Extracts from Medicinal Plant: A Promising Source of New Bioactive Substances

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Phytochemistry".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 726

Special Issue Editors


E-Mail Website
Guest Editor
Microbiology and Antimicrobial Agents Team, Laboratory of Plant Biotechnology, Ecology and Valorization of Ecosystems (LB2VE/URL-CNRST n°10), Faculty of Sciences, Chouaïb Doukkali University, El Jadida 24000, Morocco
Interests: microbial biodiversity; secondary metabolites; extreme environments; plant growth; soil fertility; environmental challenges

E-Mail Website
Guest Editor
Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
Interests: phytoremediation; bioremediation; heavy metals; environmental pollution; restoration; assisted phytoremediation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

For centuries, bioactive extracts from medicinal plants have been a cornerstone of traditional remedies, with their origins tracing back to the dawn of recorded history. These plant-derived compounds display remarkable structural diversity and distinctive pharmacological properties, shaped by natural selection and evolutionary mechanisms that have defined their usefulness over thousands of years. Such substances have been pivotal in the discovery of new drugs, often serving as foundational templates for pharmaceutical research. Through subsequent synthetic modifications, their side effects are minimized and their bioavailability is enhanced. Consequently, plant-sourced bioactive extracts have played a vital role in advancing modern phytotherapy and, more broadly, contemporary pharmacological practices.

The utilization of bioactive extracts as a basis for drug development opens new avenues for pharmaceutical discovery methods that are eco-friendly, economical, and highly effective.

Nonetheless, the investigation of new bioactive extracts demands considerable time and resource investments, owing to the significant efforts required for their isolation and characterization.

Dr. Ahmed Nafis
Dr. Anas Raklami
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • medicinal plants
  • bioactive metabolites
  • biological activities
  • extraction, isolation, and structural characterization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 2588 KiB  
Article
Phytochemical Analysis and Therapeutic Potential of Tuberaria lignosa (Sweet) Samp. Aqueous Extract in Skin Injuries
by Manuel González-Vázquez, Ana Quílez Guerrero, Mónica Zuzarte, Lígia Salgueiro, Jorge Alves-Silva, María Luisa González-Rodríguez and Rocío De la Puerta
Plants 2025, 14(15), 2299; https://doi.org/10.3390/plants14152299 - 25 Jul 2025
Viewed by 419
Abstract
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in [...] Read more.
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in vitro biological activities. The phenolic composition was determined using UHPLC-HRMS/MS, HPLC-DAD, and quantitative colorimetric assays. Antioxidant activity was assessed against synthetic free radicals, reactive oxygen and nitrogen species, transition metals, and pro-oxidant enzymes. Enzymatic inhibition of tyrosinase, hyaluronidase, collagenase, and elastase were evaluated using in vitro assays. Cytocompatibility was tested on human keratinocytes and NIH/3T3 fibroblasts using MTT and resazurin assays, respectively, while wound healing was evaluated on NIH/3T3 fibroblasts using the scratch assay. Antifungal activity was investigated against several Candida and dermatophyte species, while antibiofilm activity was tested against Epidermophyton floccosum. The extract was found to be rich in phenolic compounds, accounting for nearly 45% of its dry weight. These included flavonoids, phenolic acids, and proanthocyanidins, with ellagitannins (punicalagin) being the predominant group. The extract demonstrated potent antioxidant, anti-tyrosinase, anti-collagenase, anti-elastase, and antidermatophytic activities, including fungistatic, fungicidal, and antibiofilm effects. These findings highlight the potential of T. lignosa as a valuable and underexplored source of bioactive phenolic compounds with strong potential for the development of innovative approaches for skin care and therapy. Full article
Show Figures

Graphical abstract

Back to TopTop