Inhibition of Tyrosinase and Melanogenesis by a White Mulberry Fruit Extract
Abstract
1. Introduction
2. Results
2.1. Free Radical Scavenging Activity and Phenolic Content of the MCE
2.2. Phytochemical Composition of MCE
2.3. Effect of the MCE on Cell Viability and the Effects of UVB Radiation on Cell Viability, Tyrosinase Activity, and Melanin Content
2.4. Effect of the MCE on UVB Radiation-Induced Melanogenesis in B16F10 Cells
2.5. Effect of the MCE on UVB Radiation-Induced Melanogenesis in Zebrafish Embryos
3. Discussion
4. Materials and Methods
4.1. Preparation of MCE
4.2. Assessment of Antioxidant Activity
4.2.1. DPPH Radical Scavenging Assay
4.2.2. ABTS Radical Scavenging Assay
4.2.3. FRAP Assay
4.3. Determination of Total Phenolic Content
4.4. Predominant Phytochemical Fingerprint Analysis
4.5. UVB Irradiation
4.6. Cell Culture and Treatment
4.7. Cell Viability
4.8. Cellular Tyrosinase Activity
4.9. Cellular Melanin Content
4.10. Visualization of Cellular Melanin
4.11. Morphological Analysis of Cells Containing Melanin
4.12. Source and Maintenance of Parental Zebrafish
4.13. Zebrafish Breeding and Embryo Harvesting
4.14. Semi-Quantitative Evaluation of Melanin Distribution in Zebrafish Embryos
4.15. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
- Grimes, P.E. Management of hyperpigmentation in darker racial ethnic groups. Semin. Cutan. Med. Surg. 2009, 28, 77–85. [Google Scholar] [CrossRef]
- Solano, F. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications-Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules. Int. J. Mol. Sci. 2017, 18, 1561. [Google Scholar] [CrossRef]
- Costin, G.E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 2007, 21, 976–994. [Google Scholar] [CrossRef] [PubMed]
- Ortonne, J.P.; Bissett, D.L. Latest insights into skin hyperpigmentation. J. Investig. Dermatol. Symp. Proc. 2008, 13, 10–14. [Google Scholar] [CrossRef]
- Umar, S.A.; Tasduq, S.A. Ozone Layer Depletion and Emerging Public Health Concerns—An Update on Epidemiological Perspective of the Ambivalent Effects of Ultraviolet Radiation Exposure. Front. Oncol. 2022, 12, 866733. [Google Scholar] [CrossRef] [PubMed]
- Del Bino, S.; Duval, C.; Bernerd, F. Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact. Int. J. Mol. Sci. 2018, 19, 2668. [Google Scholar] [CrossRef] [PubMed]
- Neale, P.J.; Hylander, S.; Banaszak, A.T.; Häder, D.P.; Rose, K.C.; Vione, D.; Wängberg, S.; Jansen, M.A.K.; Busquets, R.; Andersen, M.P.S.; et al. Environmental consequences of interacting effects of changes in stratospheric ozone, ultraviolet radiation, and climate: UNEP Environmental Effects Assessment Panel, Update 2024. Photochem. Photobiol. Sci. 2025, 24, 357–392. [Google Scholar] [CrossRef]
- Sample, A.; He, Y.Y. Mechanisms and prevention of UV-induced melanoma. Photodermatol. Photoimmunol. Photomed. 2018, 34, 13–24. [Google Scholar] [CrossRef]
- Levy, C.; Khaled, M.; Fisher, D.E. MITF: Master regulator of melanocyte development and melanoma oncogene. Trends. Mol. Med. 2006, 12, 406–414. [Google Scholar] [CrossRef]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment. Cell. Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Fisher, D.E. MITF and UV responses in skin: From pigmentation to addiction. Pigment. Cell. Melanoma Res. 2019, 32, 224–236. [Google Scholar] [CrossRef]
- Chiarelli-Neto, O.; Ferreira, A.S.; Martins, W.K.; Pavani, C.; Severino, D.; Faiao-Flores, F.; Maria-Engler, S.S.; Aliprandini, E.; Martinez, G.R.; Di Mascio, P.; et al. Melanin photosensitization and the effect of visible light on epithelial cells. PLoS ONE 2014, 9, e113266. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.T. Treatment of melasma using kojic acid in a gel containing hydroquinone and glycolic acid. Dermatol. Surg. 1999, 25, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Shivaram, K.; Edwards, K.; Mohammad, T. An update on the safety of hydroquinone. Arch. Dermatol. Res. 2024, 316, 378. [Google Scholar] [CrossRef]
- Chan, E.W.; Lye, P.Y.; Wong, S.K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med. 2016, 14, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J. Biol. Sci. 2021, 28, 3909–3921. [Google Scholar] [CrossRef]
- Chang, L.-W.; Juang, L.-J.; Wang, B.-S.; Wang, M.-Y.; Tai, H.-M.; Hung, W.-J.; Chen, Y.-J.; Huang, M.-H. Antioxidant and antityrosinase activity of mulberry (Morus alba L.) twigs and root bark. Food Chem. Toxicol. 2011, 49, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, X.; Li, J.; Chen, Z.; Zhou, A.; Ye, L. Oxyresveratrol from mulberry (Morus alba L.) ameliorates post-inflammatory hyperpigmentation in vitro by anti-melanogenesis, inhibiting melanosome transfer, and providing photoprotection. J. Funct. Foods 2024, 122, 106557. [Google Scholar] [CrossRef]
- Snitmatjaro, N.; Luanratana, O. A new source of whitening agent from a Thai Mulberry plant and its betulinic acid quantitation. Nat. Prod. Res. 2008, 22, 727–734. [Google Scholar] [CrossRef]
- Li, H.X.; Park, J.U.; Su, X.D.; Kim, K.T.; Kang, J.S.; Kim, Y.R.; Kim, Y.H.; Yang, S.Y. Identification of Anti-Melanogenesis Constituents from Morus alba L. Leaves. Molecules 2018, 23, 2559. [Google Scholar] [CrossRef] [PubMed]
- Park, K.T.; Kim, J.K.; Hwang, D.; Yoo, Y.; Lim, Y.H. Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation. Food Chem. Toxicol. 2011, 49, 3038–3045. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, X.-M.; Zhang, J.; Zhang, Y.-Q. An Efficient Preparation of Mulberroside A from the Branch Bark of Mulberry and Its Effect on the Inhibition of Tyrosinase Activity. PLoS ONE 2014, 9, e109396. [Google Scholar] [CrossRef]
- Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A.L.; Aligiannis, N. Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus alba Wood. Molecules 2017, 22, 514. [Google Scholar] [CrossRef]
- Cai, Z.; Zhou, S.; Zhang, T.; Du, Q.; Tu, M.; Wu, Z.; Zeng, X.; Dang, Y.; Liu, Z.; Pan, D.; et al. Synergistic enhancement of bio-yogurt properties by Lactiplantibacillus plantarum NUC08 and mulberry fruit extract. Food Chem. 2025, 468, 142447. [Google Scholar] [CrossRef]
- Vo, T.P.; Pham, T.V.; Weina, K.; Tran, T.N.H.; Vo, L.T.V.; Nguyen, P.T.; Bui, T.L.H.; Phan, T.H.; Nguyen, D.Q. Green extraction of phenolics and flavonoids from black mulberry fruit using natural deep eutectic solvents: Optimization and surface morphology. BMC Chem. 2023, 17, 119. [Google Scholar] [CrossRef] [PubMed]
- Rodboon, T.; Puchadapirom, P.; Okada, S.; Suwannalert, P. Oxyresveratrol from Artocarpus lakoocha Roxb. Inhibit Melanogenesis in B16 Melanoma Cells through the Role of Cellular Oxidants. Walailak J Sci. Tech. 2015, 13, 261–270. [Google Scholar]
- Karunarathne, W.; Molagoda, I.M.N.; Lee, K.T.; Choi, Y.H.; Yu, S.M.; Kang, C.H.; Kim, G.Y. Protective Effect of Anthocyanin-Enriched Polyphenols from Hibiscus syriacus L. (Malvaceae) against Ultraviolet B-Induced Damage. Antioxidants 2021, 10, 584. [Google Scholar] [CrossRef]
- Du, Q.; Zheng, J.; Xu, Y. Composition of anthocyanins in mulberry and their antioxidant activity. J. Food Compos. Anal. 2008, 21, 390–395. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, S.Y.; Kim, H.; Hwang, J.S.; Lee, B.G.; Gao, J.J.; Kim, S.Y. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol. Pharm. Bull. 2002, 25, 1045–1048. [Google Scholar] [CrossRef]
- Kanteev, M.; Goldfeder, M.; Fishman, A. Structure-function correlations in tyrosinases. Protein Sci. 2015, 24, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-H.; Shin, H.-J. Anti-Melanogenesis Effect of Quercetin. Cosmetics 2016, 3, 18. [Google Scholar] [CrossRef]
- Oh, H.-N.; Park, D.-H.; Park, J.-Y.; Song, S.-Y.; Lee, S.-H.; Yoon, G.; Moon, H.-S.; Oh, D.-S.; Rhee, S.-H.; Im, E.-O.; et al. Tyrosinase Inhibition Antioxidant Effect and Cytotoxicity Studies of the Extracts of Cudrania tricuspidata Fruit Standardized in Chlorogenic Acid. Molecules 2019, 24, 3266. [Google Scholar] [CrossRef]
- Li, H.R.; Habasi, M.; Xie, L.Z.; Aisa, H.A. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells. Molecules 2014, 19, 12940–12948. [Google Scholar] [CrossRef]
- Sun, W.; Chen, X.; Nan, X.; Zhang, J.; Dong, L.; Ji, W.; Sheng, G.; Zhou, Q. Inhibition of persimmon tannin extract on guinea pig skin pigmentation. J. Cosmet. Dermatol. 2021, 20, 2648–2656. [Google Scholar] [CrossRef]
- Serre, C.; Busuttil, V.; Botto, J.M. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci. 2018, 40, 328–347. [Google Scholar] [CrossRef]
- Akihisa, T.; Kawashima, K.; Orido, M.; Akazawa, H.; Matsumoto, M.; Yamamoto, A.; Ogihara, E.; Fukatsu, M.; Tokuda, H.; Fuji, J. Antioxidative and melanogenesis-inhibitory activities of caffeoylquinic acids and other compounds from moxa. Chem. Biodivers. 2013, 10, 313–327. [Google Scholar] [CrossRef]
- Li, F.; Zhang, B.; Chen, G.; Fu, X. Analysis of solvent effects on polyphenols profile, antiproliferative and antioxidant activities of mulberry (Morus alba L.) extracts. Int. J. Food Sci. Technol. 2017, 52, 1690–1698. [Google Scholar] [CrossRef]
- Rafiq, R.A.; Quadri, A.; Nazir, L.A.; Peerzada, K.; Ganai, B.A.; Tasduq, S.A. A Potent Inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) Kinase Signalling, Quercetin (3, 3′, 4′, 5, 7-Pentahydroxyflavone) Promotes Cell Death in Ultraviolet (UV)-B-Irradiated B16F10 Melanoma Cells. PLoS ONE 2015, 10, e0131253. [Google Scholar] [CrossRef] [PubMed]
Parameter | Assay | Unfiltered MCE | Filtered MCE | p |
---|---|---|---|---|
Free radical scavenging activity | ABTS (mg Trolox/g sample) | 32.00 ± 0.49 | 32.49 ± 0.16 | 0.13 |
DPPH (mg vitamin C/g sample) | 26.21 ± 0.55 | 25.45 ± 2.23 | 0.53 | |
FRAP (mmol Fe2SO4·7H2O/g sample) | 45.66 ± 1.52 | 43.42 ± 2.33 | 0.37 | |
Phenolic content | Folin–Ciocalteu (mg gallic acid/g sample) | 2.20 ± 0.08 | 2.26 ± 0.13 | 0.46 |
Active Ingredient | Reference Compound | MCE | ||||
---|---|---|---|---|---|---|
Retention Time (min) | AUC | μg/mL | Retention Time (min) | AUC | μg/mL | |
Rutin | 28.350 | 602,844 | 0.78 | 27.888 | 323,240 | 0.42 |
Mulberroside A | 13.711 | 272,441 | 400.00 | 13.825 | 55,027 | 80.80 |
Chlorogenic acid | 15.147 | 669,506 | 244.00 | 15.321 | 1,349,360 | 491.77 |
Time (min) | Dissolvent A (%) | Dissolvent B (%) |
---|---|---|
0–20 | 95 | 5 |
20–30 | 85 | 15 |
30–35 | 80 | 20 |
35–40 | 45 | 55 |
Criteria | Score |
---|---|
Bipolar dendrites, spindle-shaped cells 1–50 μm in size, <50% of cytoplasm pigmented, and low distribution of melanin. | 1 |
Bipolar dendrites, spindle-shaped cells 1–50 μm in size, ≥50% of cytoplasm pigmented, and high distribution of melanin. | 2 |
Multipolar dendrites without branches, size: >51 μm, and high distribution of melanin in the cytoplasm. | 3 |
Multipolar dendrites with branches, size: >51 μm, and high distribution and condensed packing of melanin in the cytoplasm. | 4 |
Criteria | Score |
---|---|
Gray-white eye color and single melanocytes (disconnected), round in shape. | 1 |
Pale brown or red eye color and groups of melanocytes (2–3 connected cells), globular/bipolar in shape. | 2 |
Brown or black eye color and clusters of melanocytes (3–5 connected cells) with expanded dendritic branches. | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasawang, N.; Sutjarit, N.; Sitthipunya, A.; Suwannalert, P.; Monsuwan, W.; Charoenchon, N. Inhibition of Tyrosinase and Melanogenesis by a White Mulberry Fruit Extract. Int. J. Mol. Sci. 2025, 26, 7589. https://doi.org/10.3390/ijms26157589
Prasawang N, Sutjarit N, Sitthipunya A, Suwannalert P, Monsuwan W, Charoenchon N. Inhibition of Tyrosinase and Melanogenesis by a White Mulberry Fruit Extract. International Journal of Molecular Sciences. 2025; 26(15):7589. https://doi.org/10.3390/ijms26157589
Chicago/Turabian StylePrasawang, Nuttawadee, Nareerat Sutjarit, Athisri Sitthipunya, Prasit Suwannalert, Wutarak Monsuwan, and Nisamanee Charoenchon. 2025. "Inhibition of Tyrosinase and Melanogenesis by a White Mulberry Fruit Extract" International Journal of Molecular Sciences 26, no. 15: 7589. https://doi.org/10.3390/ijms26157589
APA StylePrasawang, N., Sutjarit, N., Sitthipunya, A., Suwannalert, P., Monsuwan, W., & Charoenchon, N. (2025). Inhibition of Tyrosinase and Melanogenesis by a White Mulberry Fruit Extract. International Journal of Molecular Sciences, 26(15), 7589. https://doi.org/10.3390/ijms26157589