancing index by 18.27% over inner-switch fundamental frequency modulation. A multidimensional validation framework, including an MW-level hardware platform, numerical simulations, and test data, was established. The results confirm the proposed strategy’s effectiveness in improving power device thermal balance. Full article
Show Figures

Figure 1

18 pages, 3775 KB  
Article
Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China
by Jianguo Fan, Weixiao Chen, Xianfeng Tan, Jiancai Sui, Qi Liu, Hongnian Chen, Feng Zhang, Ge Chen and Zhimin Xu
Water 2025, 17(13), 1982; https://doi.org/10.3390/w17131982 - 1 Jul 2025
Viewed by 972
Abstract
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the [...] Read more.
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the actual situation of coal mine water treatment as an example and innovatively carries out dynamic tests for the Ordovician limestone aquifers deep in the mine. Intermittent reinjection test shows that under the same reinjection time, the water level recovery rate during the intermittent period is fast at first and then slow. Moreover, the recovery speed of the water level buried depth slows down with the increase in the reinjection time, which reveals the characteristics of the water level rising rapidly and recovering quickly during the reinjection of the reservoir. The average formation water absorption index is 420.81 m3/h·MPa. The water level buried depth of the long-term reinjection test showed three stages (rapid rise, slow rise, and stable stages), and the water level buried depth was raised to 1.52 m at its highest. Monitoring data from the surrounding 5 km area showed that reinjection did not affect aquifer water levels, verifying the excellent storage capacity of the deep Ordovician fissure-karst aquifer. The variability of well loss under pumping and injection conditions was comparatively analyzed, and the well loss produced by the recharge test was 4.06 times higher than that of the pumping test, which provided theoretical support for the calculation of hydrogeological parameters to eliminate the influence of well loss. This study deepens the understanding of Ordovician limestone aquifers in deep mine water, providing a reference for cheap mine water treatment and sustainable groundwater management in similar mine areas. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

Back to TopTop