Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,271)

Search Parameters:
Keywords = tyrosinase activation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

16 pages, 2650 KiB  
Article
Inhibition of Tyrosinase and Melanogenesis by a White Mulberry Fruit Extract
by Nuttawadee Prasawang, Nareerat Sutjarit, Athisri Sitthipunya, Prasit Suwannalert, Wutarak Monsuwan and Nisamanee Charoenchon
Int. J. Mol. Sci. 2025, 26(15), 7589; https://doi.org/10.3390/ijms26157589 - 6 Aug 2025
Abstract
Ultraviolet B (UVB) radiation is a key factor in the overproduction of melanin in the skin. Melanocytes produce melanin through melanogenesis to protect the skin from UVB radiation-induced damage. However, excessive melanogenesis can lead to hyperpigmentation and increase the risk of malignant melanoma. [...] Read more.
Ultraviolet B (UVB) radiation is a key factor in the overproduction of melanin in the skin. Melanocytes produce melanin through melanogenesis to protect the skin from UVB radiation-induced damage. However, excessive melanogenesis can lead to hyperpigmentation and increase the risk of malignant melanoma. Tyrosinase is the rate-limiting enzyme in melanogenesis; it catalyzes the oxidation of tyrosine to 3,4-dihydroxy-L-phenylalanine and subsequently to dopaquinone. Thus, inhibiting tyrosinase is a promising strategy for preventing melanogenesis and skin hyperpigmentation. White mulberry (Morus alba L.) is rich in antioxidants, and mulberry fruit extracts have been used as cosmetic skin-lightening agents. However, data on the capacity of mulberry fruit extracts to inhibit tyrosinase under UVB radiation-induced melanogenic conditions remain scarce, especially in an in vivo model. In this study, we evaluated the effects of a mulberry crude extract (MCE) on UVB radiation-induced melanogenesis in B16F10 melanoma cells and zebrafish embryos. The MCE significantly reduced tyrosinase activity and melanogenesis in a dose-dependent manner without inducing cytotoxicity. These effects are likely attributable to the antioxidant constituents of the extract. Our findings highlight the potential of this MCE as an effective tyrosinase inhibitor for the prevention of UVB radiation-induced skin hyperpigmentation. Full article
Show Figures

Figure 1

6 pages, 640 KiB  
Short Note
Bis(4-((E)-3,5–Diacetoxystyryl)phenyl)nonanedioate
by Claudia Sciacca, Giulia Maria Grasso, Nunzio Cardullo and Vera Muccilli
Molbank 2025, 2025(3), M2044; https://doi.org/10.3390/M2044 (registering DOI) - 5 Aug 2025
Abstract
Resveratrol is a natural stilbene known for its wide range of biological activities, including antioxidant, anti-inflammatory, and anti-aging effects. However, its application in cosmetics and dermatology is limited by poor stability and bioavailability. Azelaic acid is a natural carboxylic acid employed in cosmetics [...] Read more.
Resveratrol is a natural stilbene known for its wide range of biological activities, including antioxidant, anti-inflammatory, and anti-aging effects. However, its application in cosmetics and dermatology is limited by poor stability and bioavailability. Azelaic acid is a natural carboxylic acid employed in cosmetics for its tyrosinase inhibition activity and for cutaneous hyperpigmentation disorders. In this work, we report a concise chemoenzymatic procedure for the synthesis of a novel hybrid molecule combining acetylated resveratrol and azelaic acid. This methodology offers a valuable route for the development of new bioactive compounds for potential cosmetic and dermatological applications. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

21 pages, 2074 KiB  
Article
Preliminary Analysis of Bilberry NaDES Extracts as Versatile Active Ingredients of Natural Dermocosmetic Products: In Vitro Evaluation of Anti-Tyrosinase, Anti-Hyaluronidase, Anti-Collagenase, and UV Protective Properties
by Milica Martinović, Ivana Nešić, Ana Žugić and Vanja M. Tadić
Plants 2025, 14(15), 2374; https://doi.org/10.3390/plants14152374 - 1 Aug 2025
Viewed by 207
Abstract
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of [...] Read more.
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of bilberry fruits and leaves were prepared using both conventional solvents (water and 50% ethanol) and natural deep eutectic solvents (NaDES) as green, biodegradable alternatives. The aim of this study was to examine the UV protective activity and inhibitory potential of those extracts against some enzymes (tyrosinase, hyaluronidase, collagenase) that are important in terms of skin conditioning and skin aging. The results of in vitro tests have shown the superiority of NaDES extracts compared to conventional extracts regarding all tested bioactivities. In addition, bilberry leaves extracts were more potent compared to fruit extracts in all cases. The most potent extract was bilberry leaf extract made with malic acid–glycerol, which exhibited strong anti-tyrosinase (IC50 = 3.52 ± 0.26 mg/mL), anti-hyaluronidase (IC50 = 3.23 ± 0.30 mg/mL), and anti-collagenase (IC50 = 1.84 ± 0.50 mg/mL) activities. The correlation analysis revealed correlation between UV protective and anti-tyrosinase, UV protective and anti-collagenase as well as between anti-hyaluronidase and anti-collagenase activity. UV protection and anti-tyrosinase activity correlated significantly with chlorogenic acid and hyperoside contents in extracts. The extracts with the best activities also demonstrated a good safety profile in a 24 h in vivo study on human volunteers. Full article
Show Figures

Figure 1

35 pages, 6165 KiB  
Article
Cyclodextrin-Based Systems of Cetraria islandica Extracts: A Novel Approach to Improve Solubility and Biological Activity of Lichen-Derived Natural Products
by Elżbieta Studzińska-Sroka, Karolina Cichoracka, Natalia Rosiak, Andrzej Miklaszewski, Marcin Szymański and Judyta Cielecka-Piontek
Molecules 2025, 30(15), 3182; https://doi.org/10.3390/molecules30153182 - 29 Jul 2025
Viewed by 209
Abstract
Cetraria islandica (L.) Ach. (CI) is a lichen from the Parmeliaceaea family used in medicine. However, the low solubility of CI secondary metabolites in water limits the application of lichen extract and compounds. It prompted us to study the systems of cyclodextrins (CDs) [...] Read more.
Cetraria islandica (L.) Ach. (CI) is a lichen from the Parmeliaceaea family used in medicine. However, the low solubility of CI secondary metabolites in water limits the application of lichen extract and compounds. It prompted us to study the systems of cyclodextrins (CDs) (β-CD, γ-CD, HP-β-CD, and HP-γ-CD) with the CI acetone or CI methanol extracts prepared using grinding and solvent evaporation methods. The content of fumarprotocetraric acid (FPCA), a key CI metabolite, was quantified using HPLC. CD–extract systems were characterized by X-ray powder diffraction (XRPD) and Fourier-transform infrared (FTIR) spectroscopy. Biological activity was evaluated using cell-free assays: a Folin–Ciocalteu analysis, DPPH test, acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibitions. Dissolution profiles were also assessed. The best biological and physicochemical results were obtained for systems prepared with HP-β-CD and HP-γ-CD via solvent evaporation, showing higher activity and enhanced FPCA release compared to the pure extracts. To the best of our knowledge, this is the first study to report the preparation and characterization of CD-based systems with CI extracts. The obtained results encourage us to continue our research on CI to improve the physicochemical properties of its active compounds. Full article
Show Figures

Figure 1

25 pages, 3359 KiB  
Article
In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts
by Desy Muliana Wenas, Berna Elya, Sutriyo Sutriyo, Heri Setiawan, Rozana Othman, Syamsu Nur, Nita Triadisti, Fenny Yunita and Erwi Putri Setyaningsih
Molecules 2025, 30(15), 3168; https://doi.org/10.3390/molecules30153168 - 29 Jul 2025
Viewed by 340
Abstract
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess [...] Read more.
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess anti-aging properties, primarily attributed to its major constituents, myricitrin and quercetin. This study aimed to investigate the anti-elastase and antioxidant properties of Eugenia uniflora stem bark, ripe fruit, and seed extracts. Extracts were obtained using an ultrasound-assisted extraction (UAE) method with 70% ethanol. Quantitative phytochemical analysis involved measuring the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. Bioactive constituents were identified using LC-MS analysis, and their interactions with target enzymes were further evaluated through in silico molecular docking. The results demonstrated that the E. uniflora seed extract exhibited the highest antioxidant activity, with an IC50 of 5.23 µg/mL (DPPH assay) and a FRAP value of 3233.32 µmol FeSO4/g. Furthermore, the ethanolic seed extract showed significant anti-elastase activity with an IC50 of 114.14 µg/mL. Molecular docking predicted strong potential for several compounds as pancreatic elastase inhibitors, including 5-phenylvaleric acid, 2-(3-phenylpropyl)phenol, n-amylbenzene, 2-aminoadipic acid, and traumatin, each showing a prediction activity (PA) value exceeding 0.6. Notably, these compounds also exhibited inhibitory activity against tyrosinase. These findings collectively underscore the significant promise of E. uniflora seed extract as a novel and natural candidate for pharmacocosmeceutical product development, particularly for anti-aging applications. Full article
Show Figures

Graphical abstract

25 pages, 2588 KiB  
Article
Phytochemical Analysis and Therapeutic Potential of Tuberaria lignosa (Sweet) Samp. Aqueous Extract in Skin Injuries
by Manuel González-Vázquez, Ana Quílez Guerrero, Mónica Zuzarte, Lígia Salgueiro, Jorge Alves-Silva, María Luisa González-Rodríguez and Rocío De la Puerta
Plants 2025, 14(15), 2299; https://doi.org/10.3390/plants14152299 - 25 Jul 2025
Viewed by 337
Abstract
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in [...] Read more.
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in vitro biological activities. The phenolic composition was determined using UHPLC-HRMS/MS, HPLC-DAD, and quantitative colorimetric assays. Antioxidant activity was assessed against synthetic free radicals, reactive oxygen and nitrogen species, transition metals, and pro-oxidant enzymes. Enzymatic inhibition of tyrosinase, hyaluronidase, collagenase, and elastase were evaluated using in vitro assays. Cytocompatibility was tested on human keratinocytes and NIH/3T3 fibroblasts using MTT and resazurin assays, respectively, while wound healing was evaluated on NIH/3T3 fibroblasts using the scratch assay. Antifungal activity was investigated against several Candida and dermatophyte species, while antibiofilm activity was tested against Epidermophyton floccosum. The extract was found to be rich in phenolic compounds, accounting for nearly 45% of its dry weight. These included flavonoids, phenolic acids, and proanthocyanidins, with ellagitannins (punicalagin) being the predominant group. The extract demonstrated potent antioxidant, anti-tyrosinase, anti-collagenase, anti-elastase, and antidermatophytic activities, including fungistatic, fungicidal, and antibiofilm effects. These findings highlight the potential of T. lignosa as a valuable and underexplored source of bioactive phenolic compounds with strong potential for the development of innovative approaches for skin care and therapy. Full article
Show Figures

Graphical abstract

22 pages, 6702 KiB  
Article
Maintaining the Quality and Nutritional Integrity of Chilled Cordyceps sinensis: Comparative Effects and Mechanisms of Modified Atmosphere Packaging and UV-Based Interventions
by Tianzhuo Huang, Huanzhi Lv, Yubo Lin, Xin Xiong, Yuqing Tan, Hui Hong and Yongkang Luo
Foods 2025, 14(15), 2611; https://doi.org/10.3390/foods14152611 - 25 Jul 2025
Viewed by 349
Abstract
Cordyceps sinensis (C. sinensis) is widely recognized for its bioactive compounds and associated health benefits. However, due to its delicate nature, conventional chilled storage often results in the rapid degradation of valuable compounds, leading to loss of nutritional value and overall [...] Read more.
Cordyceps sinensis (C. sinensis) is widely recognized for its bioactive compounds and associated health benefits. However, due to its delicate nature, conventional chilled storage often results in the rapid degradation of valuable compounds, leading to loss of nutritional value and overall quality. This study integrated and evaluated comprehensive strategies: three gas-conditioning and two light-based preservation methods for maintaining both quality and nutritional integrity during 12-day chilled storage at 4 °C. The results revealed that vacuum packaging significantly inhibited weight loss (3.49%) compared to in the control group (10.77%) and preserved sensory quality (p < 0.05). UV-based interventions notably suppressed polyphenol oxidase and tyrosinase activities by 36.4% and 29.7%, respectively (p < 0.05). Modified atmosphere packaging (MAP) with 80% N2 and 20% CO2 (MAP-N2CO2) maintained higher levels of cordycepin (1.77 µg/g) and preserved energy charge above 0.7 throughout storage. The results suggest that MAP-based treatments are superior methods for the chilled storage of C. sinensis, with diverse advantages and their corresponding shelf lives associated with different gas compositions. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

27 pages, 4348 KiB  
Article
Valorization of Riceberry Broken Rice and Soybean Meal for Optimized Production of Multifunctional Exopolysaccharide by Bacillus tequilensis PS21 with Potent Bioactivities Using Response Surface Methodology
by Thipphiya Karirat, Worachot Saengha, Nantaporn Sutthi, Pheeraya Chottanom, Sirirat Deeseenthum, Nyuk Ling Ma and Vijitra Luang-In
Polymers 2025, 17(15), 2029; https://doi.org/10.3390/polym17152029 - 25 Jul 2025
Viewed by 341
Abstract
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL [...] Read more.
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL DW). The EPS displayed a strong antioxidant capacity with 65.5% DPPH and 80.5% hydroxyl radical scavenging, and a FRAP value of 6.51 mg Fe2+/g DW. Antimicrobial testing showed inhibition zones up to 10.07 mm against Streptococcus agalactiae and 7.83 mm against Staphylococcus aureus. Optimization using central composite design (CCD) and the response surface methodology (RSM) revealed the best production at 5% (w/v) RBR, 3% (w/v) SBM, pH 6.66, and 39.51 °C, yielding 39.82 g/L EPS. This EPS is a moderate-molecular-weight (11,282 Da) homopolysaccharide with glucose monomers. X-ray diffraction (XRD) showed an amorphous pattern, favorable for solubility in biological applications. Thermogravimetric analysis (TGA) demonstrated thermal stability up to ~250 °C, supporting its suitability for high-temperature processing. EPS also exhibited anticancer activity with IC50 values of 226.60 µg/mL (MCF-7) and 224.30 µg/mL (HeLa) at 72 h, reduced colony formation, inhibited cell migration, and demonstrated anti-tyrosinase, anti-collagenase, and anti-elastase effects. This study demonstrates the successful valorization of agro-industrial by-products—RBR and SBM—for the high-yield production of multifunctional EPS with potent antioxidant, antimicrobial, and anticancer properties. The findings highlight the sustainable potential of these low-cost substrates in supporting the development of green and value-added bioproducts, with promising utilizations across the food, pharmaceutical, and cosmetic sectors. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Figure 1

25 pages, 7428 KiB  
Article
Sialic Acid-Loaded Nanoliposomes with Enhanced Stability and Transdermal Delivery for Synergistic Anti-Aging, Skin Brightening, and Barrier Repair
by Fan Yang, Hua Wang, Dan Luo, Jun Deng, Yawen Hu, Zhi Liu and Wei Liu
Pharmaceutics 2025, 17(8), 956; https://doi.org/10.3390/pharmaceutics17080956 - 24 Jul 2025
Viewed by 315
Abstract
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: [...] Read more.
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: To overcome these challenges, SA was encapsulated within nanoliposomes (NLPs) by the high-pressure homogenization technique to develop an advanced and efficient transdermal drug delivery system. The skincare capabilities of this novel system were comprehensively evaluated across multiple experimental platforms, including in vitro cell assays, 3D skin models, in vivo zebrafish studies, and clinical human trials. Results: The SA-loaded NLPs (SA-NLPs) substantially improved the transdermal penetration and retention of SA, facilitating enhanced cellular uptake and cell proliferation. Compared to free SA, SA-NLPs demonstrated a 246.98% increase in skin retention and 1.8-fold greater cellular uptake in HDF cells. Moreover, SA-NLPs protected cells from oxidative stress-induced damage, stimulated collagen synthesis, and effectively suppressed the secretion of matrix metalloproteinases, tyrosinase activity, and melanin production. Additionally, zebrafish-based assays provided in vivo evidence of the skincare efficacy of SA-NLPs. Notably, clinical evaluations demonstrated that a 56-day application of the SA-NLPs-containing cream resulted in a 4.20% increase in L*, 7.87% decrease in b*, 8.45% decrease in TEWL, and 4.01% reduction in wrinkle length, indicating its superior brightening, barrier-repair, and anti-aging effects. Conclusions: This multi-level, systematic investigation strongly suggests that SA-NLPs represent a highly promising transdermal delivery strategy, capable of significantly enhancing the anti-aging, barrier-repair, and skin-brightening properties of SA, thus opening new avenues for its application in the fields of dermatology and cosmeceuticals. Full article
(This article belongs to the Special Issue Lipid/Polymer-Based Drug Delivery Systems)
Show Figures

Figure 1

23 pages, 8387 KiB  
Article
Solvent Fractionation of Polygonum cuspidatum Sieb. et Zucc. for Antioxidant, Biological Activity, and Chromatographic Characterization
by Yuchen Cheng, Yuri Kang and Woonjung Kim
Int. J. Mol. Sci. 2025, 26(14), 7011; https://doi.org/10.3390/ijms26147011 - 21 Jul 2025
Viewed by 316
Abstract
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were [...] Read more.
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were determined, and their antioxidant activities were evaluated using DPPH, ABTS, and FRAP assays. Additionally, the anti-diabetic potential was assessed via α-glucosidase inhibitory activity, while anti-obesity activity was evaluated using lipase inhibitory activity. The fractions were also tested for tyrosinase and elastase inhibitory activities to assess their skin-whitening and anti-wrinkle potential, and their antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was determined using the agar diffusion method. Finally, bioactive compounds were identified and quantified using HPLC and GC–MSD. The results showed that the ethyl acetate fraction possessed the highest total polyphenol content (0.53 ± 0.01 g GAE/g) and total flavonoid content (0.19 ± 0.02 g QE/g). It also exhibited strong antioxidant activity, with the lowest DPPH radical scavenging IC50 (0.01 ± 0.00 mg/mL), ABTS radical scavenging IC50 (0.06 ± 0.00 mg/mL), and the highest FRAP value (6.02 ± 0.30 mM Fe2+/mg). Moreover, it demonstrated potent enzyme inhibitory activities, including tyrosinase inhibitory activity (67.78 ± 2.50%), elastase inhibitory activity (83.84 ± 1.64%), α-glucosidase inhibitory activity (65.14 ± 10.29%), and lipase inhibitory activity (85.79 ± 1.04%). In the antibacterial activity, the ethyl acetate fraction produced a clear inhibitory zone of 19.50 mm against Staphylococcus aureus, indicating notable antibacterial activity. HPLC-PDA and GC–MSD analyses identified tannic acid and emodin as the major bioactive constituents. These findings suggest that the ethyl acetate fraction of P. cuspidatum extract, rich in polyphenol and flavonoid compounds, is a promising natural source of bioactive ingredients for applications in the food, pharmaceutical, and cosmetic industries. Further research is needed to explore its mechanisms and therapeutic applications. Full article
Show Figures

Figure 1

22 pages, 4534 KiB  
Article
Upcycled Cocoa Pod Husk: A Sustainable Source of Phenol and Polyphenol Ingredients for Skin Hydration, Whitening, and Anti-Aging
by Aknarin Anatachodwanit, Setinee Chanpirom, Thapakorn Tree-Udom, Sunsiri Kitthaweesinpoon, Sudarat Jiamphun, Ongon Aryuwat, Cholpisut Tantapakul, Maria Pilar Vinardell and Tawanun Sripisut
Life 2025, 15(7), 1126; https://doi.org/10.3390/life15071126 - 17 Jul 2025
Viewed by 701
Abstract
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% [...] Read more.
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% ethanol (CE) and 80% ethanol acidified (CEA) as extraction solvents. The result indicated that CEA yielded higher total phenolic content (170.98 ± 7.41 mg GAE/g extract) and total flavonoid content (3.91 ± 0.27 mg QE/g extract) than CE. Liquid chromatography–tandem mass spectrometry (LC/MS/MS) identified various phenolic and flavonoid compounds. CEA demonstrated stronger anti-oxidant (IC50 = 5.83 ± 0.11 μg/mL in the DPPH assay and 234.17 ± 4.01 mg AAE/g extract in the FRAP assay) compared to CE. Additionally, CEA exhibited anti-tyrosinase (IC50 = 9.51 ± 0.01 mg/mL), anti-glycation (IC50 = 62.32 ± 0.18 µg/mL), and anti-collagenase (IC50 = 0.43 ± 0.01 mg/mL), nitric oxide (NO) production inhibitory (IC50 = 62.68 μg/mL) activities, without causing toxicity to cells. A formulated lotion containing CEA (0.01–1.0% w/w) demonstrated stability over six heating–cooling cycles. A clinical study with 30 volunteers showed no skin irritation. The 1.0% w/w formulation (F4) improved skin hydration (+52.48%), reduced transepidermal water loss (−7.73%), and decreased melanin index (−9.10%) after 4 weeks of application. These findings suggest cocoa pod husk extract as a promising active ingredient for skin hydrating and lightening formulation. Nevertheless, further long-term studies are necessary to evaluate its efficacy in anti-aging treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Figure 1

14 pages, 1547 KiB  
Article
Transcriptome Analysis Reveals Molecular Mechanisms of Melanin Synthesis in Auricularia heimuer Under Different Fermentation Times
by Xiuge Yao, Jiechi Zhang, Chunge Sheng, Yan Guo, Chuang Han, Shuang Tian, Jianan Zhu, Xiaojia Zhang, Shuyang Zhou, Jianing Liu, Xiaodong Dai, Piqi Zhang, Bo Yin and Yinpeng Ma
Horticulturae 2025, 11(7), 817; https://doi.org/10.3390/horticulturae11070817 - 9 Jul 2025
Viewed by 352
Abstract
In this study, the molecular mechanism underlying melanin synthesis within the fermentation broth of Auricularia heimuer (A. heimuer) was explored. The absorbance at 500 nm, melanin yield, and tyrosinase activity in the fermentation broth were assessed across different fermentation durations. Mycelia [...] Read more.
In this study, the molecular mechanism underlying melanin synthesis within the fermentation broth of Auricularia heimuer (A. heimuer) was explored. The absorbance at 500 nm, melanin yield, and tyrosinase activity in the fermentation broth were assessed across different fermentation durations. Mycelia samples were gathered on the 4th (R1), 8th (R2), and 10th (R3) days of liquid fermentation for transcriptome sequencing. As fermentation progressed, the absorbance, melanin yield, and tyrosinase activity in the broth rose. A total of 5915 differentially expressed genes (DEGs) were detected, with 1136 DEGs between R2 and R1, 3717 between R3 and R1, and 2950 between R3 and R2. Gene Ontology (GO) analysis showed that DEGs were significantly enriched in oxidoreductase activity and ribosome structural constituent terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed significant enrichment of DEGs in ribosome and amino acid metabolism pathways. Key DEGs, including transcription factors, glycosidases, P450 enzymes, laccases, and glutamate dehydrogenase, were identified during melanin production in the fermentation broth. These DEGs may play crucial roles in melanin synthesis. This study offers a foundation for further exploring the melanin synthesis mechanism in A. heimuer fermentation broth. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

23 pages, 4204 KiB  
Article
Investigation of Bioactive Compounds Extracted from Verbena officinalis and Their Biological Effects in the Extraction by Four Butanol/Ethanol Solvent Combinations
by Dejan Stojković, Nikoleta Đorđevski, Mladen Rajaković, Biljana Filipović, Jelena Božunović, Stefani Bolevich, Gokhan Zengin, Sergey Bolevich, Uroš Gašić and Marina Soković
Pharmaceuticals 2025, 18(7), 1012; https://doi.org/10.3390/ph18071012 - 7 Jul 2025
Viewed by 440
Abstract
Background/Objectives: Verbena officinalis L. (common vervain) is a medicinal plant traditionally used and investigated in phytotherapy for its neuroprotective, antioxidant, and anti-inflammatory properties. This study aims to investigate the phytochemical diversity and biological activity of V. officinalis extracts prepared with different ratios [...] Read more.
Background/Objectives: Verbena officinalis L. (common vervain) is a medicinal plant traditionally used and investigated in phytotherapy for its neuroprotective, antioxidant, and anti-inflammatory properties. This study aims to investigate the phytochemical diversity and biological activity of V. officinalis extracts prepared with different ratios of butanol and ethanol. Methods: Aerial parts of V. officinalis were extracted using four solvent systems: 100% butanol (B1), 75:25 (BE7.5), 50:50 (BE5), and 25:75 (BE2.5) butanol:ethanol mixtures. Metabolite profiling was conducted using liquid chromatography–high-resolution tandem mass spectrometry (LC-HRMS/MS). Antioxidant activities were evaluated through six assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion-reducing antioxidant capacity (CUPRAC), ferric-reducing antioxidant power (FRAP), metal-chelating ability (MCA), and the phosphomolybdenum assay (PMA). Enzyme inhibition assays targeted acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, and α-amylase. Antibacterial activity against Pseudomonas aeruginosa was tested via microdilution, while dominant phytochemicals were evaluated for binding affinity through molecular docking. Results: Seventy-five compounds, including phenolic acids, flavonoids, iridoids, phenylethanoids, and xanthones, were identified. BE5 extract exhibited the highest total phenolic content and strongest antioxidant capacity, while BE2.5 demonstrated the greatest antibacterial and metal-chelating effects. All extracts showed comparable AChE inhibition, with BE5 achieving the strongest tyrosinase and α-amylase inhibition. Docking studies confirmed high binding affinities of luteolin glucuronides to human and bacterial target enzymes. Conclusions: Solvent composition markedly influenced the chemical and biological profiles of V. officinalis extracts. BE5 and BE2.5 emerged as promising systems for obtaining bioactive fractions with therapeutic potential. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

23 pages, 4407 KiB  
Article
Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts
by Nilofar Nilofar, Gokhan Zengin, Mehmet Veysi Cetiz, Evren Yildiztugay, Zoltán Cziáky, József Jeko, Claudio Ferrante, Tina Kostka, Tuba Esatbeyoglu and Stefano Dall’Acqua
Molecules 2025, 30(13), 2855; https://doi.org/10.3390/molecules30132855 - 4 Jul 2025
Viewed by 511
Abstract
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different [...] Read more.
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different in vitro assays were employed to support the results for antioxidant potential, such as DPPH, ABTS, FRAP, CUPRAC, metal chelation, and PBD, along with the measurement of total phenolic and flavonoid contents. Enzyme inhibition was investigated for cholinesterase (AChE and BChE), α-amylase, α-glucosidase, and tyrosinase enzymes. Additionally, the relative expression of NRF2, HMOX1, and YGS was evaluated by qPCR. LC-MS/MS analysis indicated the presence of some significant compounds, including apigenin, muscaroside, hyacinthacine A, B, and C, and luteolin. According to the results, the highest TPC and TFC were obtained with both extracts of the leaves, followed by the water extract (flower) and methanolic extract of the bulb. In contrast, the methanolic extract from the bulb exhibited the highest antioxidant potential using DPPH, ABTS, CUPRAC, and FRAP, followed by the extracts of leaves. In contrast, the leaf extracts had the highest values for the PBD assay and maximum chelation ability compared to other tested extracts. According to the enzyme inhibition studies, the methanolic extract from the bulb appeared to be the most potent inhibitor for all the tested enzymes, with the highest values obtained for AChE (1.96 ± 0.05), BChE (2.19 ± 0.33), α-amylase (0.56 ± 0.02), α-glucosidase (2.32 ± 0.01), and tyrosinase (57.19 ± 0.87). Interestingly, the water extract from the bulb did not inhibit most of the tested enzymes. The relative expression of NRF2 based on qPCR analysis was considerably greater in the flower methanol extract compared to the other extracts (p < 0.05). The relative expression of HMOX1 was stable in all the extracts, whereas YGS expression remained stable in all the treatments and had no statistical differences. The current results indicate that the components of M. armeniacum (leaves, flowers, and bulb) may be a useful source of natural bioactive compounds that are effective against oxidative stress-related conditions, including hyperglycemia, skin disorders, and neurodegenerative diseases. Complementary in silico approaches, including molecular docking, dynamics simulations, and transcription factor (TF) network analysis for NFE2L2, supported the experimental findings and suggested possible multi-target interactions for the selected compounds. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop