A Novel Loss-Balancing Modulation Strategy for ANPC Three-Level Inverter for Variable-Speed Pump Storage Applications
Abstract
1. Introduction
2. Principle of Operation of ANPC Three-Level Inverter
2.1. Topological Structure
2.2. Switching State
3. ANPC Three-Level Inverter PWM Strategy
3.1. Conventional Modulation Strategy
3.2. Novel Hybrid Fundamental Frequency Modulation
4. Loss Calculation Model for ANPC Three-Level Converter
4.1. Loss Calculation for IGBTs
4.2. Loss Calculation for Diodes
5. Loss Analysis of Modulation Strategies
5.1. Switching Loss Distribution for Different Modulation Strategies
5.2. Comparison of Losses in Different Modulation Strategies
5.3. Effect of Power Factor and Carrier Frequency
6. Simulation and Experimental Results
6.1. Simulation Results
6.2. Experimental Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, X.; Ma, N.; Liu, W.; Zhao, W.; Xu, P.; Li, H. Functions of energy storage in renewable energy dominated power systems: Review and prospect. Proc. CSEE 2023, 43, 158–169. [Google Scholar]
- Shu, Y.; Chen, G.; He, J.; Zhang, F. Building a new electric power system based on new energy sources. Strateg. Study Chin. Acad. Eng. 2021, 23, 61–69. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, J.; Wang, C. Demand Analysis of Variable Speed Units of Pumped-storage Power Station In Power Grid of China. Water Power 2016, 42, 107–114. [Google Scholar]
- Peng, Y.; Yang, Y.; Chen, M.; Wang, X.; Xiong, Y.; Wang, M.; Li, Y.; Zhao, B. Value Evaluation Method for Pumped Storage in the New Power System. Chin. J. Electr. Eng. 2023, 9, 26–38. [Google Scholar] [CrossRef]
- Liu, P.; Liang, L.; Fan, J. The role and development of the pumped storage power station in electric power system. Hydropower New Energy 2016, 11, 18–20. [Google Scholar]
- Chen, Y.; Xu, W.; Liu, Y.; Mao, Z. Dynamical Response Comparison Between Variable Speed and Synchronous Speed Pumped-Storage Units in Turbine Mode. IEEE Trans. Energy Convers. 2024, 39, 2490–2503. [Google Scholar] [CrossRef]
- Desingu, K.; Selvaraj, R.; Chelliah, T.R.; Khare, D. Effective Utilization of Parallel-Connected Megawatt Three-Level Back-to-Back Power Converters in Variable Speed Pumped Storage Units. IEEE Trans. Ind. Appl. 2019, 55, 6414–6426. [Google Scholar] [CrossRef]
- Afrin, S.; Biswas, S.P.; Mondal, S.; Islam, M.R.; Shah, R. Improved PWM Switching Scheme to Mitigate Power Loss and Switch Temperature of CHB Inverters. IEEE Trans. Appl. Supercond. 2024, 34, 5403105. [Google Scholar] [CrossRef]
- Abeynayake, G.; Li, G.; Joseph, T.; Liang, J.; Ming, W. Reliability and Cost-Oriented Analysis, Comparison and Selection of Multi-Level MVdc Converters. IEEE Trans. Power Deliv. 2021, 36, 3945–3955. [Google Scholar] [CrossRef]
- Nabae, A.; Takahashi, I.; Akagi, H. A neutral-point clamped PWM inverter. IEEE Trans. Ind. Appl. 1981, 1A-17, 518–523. [Google Scholar] [CrossRef]
- Jiao, Y.; Lee, F.C.; Lu, S. Space Vector Modulation for Three-Level NPC Converter With Neutral Point Voltage Balance and Switching Loss Reduction. IEEE Trans. Power Electron. 2014, 29, 5579–5591. [Google Scholar] [CrossRef]
- Senturk, O.S.; Helle, L.; Munk-Nielsen, S.; Rodriguez, P.; Teodorescu, R. Power capability investigation based on electrothermal models of press-pack IGBT three-level NPC and ANPC VSCs for multimegawatt wind turbines. IEEE Trans. Power Electron. 2012, 27, 3195–3206. [Google Scholar] [CrossRef]
- Bruckner, T.; Bernet, S.; Guldner, H. The active NPC converter and its loss-balancing control. IEEE Trans. Ind. Electron. 2005, 52, 855–868. [Google Scholar] [CrossRef]
- Zhang, D.; He, J.; Pan, D. A Megawatt-Scale Medium-Voltage High-Efficiency High Power Density SiC+Si Hybrid Three-Level ANPC Inverter for Aircraft Hybrid-Electric Propulsion Systems. IEEE Trans. Ind. Appl. 2019, 55, 5971–5980. [Google Scholar] [CrossRef]
- Zakzewski, D.; Resalayyan, R.; Khaligh, A. Hybrid Neutral Point Clamped Converter: Review and Comparison to Traditional Topologies. IEEE Trans. Transp. Electrif. 2024, 10, 6087–6099. [Google Scholar] [CrossRef]
- Floricau, D.; Floricau, E.; Dumitrescu, M. Natural doubling of the apparent switching frequency using three-level ANPC converter. In Proceedings of the International School on Nonsinusoidal Currents and Compensation, Lagow, Poland, 10–13 June 2018; pp. 1–6. [Google Scholar]
- Ma, L.; Kerekes, T.; Rodriguez, P.; Jin, X.; Teodorescu, R.; Liserre, M. A new PWM strategy for grid-connected half-bridge active NPC converters with losses distribution balancing mechanism. IEEE Trans. Power Electron. 2015, 30, 5331–5340. [Google Scholar] [CrossRef]
- Yang, J.; Sizhao, L.; Lee, F.C. Switching performance optimization of a high power high frequency three-level active neutral point clamped phase leg. IEEE Trans. Power Electron. 2014, 29, 3255–3266. [Google Scholar]
- Guo, Y.; Gao, X.; Tan, J.; Li, P.; Sun, H. Research on loss balance modulation strategy based on single-phase half-bridge TL-ANPC inverter. In Proceedings of the 5th International Conference on Energy, Electrical and Power Engineering (CEEPE), Chongqing, China, 22–24 April 2022; pp. 375–382. [Google Scholar]
- Jiao, Y.; Lee, F.C. New Modulation Scheme for Three-Level Active Neutral-Point-Clamped Converter with Loss and Stress Reduction. IEEE Trans. Ind. Electron. 2015, 62, 5468–5479. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Shin, K.H.; Viitanen, T.; Saeedifard, M.; Harley, R.G. Improved Modulation Scheme for Loss Balancing of Three-Level Active NPC Converters. IEEE Trans. Power Electron. 2017, 32, 2521–2532. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, H.; Ren, Y.; Cheng, M. A Novel Modulation Strategy for Split-Inductor Active NPC Inverter With Loss Distribution Balancing and Thermal Stress Reduction. IEEE Trans. Power Electron. 2023, 38, 7296–7307. [Google Scholar] [CrossRef]
- Song, W.; He, W.; Zhang, Z.; Ma, C.; Li, J. Active Thermal Control and Power Loss Reduction Scheme for Three-Level Active Neutral-Point-Clamped Inverters With Hybrid Modulation. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 1629–1640. [Google Scholar] [CrossRef]
- Chen, J.; Pei, Y.; Wang, L.; Zhao, Y.; Chen, S. Loss Equalization Strategy of 3L Active Neutral Point Clamped Inverter based on Optimization Algorithm. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024; pp. 3620–3625. [Google Scholar]
- Joseph, A.; Chelliah, T.R. A Review of Power Electronic Converters for Variable Speed Pumped Storage Plants: Configurations, Operational Challenges, and Future Scopes. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 103–119. [Google Scholar] [CrossRef]
- Busquets-Monge, S.; Nicolas-Apruzzese, J. A Multilevel Active-Clamped Converter Topology—Operating Principle. IEEE Trans. Ind. Electron. 2011, 58, 3868–3878. [Google Scholar] [CrossRef]
- Woldegiorgis, D.; Hossain, M.M.; Wei, Y.; Mhiesan, H.; Mantooth, A. A High Efficiency Three-level Active Neutral Point Clamped Inverter Using Hybrid Si/SiC Switches. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 284–289. [Google Scholar]
- Liu, H.; Zhao, T.; Wu, X. Performance Evaluation of Si/SiC Hybrid Switch-Based Three-Level Active Neutral-Point-Clamped Inverter. IEEE Open J. Ind. Appl. 2022, 3, 90–103. [Google Scholar] [CrossRef]
States | Output | ||||||
---|---|---|---|---|---|---|---|
P | 1 | 1 | 0 | 0 | 0 | 1 | |
OU1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
OU2 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
OL1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
OL2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
N | 0 | 0 | 1 | 1 | 1 | 0 |
States | Output | ||||||
---|---|---|---|---|---|---|---|
P | 1 | 1 | 0 | 0 | 0 | 1 | + |
OU2 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
OL2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
N | 0 | 0 | 1 | 1 | 1 | 0 |
Angle | Modulation Method | ||||||
---|---|---|---|---|---|---|---|
[0,] | Inner switch fundamental frequency | 1 | 0 | 0 | 0 | ||
Outer switch fundamental frequency | 0 | 0 | 0 | 0 | |||
Hybrid fundamental frequency | 0 | 0 | 0 | ||||
[,] | Inner switch fundamental frequency | 0 | 0 | 0 | 0 | 0 | |
Outer switch fundamental frequency | 0 | 0 | 0 | 0 | |||
Hybrid fundamental frequency | 0 | 0 | 0 | 0 | |||
[,2] | Inner switch fundamental frequency | 0 | 0 | 0 | 0 | 0 | |
Outer switch fundamental frequency | 0 | 0 | 0 | 0 | |||
Hybrid fundamental frequency | 0 | 0 | 0 | 0 | |||
[,2] | Inner switch fundamental frequency | 0 | 0 | 1 | |||
Outer switch fundamental frequency | 0 | 0 | 0 | 0 | |||
Hybrid fundamental frequency | 0 | 0 | 0 |
Typical Parameter | Parameter Value |
---|---|
Peak off-state voltage | 4500 V |
Continuous DC current | 3000 A |
Threshold voltage | 1.22 V |
Slope resistor | 0.28 mΩ |
Single turn-on energy | 1.8 J |
Single turn-off energy | 17 J |
Typical Parameter | Parameter Value |
---|---|
Peak off-state voltage | 4500 V |
Continuous DC current | 3000 A |
Threshold voltage | 1.22 V |
Slope resistor | 0.28 mΩ |
Single turn-on energy | 1.8 J |
Single turn-off energy | 17 J |
Modulation Strategy | Carrier Phase-Shifting Modulation | Inner Switch Fundamental Frequency Modulation | Hybrid Fundamental Frequency Modulation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
loss value | turn-on | turn-off | conduction | total | turn-on | turn-off | conduction | total | turn-on | turn-off | conduction | total |
T1 | 167.3 | 1580 | 1271 | 3018 | 167.3 | 1580 | 1271 | 3018 | 83.6 | 790 | 1271 | 2145 |
D1 | 0 | 2.3 | 3.7 | 6 | 0 | 2.3 | 3.7 | 6 | 0 | 1.1 | 3.7 | 4.8 |
T2 | 167.9 | 1586 | 1478 | 3231 | 0 | 0 | 1656 | 1656 | 83.9 | 792.8 | 1478 | 2354 |
D2 | 0 | 652.8 | 265.4 | 918.4 | 0 | 0 | 210.9 | 210.9 | 0 | 326.4 | 265.6 | 591.9 |
T5 | 167.3 | 1580 | 548.2 | 2296 | 0.6 | 5.6 | 137 | 143.2 | 0.3 | 2.8 | 548.2 | 551.2 |
D5 | 0 | 650.7 | 255.3 | 905.9 | 0 | 650.6 | 489.6 | 1140 | 0 | 325.3 | 255.3 | 580.6 |
aggregate value | 10,375.3 | 6174.1 | 6227.5 | |||||||||
total three-phase losses | 62,251.8 | 37,044.6 | 37,365 |
Frequency | Loss Value | Aggregate Value | Total Three-Phase Losses | ||||||
---|---|---|---|---|---|---|---|---|---|
350 Hz | turn-on | 39 | 0 | 39.2 | 0 | 0.1 | 0 | 4943.7 | 29,662.2 |
turn-off | 368.7 | 0.5 | 370 | 152.3 | 1.3 | 151.8 | |||
conduction | 1271 | 3.7 | 1478 | 265.5 | 548.2 | 255.3 | |||
total | 1678 | 4.2 | 1887 | 417.8 | 549.6 | 407.1 | |||
550 Hz | turn-on | 61.3 | 0 | 61.6 | 0 | 0.2 | 0 | 5586.5 | 33,519 |
turn-off | 579.3 | 0.8 | 581.4 | 239.4 | 2 | 238.6 | |||
conduction | 1271 | 3.7 | 1478 | 265.5 | 548.2 | 255.3 | |||
total | 1912 | 4.5 | 2121 | 504.8 | 550.4 | 493.8 | |||
750 Hz | turn-on | 83.6 | 0 | 83.9 | 0 | 0.3 | 0 | 6227.5 | 37,365 |
turn-off | 790 | 1.1 | 792.8 | 326.4 | 2.8 | 325.3 | |||
conduction | 1271 | 3.7 | 1478 | 265.5 | 548.2 | 255.3 | |||
total | 2145 | 4.8 | 2354 | 591.9 | 551.2 | 580.6 | |||
950 Hz | turn-on | 106 | 0 | 106.3 | 0 | 0.4 | 0 | 6869.7 | 41,218.2 |
turn-off | 1001 | 1.5 | 1004 | 413.5 | 3.5 | 412 | |||
conduction | 1271 | 3.7 | 1478 | 265.5 | 548.2 | 255.3 | |||
total | 2378 | 5.2 | 2588 | 679 | 552.7 | 667.4 |
Power Factor | Loss Value | Aggregate Value | Total Three-Phase Losses | ||||||
---|---|---|---|---|---|---|---|---|---|
0.93 | turn-on | 82.1 | 0 | 82.6 | 0 | 0.5 | 0 | 6199.6 | 37,197.6 |
turn-off | 775.3 | 1.9 | 780 | 321.1 | 4.6 | 319.2 | |||
conduction | 1247 | 6.3 | 1464 | 282.8 | 563.8 | 268.3 | |||
total | 2104 | 8.2 | 2327 | 603.9 | 568.9 | 587.6 | |||
0.95 | turn-on | 83.6 | 0 | 83.9 | 0 | 0.3 | 0 | 6227.5 | 37,365 |
turn-off | 790 | 1.1 | 792.8 | 326.4 | 2.8 | 325.3 | |||
conduction | 1271 | 3.7 | 1478 | 265.5 | 548.2 | 255.3 | |||
total | 2145 | 4.8 | 2354 | 591.9 | 551.2 | 580.6 | |||
0.97 | turn-on | 85.2 | 0 | 85.4 | 0 | 0.1 | 0 | 6255.9 | 37,535.4 |
turn-off | 805.1 | 0.5 | 806.4 | 332 | 1.3 | 331.5 | |||
conduction | 1296 | 1.7 | 1491 | 248 | 529.7 | 241.9 | |||
total | 2186 | 2.2 | 2383 | 580.2 | 531.1 | 573.4 | |||
0.99 | turn-on | 86.9 | 0 | 86.9 | 0 | 0 | 0 | 6281.1 | 37,686.6 |
turn-off | 820.6 | 0.1 | 820.9 | 338 | 0.2 | 337.9 | |||
conduction | 1321 | 0.4 | 1505 | 230.8 | 504.7 | 288.1 | |||
total | 2229 | 0.4 | 2412 | 568.8 | 504.9 | 566 |
Parameter | Parameter Value |
---|---|
Rated capacity | 10 MW |
Rated DC voltage | 5000 V |
Rated AC voltage | 3300 V |
AC side resistance | 1.8857 Ω |
AC side inductance | 0.006 H |
AC side capacitor | 0.0017 F |
Modulated wave frequency | 50 Hz |
Carrier frequency | 1000 Hz |
Modulation ratio | 1 |
Indicator | Simulation Results | Experimental Results |
---|---|---|
Output current THD | 1.69% | 2.97% |
Voltage overshoot (V) | 0 V | 200–300 V |
Current ripple at no-load (A) | Negligible | ±150 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, L.; Liu, T.; Li, Y.; Guo, K.; Ma, Y. A Novel Loss-Balancing Modulation Strategy for ANPC Three-Level Inverter for Variable-Speed Pump Storage Applications. Electronics 2025, 14, 2944. https://doi.org/10.3390/electronics14152944
Wang Y, Liu L, Liu T, Li Y, Guo K, Ma Y. A Novel Loss-Balancing Modulation Strategy for ANPC Three-Level Inverter for Variable-Speed Pump Storage Applications. Electronics. 2025; 14(15):2944. https://doi.org/10.3390/electronics14152944
Chicago/Turabian StyleWang, Yali, Liyang Liu, Tao Liu, Yikai Li, Kai Guo, and Yiming Ma. 2025. "A Novel Loss-Balancing Modulation Strategy for ANPC Three-Level Inverter for Variable-Speed Pump Storage Applications" Electronics 14, no. 15: 2944. https://doi.org/10.3390/electronics14152944
APA StyleWang, Y., Liu, L., Liu, T., Li, Y., Guo, K., & Ma, Y. (2025). A Novel Loss-Balancing Modulation Strategy for ANPC Three-Level Inverter for Variable-Speed Pump Storage Applications. Electronics, 14(15), 2944. https://doi.org/10.3390/electronics14152944