Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China
Abstract
1. Introduction
2. Description of Study Area
2.1. Geographical Location
2.2. Characteristics of Mine Water Quality
2.3. Feasibility Analysis of Reinjection in Ordovician Limestone
- (i)
- Adequate storage capacity: sufficient thickness, porosity, and permeability to ensure sustainable recharge rates and effective hydraulic connectivity;
- (ii)
- Confining layer integrity: impermeable strata above and below the reservoir to prevent cross-layer contamination and mitigate hydrogeological risks;
- (iii)
- Seismic stability: low probability of natural seismic activity to ensure long-term reservoir integrity.
2.3.1. Water Quality Suitability Analysis
2.3.2. Analysis of Medium Conditions of Reinjection Reservoir
3. Experimental Design and Method
3.1. Hydrogeochemical Assessment of Mine Water Reinjection into Aquifer
3.2. Reinjection Experiment Program
3.3. Distribution of Monitoring Wells
4. Results and Discussion
4.1. Characteristics of Mineral Changes After Different Proportions of Mine Water Injection
4.2. Acquisition of Water Injection Tests and Intervals
4.3. Reservoir Dynamic Response Characteristics
4.3.1. Unpressurized Constant Flow Interval Reinjection Test
4.3.2. Long Term Reinjection Test Without Pressure and Constant Flow
4.3.3. Changes in Water Table Depth in Monitoring Wells
- -
- G0: Water levels rose 0.51 m (83.71 m to 82.82 m) with a consistent, gradual rise regardless of recharge.
- -
- G1: 0.84 m decline (56.14 m to 56.98 m).
- -
- G2: Stable levels (90.60 m to 90.50 m), indicating balanced recharge/discharge.
- -
- G3: 1.44 m decline (62.17 m to 63.61 m).
- -
- G4 (Luozhuang geothermal well): Pumping for heating initiated on 19 November caused a 4.00 m decline by December 22 (64.15 m to 68.15 m), with operational fluctuations.
4.4. Analysis of Well Loss During Pumping and Reinjection
4.5. Limitations of On-Site Reinjection Tests and the Enlightenment of Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, D.; Duan, H.; Zhang, J.; Bai, H. A state-of-the-art review on rock seepage mechanism of water inrush disaster in coal mines. Int. J. Coal Sci. Technol. 2022, 9, 50. [Google Scholar] [CrossRef]
- Ma, S.; Qiu, H.; Yang, D.; Wang, J.; Zhu, Y.; Tang, B.; Sun, K.; Cao, M. Surface multi-hazard effect of underground coal mining. Landslides 2023, 20, 39–52. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Renforth, P.; Ndiritu, J.; Maree, J.P.; Tekere, M.; Chatzisymeon, E. Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecol. Eng. 2022, 183, 106740. [Google Scholar] [CrossRef]
- Qu, S.; Duan, L.; Shi, Z.; Liang, X.; Lv, S.; Wang, G.; Liu, T.; Yu, R. Hydrochemical assessments and driving forces of groundwater quality and potential health risks of sulfate in a coalfield, northern Ordos Basin, China. Sci. Total Environ. 2022, 835, 155519. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Wei, W.; Tan, X.; Xu, Z.; Zhang, L.; Zhang, F.; Liu, Q.; Sun, Y. Feasibility of Injecting Pretreated Mine Water into a Deep Ordovician Aquifer in the Lilou Coal Mine, China. Mine Water Environ. 2024, 43, 168–182. [Google Scholar] [CrossRef]
- Zhang, C.; Bai, Q.; Han, P. A review of water rock interaction in underground coal mining: Problems and analysis. Bull. Eng. Geol. Environ. 2023, 82, 157. [Google Scholar] [CrossRef]
- Cao, Z.; Gu, Q.; Huang, Z.; Fu, J. Risk assessment of fault water inrush during deep mining. Int. J. Min. Sci. Technol. 2022, 32, 423–434. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Du, F.; Cao, Z.; Li, G. Study of Roof Water Inrush Control Technology and Water Resources Utilization During Coal Mining in a Karst Area. Mine Water Environ. 2023, 42, 546–559. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Hou, X.; Li, J.; Ren, X.; Lin, M.; Zhang, M.; Wang, Y.; Tian, Y. Effects of multi-factors on the spatiotemporal variations of deep confined groundwater in coal mining regions, North China. Sci. Total Environ. 2022, 823, 153741. [Google Scholar] [CrossRef]
- Black, K.J.; Weber, J.G. Treating abandoned mine drainage can protect streams cost effectively and benefit vulnerable communities. Commun. Earth Environ. 2024, 5, 508. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Z.; Sun, Y.; Sui, W.; Li, X.; Zhao, X.; Liu, Q. Minewater deep transfer and storage. J. Clean. Prod. 2022, 332, 129848. [Google Scholar] [CrossRef]
- Chen, G.; Sun, Y.; Xu, Z.; Li, X. Hydrogeological feasibility of mine water deep geological storage in Baotashan coarse sandstone: A case study in Ordos Basin. Deep. Undergr. Sci. Eng. 2022, 1, 148–164. [Google Scholar] [CrossRef]
- Clark, J.E.; Bonura, D.K.; Van Voorhees, R.F. An overview of injection well history in the United States of America. In Developments in Water Science; Tsang, C., Apps, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Myers, T. Groundwater management and coal bed methane development in the Powder River Basin of Montana. J. Hydrol. 2009, 368, 178–193. [Google Scholar] [CrossRef]
- Baquero, J.C.; Osé De Los Reyes, M.; Custodio, E.; Scheiber, L.; Vázquez-Suñé, E. Groundwater Management in Mining: The Drainage and Reinjection System in Cobre Las Cruces, Spain. Mod. Environ. Sci. Eng. 2016, 2, 631–646. [Google Scholar] [CrossRef]
- Cienfuegos, P.; Loredo, J. Coalbed methane resources assessment in Asturias (Spain). Int. J. Coal Geol. 2010, 83, 366–376. [Google Scholar] [CrossRef]
- Faunt, C.C.; Sneed, M.; Traum, J.; Brandt, J.T. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol. J. 2016, 24, 675–684. [Google Scholar] [CrossRef]
- Hebig, K.H.; Ito, N.; Tecklenburg, J.; Machida, I.; Marui, A.; Scheytt, T. Use of single-well push–pull tracer tests to simulate a dynamic saltwater–freshwater interface. Environ. Earth Sci. 2016, 75, 281. [Google Scholar] [CrossRef]
- Khoshnevis, N.; Khosrokhavar, R.; Nick, H.M.; Bruhn, D.F.; Bruining, H. Injection of disposal water from a geothermal reservoir into a gas reservoir. J. Pet. Sci. Eng. 2019, 178, 616–628. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Li, S.; Jiang, X.; Fu, W. The influence of reinjection and hydrogeological parameters on thermal energy storage in brine aquifer. Appl. Energ. 2020, 278, 115685. [Google Scholar] [CrossRef]
- Mon, M.T.; Tansuchat, R.; Yamaka, W. CCUS Technology and Carbon Emissions: Evidence from the United States. Energies 2024, 17, 1748. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Z.; Li, Z.; Zhao, Q.; Dai, J. The impact of groundwater recharge on land subsidence: A case study from the Cangzhou test area, Hebei Province, China. Hydrogeol. J. 2023, 31, 813–825. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, S.; Xu, H.; Jiang, F.; He, Z.; Wu, J. The effects of artificial recharge of groundwater on controlling land subsidence and its influence on groundwater quality and aquifer energy storage in Shanghai, China. Environ. Earth Sci. 2016, 75, 195. [Google Scholar] [CrossRef]
- Stephens, M.J.; Chang, W.; Shimabukuro, D.H.; Howery, A.; Sowers, T.A.; Gillespie, J.M. A joint Gaussian process model of geochemistry, geophysics, and temperature for groundwater TDS in the San Ardo Oil Field, California, USA. J. Hydrol. 2025, 661, 133540. [Google Scholar] [CrossRef]
- Schilling, O.; Sheldon, H.A.; Reid, L.B.; Corbel, S. Hydrothermal models of the Perth metropolitan area, Western Australia: Implications for geothermal energy. Hydrogeol. J. 2013, 21, 605–621. [Google Scholar] [CrossRef]
- Li, Y.; Yao, Q.; Xia, Z.; Xu, Q.; Yu, L.; Liu, Z.; Chen, S. Stability Evaluation of the Artificial Dam in Underground Reservoirs Under Storage and Drainage Cycles: A method based on concrete performance and case study. In Rock Mechanics and Rock Engineering; Springer: Berlin/Heidelberg, Germany, 2025. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, T.; Ren, Z.; Wang, D.; Sun, W.; Sun, P.; Li, J.; Zou, X. Multi-well combined solution mining for salt cavern energy storages and its displacement optimization. Energy 2024, 288, 129792. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Li, Q.; Deng, S.; Guo, W. Controlling groundwater infiltration by gas flooding for oil shale in situ pyrolysis exploitation. J. Pet. Sci. Eng. 2019, 179, 444–454. [Google Scholar] [CrossRef]
- Wang, L.; He, H.; Wu, H.; Luo, Z.; Gao, Z.; Peng, J.; Yin, H.; Lei, H. Experimental Study of Injection–Production Coupling Technique for Enhanced Oil Recovery in Mature Water Flooding Reservoirs. Processes 2025, 13, 457. [Google Scholar] [CrossRef]
- Sloan, S.; Cook, P.G.; Wallis, I. Managed Aquifer Recharge in Mining: A Review. Groundwater 2023, 61, 305–317. [Google Scholar] [CrossRef]
- Shi, M.; Yang, Y.; Wang, D.; Wu, Y.; Zhang, X.; Lu, Y. Iron clogging mechanism around injection wells during groundwater recharge in shallow iron-rich aquifer: Insight from spatiotemporal evolution. Water Res. 2025, 283, 123778. [Google Scholar] [CrossRef]
- Song, W.; Liu, X.; Zheng, T.; Yang, J. A review of recharge and clogging in sandstone aquifer. Geothermics 2020, 87, 101857. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Yan, H.; Zhou, X.; Hou, C. Impact of Carbonate Scaling on the Efficiency of Used Geothermal Water Reinjection from Low-Middle Temperature Geothermal Fluid in Xianyang Porous Geothermal Field, NW China. Adv. Mater. Res. 2012, 614–615, 307–310. [Google Scholar] [CrossRef]
- Houben, G.J.; Kenrick, M.A.P. Step-drawdown tests: Linear and nonlinear head loss components. Hydrogeol. J. 2022, 30, 1315–1326. [Google Scholar] [CrossRef]
- Kawecki, M.W. Meaningful Interpretation of Step-Drawdown Tests. Groundwater 1995, 33, 23–32. [Google Scholar] [CrossRef]
- Groeschke, M.; Bosch, K.; Aboubacar, S.D.; Kroemer, L.; Koeniger, P.; Vassolo, S. Groundwater monitoring in challenging environments: An argument for the construction of observation wells based on data from Niamey, Niger. Hydrogeol. J. 2024, 32, 1817–1831. [Google Scholar] [CrossRef]
- Gebru, H.; Gebreyohannes, T.; Hagos, E.; Perilli, N. Hydrogeological Assessment and Steady-State Groundwater Flow Modeling for Groundwater Management in the Golina River Sub-Basin, Northern Ethiopia, Using MODFLOW 6. Water 2025, 17, 949. [Google Scholar] [CrossRef]
- Kumar, V.; Chaplot, B.; Omar, P.J.; Mishra, S.; Md. Azamathulla, H. Experimental study on infiltration pattern: Opportunities for sustainable management in the Northern region of India. Water Sci. Technol. 2021, 84, 2675–2685. [Google Scholar] [CrossRef]
- Schiavo, M. Numerical impact of variable volumes of Monte Carlo simulations of heterogeneous conductivity fields in groundwater flow models. J. Hydrol. 2024, 634, 131072. [Google Scholar] [CrossRef]
- Bianchi Janetti, E.; Riva, M.; Guadagnini, A. Natural springs protection and probabilistic risk assessment under uncertain conditions. Sci. Total Environ. 2021, 751, 141430. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, J.; Zheng, W.; Zhou, H.; Ma, Q.; Shen, C.; Ma, Q.; Lan, M.; Liu, Y. “Geology-geophysics-data mining” integration to enhance the identification of deep fault-controlled paleokarst reservoirs in the Tarim Basin. Mar. Pet. Geol. 2023, 158, 106498. [Google Scholar] [CrossRef]
- Chen, W.; Liu, P.; Luo, Y.; Li, B.; Peng, J.; Jin, X. Behavior of Sb and As in the hydrogeochemistry of adjacent karst underground river systems and the responses of such systems to mining activities. Sci. Total Environ. 2023, 857, 159411. [Google Scholar] [CrossRef]
- Netzer, L.; Russo, D.; Nachshon, U.; Moreno, Z.; Ben Hur, M.; Katzir, R.; Livshitz, Y.; Kurtzman, D. Drywell Infiltration Performance: Tests, Monitoring, Simple, and Detailed Models. Water Resour. Res. 2025, 61, e2024WR037524. [Google Scholar] [CrossRef]
- Hussain, J.; Zafar, T.; Fu, X.; Ali, N.; Chen, J.; Frontalini, F.; Hussain, J.; Lina, X.; Kontakiotis, G.; Koumoutsakou, O. Petrological controls on the engineering properties of carbonate aggregates through a machine learning approach. Sci. Rep. 2024, 14, 31948. [Google Scholar] [CrossRef]
- Schiavo, M. Entropy, fractality, and thermodynamics of groundwater pathways. J. Hydrol. 2023, 623, 129824. [Google Scholar] [CrossRef]
- Zehe, E.; Loritz, R.; Edery, Y.; Berkowitz, B. Preferential pathways for fluid and solutes in heterogeneous groundwater systems: Self-organization, entropy, work. Hydrol. Earth Syst. Sci. 2021, 25, 5337–5353. [Google Scholar] [CrossRef]
- Zeng, C.; Zheng, G.; Xue, X. Responses of deep soil layers to combined recharge in a leaky aquifer. Eng. Geol. 2019, 260, 105263. [Google Scholar] [CrossRef]
- Desens, A.; Houben, G.J. Jenseits von Sichardt—Empirische Formeln zur Bestimmung der Absenkreichweite eines Brunnens und ein Verbesserungsvorschlag. Grundwasser 2022, 27, 131–141. [Google Scholar] [CrossRef]
- Tiwari, S.; Yadav, B.K.; Polemio, M. Performance Evaluation of Aquifer Storage and Recovery (ASR) System in Saline Groundwater Regions: Impact of Operational Factors and Well Design. J. Hydrol. Eng. 2022, 27, 4022032. [Google Scholar] [CrossRef]
- Sahin, A.U. A new parameter estimation procedure for pumping test analysis using a radial basis function collocation method. Environ. Earth Sci. 2016, 75, 200. [Google Scholar] [CrossRef]
- Raymond, J.; Therrien, R.; Gosselin, L.; Lefebvre, R. A Review of Thermal Response Test Analysis Using Pumping Test Concepts. Groundwater 2011, 49, 932–945. [Google Scholar] [CrossRef]
- Kurtulus, B.; Yaylım, T.N.; Avşar, O.; Kulac, H.F.; Razack, M. The Well Efficiency Criteria Revisited—Development of a General Well Efficiency Criteria (GWEC) Based on Rorabaugh’s Model. Water 2019, 11, 1784. [Google Scholar] [CrossRef]
- Neuman, S.P. Analysis of Pumping Test Data from Anisotropic Unconfined Aquifers Considering Delayed Gravity Response. Water Resour. Res. 1975, 11, 329–342. [Google Scholar] [CrossRef]
- Çiftçi, E.; Sahin, A.U. Interpretation of Step-Drawdown Tests with the Differential Evolution Approach. J. Hydrol. Eng. 2022, 27, 4022013. [Google Scholar] [CrossRef]
- El-Meselhy, A.; Abdelhalim, A.; Nabawy, B.S. Geospatial analysis in groundwater resources management as a tool for reclamation areas of New Valley (El-Oweinat), Egypt. J. Afr. Earth Sci. 2020, 162, 103720. [Google Scholar] [CrossRef]
- Shinde, S.P.; Barai, V.N.; Al-Ansari, N.; Gavit, B.K.; Kadam, S.A.; Atre, A.A.; Bansod, R.D.; Elbeltagi, A. Characterization of basaltic rock aquifer parameters using hydraulic parameters, Theis’s method and aquifer test software in the hard rock area of Buchakewadi watershed Maharashtra, India. Appl. Water Sci. 2022, 12, 206. [Google Scholar] [CrossRef]
Hydrochemical Facies | K+ + Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | TDS | pH | |
---|---|---|---|---|---|---|---|---|---|
Mine water | Max | 1072.3 | 145.7 | 38.8 | 639.2 | 1924.3 | 1054.6 | 3664.3 | 9.4 |
Min | 375.0 | 4.5 | 0.5 | 83.1 | 201.3 | 39.2 | 1743.5 | 7.0 | |
Mean | 822.5 | 47.7 | 10.1 | 209.1 | 1229.5 | 411.9 | 2747.5 | 8.2 | |
Ordovician groundwater | Max | 503.4 | 735.8 | 163.9 | 542.5 | 2280.8 | 351.5 | 3926.8 | 9.1 |
Min | 171.6 | 68.3 | 11.0 | 214.8 | 361.9 | 17.1 | 1639.6 | 6.8 | |
Mean | 343.5 | 524.8 | 113.3 | 339.0 | 1836.0 | 178.3 | 3323.3 | 7.6 |
Plan | TX-1 | TX-2 | TX-3 | TX-4 | Total Duration | |||
---|---|---|---|---|---|---|---|---|
RI | Intermittent | RI | Intermittent | RI | Intermittent | RI | ||
Intermittent reinjection | 2 h | 5 min | 2 h | 15 min | 2 h | 30 min | 2 h | 8 h |
4 h | 4 h | 4 h | 4 h | 16 h | ||||
6 h | 6 h | 6 h | 6 h | 24 h | ||||
Long-term reinjection | Continuous reinjection for 720 h | 720 h |
Type | Q | Runoff | Well Lose | Drawdown | Error (%) | Well Loss Percentage (%) | |
---|---|---|---|---|---|---|---|
Calculated Value | Measured Value | ||||||
Pumping test | 219.2 | 7.79 | 15.07 | 22.86 | 24.93 | 8 | 65.94 |
178.2 | 6.33 | 8.10 | 14.43 | 11.51 | 25 | 56.12 | |
98.33 | 3.49 | 1.36 | 4.85 | 5.54 | 12 | 28.03 | |
Reinjection test | 200 | 7.10 | 46.44 | 53.42 | 48.66 | 9.8 | 86.7 |
220 | 7.81 | 61.81 | 69.46 | 76.12 | 8.8 | 88.75 | |
240 | 8.52 | 80.24 | 88.55 | 88.12 | 0.49 | 90.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Chen, W.; Tan, X.; Sui, J.; Liu, Q.; Chen, H.; Zhang, F.; Chen, G.; Xu, Z. Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China. Water 2025, 17, 1982. https://doi.org/10.3390/w17131982
Fan J, Chen W, Tan X, Sui J, Liu Q, Chen H, Zhang F, Chen G, Xu Z. Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China. Water. 2025; 17(13):1982. https://doi.org/10.3390/w17131982
Chicago/Turabian StyleFan, Jianguo, Weixiao Chen, Xianfeng Tan, Jiancai Sui, Qi Liu, Hongnian Chen, Feng Zhang, Ge Chen, and Zhimin Xu. 2025. "Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China" Water 17, no. 13: 1982. https://doi.org/10.3390/w17131982
APA StyleFan, J., Chen, W., Tan, X., Sui, J., Liu, Q., Chen, H., Zhang, F., Chen, G., & Xu, Z. (2025). Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China. Water, 17(13), 1982. https://doi.org/10.3390/w17131982