In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts
Abstract
1. Introduction
2. Results
2.1. Extraction and Phytochemical Screening
2.2. Antioxidant Activities
2.3. Anti-Elastase Activity
2.4. LC-MS
2.5. Screening Phytocompounds for Antiaging Bioactivity
2.6. Target Compound Pharmacokinetics Characteristics
2.7. Toxicity Assessment
2.8. Analysis of Docking Elastase
3. Discussion
4. Materials and Methods
4.1. Plant Samples and Chemicals
4.2. Sample Preparation and Ultrasound-Assisted Extraction (UAE)
4.3. Phytochemical Screening
4.4. TPC Assay
4.5. TFC Assay
4.6. DPPH Antioxidant Assay
4.7. FRAP Assay
4.8. Anti-Elastase Assay
4.9. LC-MS Study
4.10. Preparation of Protein and Ligand Structures
4.11. Target Protein Structure
4.12. Prediction of Pharmacokinetics and Toxicity of Target Compound
4.13. Molecular Docking Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandes, F.V.; Segheto, L.; Santos, B.C.S.; Del-Vechio-Vieira, G.; Yamamoto, C.H.; Araújo, A.L.S.M.; Rodarte, M.P.; de Sousa, O.V. Bioactivities of Extracts from Eugenia uniflora L. Branches. J. Chem. Pharm. Res. 2016, 8, 1054–1062. [Google Scholar]
- Gallucci, S.; Neto, A.P.; Porto, C.; Barbizan, D.; Costa, I.; Marques, K.; Benevides, P.; Figueiredo, R. Essential Oil of Eugenia uniflora L.: An Industrial Perfumery Approach. J. Essent. Oil Res. 2010, 22, 176–179. [Google Scholar] [CrossRef]
- Marin, R.; Apel, M.A.; Limberger, R.P.; Raseira, M.C.B.; Pereira, J.F.M.; Zuanazzi, J.Â.S.; Henriques, A.T. Volatile Components and Antioxidant Activity from Some Myrtaceous Fruits Cultivated in Southern Brazil. Lat. Am. J. Pharm. 2008, 27, 172–177. [Google Scholar]
- Denardin, C.C.; Hirsch, G.E.; Da Rocha, R.F.; Vizzotto, M.; Henriques, A.T.; Moreira, J.C.F.; Guma, F.T.C.R.; Emanuelli, T. Antioxidant Capacity and Bioactive Compounds of Four Brazilian Native Fruits. J. Food Drug Anal. 2015, 23, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.S.; Damiani, C.; da Cunha, M.C.; Carvalho, E.E.N.; Boas, E.V.d.B.V. Volatile Profiling of Pitanga Fruit (Eugenia uniflora L.) at Different Ripening Stages Using Solid-Phase Microextraction and Mass Spectrometry Coupled with Gas Chromatography. Sci. Hortic. 2019, 250, 366–370. [Google Scholar] [CrossRef]
- Ramalho, R.R.F.; Barbosa, J.M.G.; Ferri, P.H.; Santos, S.d.C. Variability of Polyphenols and Volatiles during Fruit Development of Three Pitanga (Eugenia uniflora L.) Bio-types. Food Res. Int. 2019, 119, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Celli, G.B.; Pereira-Netto, A.B.; Beta, T. Comparative Analysis of Total Phenolic Content, Antioxidant Activity, and Flavonoids Profile of Fruits from Two Varieties of Brazilian Cherry (Eugenia uniflora L.) throughout the Fruit Developmental Stages. Food Res. Int. 2011, 44, 2442–2451. [Google Scholar] [CrossRef]
- Moreira, L.C.; de Ávila, R.I.; Veloso, D.F.M.C.; Pedrosa, T.N.; Lima, E.S.; do Couto, R.O.; Lima, E.M.; Batista, A.C.; de Paula, J.R.; Valadares, M.C. In Vitro Safety and Efficacy Evaluations of a Complex Botanical Mixture of Eugenia dysenterica DC. (Myrtaceae): Prospects for Developing a New Dermocosmetic Product. Toxicol. In Vitro 2017, 45, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.F.; Jesus, T.I.; Lopes, B.R.P.; Angolini, C.F.F.; Montagnolli, A.; Gomes, L.d.P.; Pereira, G.S.; Ruiz, A.L.T.G.; Carvalho, J.E.; Eberlin, M.N.; et al. Eugenia aurata and Eugenia punicifolia HBK Inhibit Inflammatory Response by Reducing Neutrophil Adhesion, Degranulation and NET Release. BMC Complement. Altern. Med. 2016, 16, 403. [Google Scholar] [CrossRef] [PubMed]
- Infante, J.; Rosalen, P.L.; Lazarini, J.G.; Franchin, M.; De Alencar, S.M. Antioxidant and Anti-Inflammatory Activities of Unexplored Brazilian Native Fruits. PLoS ONE 2016, 11, e0152974. [Google Scholar] [CrossRef] [PubMed]
- Pérez Gutiérrez, R.M.; Martínez Jerónimo, F.F.; Contreras Soto, J.G.; Muñiz Ramírez, A.; Estrella Mendoza, M.F. Optimization of Ultrasonic-Assisted Extraction of Polyphenols from the Polyherbal Formulation of Cinnamomum Verum, Origanum Majorana, and Origanum Vulgare and Their Anti-Diabetic Capacity in Zebrafish (Danio rerio). Heliyon 2022, 8, e08682. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular Docking as a Tool for the Discovery of Molecular Targets of Nutraceuticals in Diseases Management. Sci. Rep. 2023, 13, 13398. [Google Scholar] [CrossRef] [PubMed]
- Urakami, M.; Ano, R.; Kimura, Y.; Shima, M.; Matsuno, R.; Ueno, T.; Akamatsu, M. Relationship between Structure and Permeability of Tryptophan Derivatives Across Human Intestinal Epithelial (Caco-2) Cells. Z. Fur Naturforschung Sect. C-A J. Biosci. 2003, 58, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Yamazaki, M. Role of P-Glycoprotein in Pharmacokinetics Clinical Implications. Clin. Pharmacokinet. 2003, 1, 59–98. [Google Scholar] [CrossRef] [PubMed]
- Fromm, M.F. Importance of P-Glycoprotein at Blood-Tissue Barriers. Trends Pharmacol. Sci. 2004, 25, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.P.; Chen, C.C.; Huang, C.W.; Chang, Y.C. Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability. Molecules 2018, 23, 911. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Huang, S.; Peng, L.; Yang, L.; Zhang, G.; Liu, T.; Yan, F.; Peng, X. The Nasal–Brain Drug Delivery Route: Mechanisms and Applications to Central Nervous System Diseases. MedComm 2025, 6, e70213. [Google Scholar] [CrossRef] [PubMed]
- Shaker, B.; Lee, J.; Lee, Y.; Yu, M.S.; Lee, H.M.; Lee, E.; Kang, H.C.; Oh, K.S.; Kim, H.W.; Na, D. A Machine Learning-Based Quantitative Model (LogBB_Pred) to Predict the Blood–Brain Barrier Permeability (LogBB Value) of Drug Compounds. Bioinformatics 2023, 39, btad577. [Google Scholar] [CrossRef] [PubMed]
- Pore, S.; Roy, K. Insights into Pharmacokinetic Properties for Exposure Chemicals: Predictive Modelling of Human Plasma Fraction Unbound (Fu) and Hepatocyte Intrinsic Clearance (Clint) Data Using Machine Learning. Digit. Discov. 2024, 3, 1852–1877. [Google Scholar] [CrossRef]
- Klimoszek, D.; Jeleń, M.; Dołowy, M.; Morak-Młodawska, B. Study of the Lipophilicity and ADMET Parameters of New Anticancer Diquinothiazines with Pharmacophore Substituents. Pharmaceuticals 2024, 17, 725. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Unadkat, J.D. Role of the Breast Cancer Resistance Protein (BCRP/ABCG2) in Drug Transport—An Update. AAPS J. 2015, 17, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Yusmiati, Y.; Muliaty, D. The Pharmacogenetics of Cytochrome P450 2C19 Enzymes—Effects on Clopidogrel and Proton Pump Inhibitors. Indones. Biomed. J. 2014, 6, 33. [Google Scholar] [CrossRef]
- Roskoski, R. Modulation of Enzyme Activity Regulation By Covalent Modification; Academic Press: New Orleans, LA, USA, 2007. [Google Scholar]
- Alam, K.; Crowe, A.; Wang, X.; Zhang, P.; Ding, K.; Li, L.; Yue, W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int. J. Mol. Sci. 2018, 19, 855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wei, C.; Hop, C.E.C.A.; Wright, M.R.; Hu, M.; Lai, Y.; Khojasteh, S.C.; Humphreys, W.G. Intestinal Excretion, Intestinal Recirculation, and Renal Tubule Reabsorption Are Underappreciated Mechanisms That Drive the Distribution and Pharmacokinetic Behavior of Small Molecule Drugs. J. Med. Chem. 2021, 64, 7045–7059. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Bousquet-Mélou, A. Plasma Terminal Half-Life. J. Vet. Pharmacol. Ther. 2004, 27, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Lepist, E.I.; Zhang, X.; Hao, J.; Huang, J.; Kosaka, A.; Birkus, G.; Murray, B.P.; Bannister, R.; Cihlar, T.; Huang, Y.; et al. Contribution of the Organic Anion Transporter OAT2 to the Renal Active Tubular Secretion of Creatinine and Mechanism for Serum Creatinine Elevations Caused by Cobicistat. Kidney Int. 2014, 86, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Demetillo, M.T.; Nuñeza, O.M.; Uy, M.M.; Senarath, W.T.P.S.K. Phytochemical Screening, Antioxidant and Antidiabetic Evaluation of Leaf Extracts from Diospyros blancoi A. DC. Int. J. Pharm. Sci. Res. 2019, 10, 3951–3956. [Google Scholar] [CrossRef]
- Arianti, V.; Elya, B.; Iskandarsyah. Anti-Elastase, Antioxidant, Total Phenolic and Total Flavonoid Content of Wuru Ketek (Myrica Javanica Reinw. Ex BL.) from Tangkuban Perahu, West Java-Indonesia. Pharmacogn. J. 2020, 12, 293–297. [Google Scholar] [CrossRef]
- Suwandy, E.; Elya, B.; Artanti, N.; Hanafi, M. In Vitro Study of Anti-Elastase and Antioxidant Activities on Mabolo (Diospyros blancoi) Leaf and Stem Bark Extracts. Int. J. Agric. Biol. 2023, 30, 113–118. [Google Scholar] [CrossRef]
- Speisky, H.; Shahidi, F.; De Camargo, A.C.; Fuentes, J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants 2022, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 882458. [Google Scholar] [CrossRef] [PubMed]
- Girardelo, J.R.; Munari, E.L.; Dallorsoleta, J.C.S.; Cechinel, G.; Goetten, A.L.F.; Sales, L.R.; Reginatto, F.H.; Chaves, V.C.; Smaniotto, F.A.; Somacal, S.; et al. Bioactive Compounds, Antioxidant Capacity and Antitumoral Activity of Ethanolic Extracts from Fruits and Seeds of Eugenia involucrata DC. Food Res. Int. 2020, 137, 109615. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.K.; Cervera-Mata, A.; Chakradhari, S.; Patel, K.S.; Towett, E.K.; Quesada-Granados, J.J.; Martín-Ramos, P.; Rufián-Henares, J.A. Seeds as Potential Sources of Phenolic Compounds and Minerals for the Indian Population. Molecules 2022, 27, 3184. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Rhea, E.M.; Reed, M.J.; Erickson, M.A. The Penetration of Therapeutics across the Blood-Brain Barrier: Classic Case Studies and Clinical Implications. Cell Rep. Med. 2024, 5, 101760. [Google Scholar] [CrossRef] [PubMed]
- Brás, N.F.; Gonçalves, R.; Mateus, N.; Fernandes, P.A.; Ramos, M.J.; De Freitas, V. Inhibition of Pancreatic Elastase by Polyphenolic Compounds. J. Agric. Food Chem. 2010, 58, 10668–10676. [Google Scholar] [CrossRef] [PubMed]
- Hussin, M.; Hamid, A.A.; Abas, F.; Ramli, N.S.; Jaafar, A.H.; Roowi, S.; Majid, N.A.; Dek, M.S.P. NMR-Based Metabolomics Profiling for Radical Scavenging and Anti-Aging Properties of Selected Herbs. Molecules 2019, 24, 3208. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, N.S.G.; Colomeu, T.C.; de Figueiredo, D.; Carvalho, V.d.C.; Cazarin, C.B.B.; Prado, M.A.; Meletti, L.M.M.; Zollner, R.d.L. Identification and Antioxidant Activity of the Extracts of Eugenia uniflora L. Characterization of the Anti-Inflammatory Properties of Aqueous Extract on Diabetes Expression in an Experimental Model of Spontaneous Type 1 Diabetes (NOD Mice). Antioxidants 2015, 4, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, F.; Dianat, M.; Badavi, M.; Radan, M.; Mard, S.A. Gallic Acid Suppresses Inflammation and Oxidative Stress through Modulating Nrf2-HO-1-NF-ΚB Signaling Pathways in Elastase-Induced Emphysema in Rats. Environ. Sci. Pollut. Res. 2021, 28, 56822–56834. [Google Scholar] [CrossRef] [PubMed]
- Putri, I.R.; Handayani, R.; Elya, B. Anti-Elastase Activity of Rumput Teki (Cyperus rotundus L.) Rhizome Extract. Pharmacogn. J. 2019, 11, 754–758. [Google Scholar] [CrossRef]
- Bode, W.; Meyer, E.; Powers, J.C. Human Leukocyte and Porcine Pancreatic Elastase: X-Ray Crystal Structures, Mechanism, Substrate Specificity, and Mechanism-Based Inhibitorst. Biochemistry 1989, 28, 1951–1963. [Google Scholar] [CrossRef] [PubMed]
- Aati, H.Y.; Attia, H.; Babtin, R.; Al-Qahtani, N.; Wanner, J. Headspace Solid Phase Micro-Extraction of Volatile Constituents Produced from Saudi Ruta Chalepensis and Molecular Docking Study of Potential Antioxidant Activity. Molecules 2023, 28, 1891. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M. Review of Serine Protease Inhibitors: Development and Applications. Bull. Pharm. Sci. Assiut Univ. 2023, 46, 835–854. [Google Scholar] [CrossRef]
- Su, Y.; Hu, K.; Li, D.; Guo, H.; Sun, L.; Xie, Z. Microbial-Transferred Metabolites and Improvement of Biological Activities of Green Tea Catechins by Human Gut Microbiota. Foods 2024, 13, 792. [Google Scholar] [CrossRef] [PubMed]
- Klebe, G. Inhibitors of Hydrolases with an Acyl–Enzyme Intermediate. In Drug Design; Springer: Berlin/Heidelberg, Germany, 2013; pp. 493–532. [Google Scholar]
- Stielow, M.; Witczyńska, A.; Kubryń, N.; Fijałkowski, Ł.; Nowaczyk, J.; Nowaczyk, A. The Bioavailability of Drugs—The Current State of Knowledge. Molecules 2023, 28, 8038. [Google Scholar] [CrossRef] [PubMed]
- Wenas, D.M.; Elya, B.; Sutriyo; Setiawan, H. Evaluation of Phytochemical and Biological Studies of Ultrasound-Assisted Extraction of Eugenia uniflora Seed Extract for Antioxidant and Anti-Tyrosinase Activity. Int. J. Agric. Biol. 2024, 33, 330203. [Google Scholar] [CrossRef]
- Lee, S.; Choi, H.; Park, Y.; Jung, H.J.; Ullah, S.; Choi, I.; Kang, D.; Park, C.; Ryu, I.Y.; Jeong, Y.; et al. Urolithin and Reduced Urolithin Derivatives as Potent Inhibitors of Tyrosinase and Melanogenesis: Importance of the 4-Substituted Resorcinol Moiety. Int. J. Mol. Sci. 2021, 22, 5616. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, F.; Kang, J.; Xie, S.; Qin, X.; Gao, J.; Chen, Z.; Cao, W.; Zheng, H.; Song, W. In Vitro In Silico Screening Strategy and Mechanism of Novel Tyrosinase Inhibitory Peptides from Nacre of Hyriopsis Cumingii. Mar. Drugs 2024, 22, 420. [Google Scholar] [CrossRef] [PubMed]
- Madushanka, A.; Moura, R.T.; Verma, N.; Kraka, E. Quantum Mechanical Assessment of Protein–Ligand Hydrogen Bond Strength Patterns: Insights from Semiempirical Tight-Binding and Local Vibrational Mode Theory. Int. J. Mol. Sci. 2023, 24, 6311. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, R.; Perbandt, M.; Rehders, D.; Ziegelmüller, P.; Piganeau, N.; Hahn, U.; Betzel, C.; De Los Ángeles Chávez, M.; Redecke, L. Three-Dimensional Structure of a Kunitz-Type Inhibitor in Complex with an Elastase-like Enzyme. J. Biol. Chem. 2015, 290, 14154–14165. [Google Scholar] [CrossRef] [PubMed]
- Wenas, D.M.; Aliya, L.S.; Anjani, W.M. Formula of Yellow Kepok Banana (Musa acuminata × Musa balbisiana) Corm Extracts As Antiinflamation. Bul. Penelit. Tanam. Rempah Dan Obat 2020, 30, 100–110. [Google Scholar] [CrossRef]
- Sulistyowati; Elya, B.; Iswandana, R.; Nur, S. Phytocompounds and in Vitro Antiaging Activity of Ethanolic Extract and Fractions of Rubus Fraxinifolius Poir. Leaves. J. Pharm. Pharmacogn. Res. 2023, 11, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Wenas, D.M.; Elya, B.; Sutriyo; Setiawan, H. Antioxidant and Tyrosinase Inhibitory Activities of Unripe and Ripe Fruit and Seed Extracts of Eugenia uniflora. Trop. J. Nat. Prod. Res. 2024, 8, 7734–7739. [Google Scholar] [CrossRef]
- Windarsih, A.; Suratno; Dwi Warmiko, H.; Wheni Indrianingsih, A.; Rohman, A.; Ihya Ulumuddin, Y. Untargeted Metabolomics and Proteomics Approach Using Liquid Chromatography-Orbitrap High Resolution Mass Spectrometry to Detect Pork Adulteration in Pangasius Hypopthalmus Meat. Food Chem. 2022, 386, 132856. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Schofield, C.J.; Wilmouth, R.C. Structural Analyses on Intermediates in Serine Protease Catalysis. J. Biol. Chem. 2006, 281, 24024–24035. [Google Scholar] [CrossRef] [PubMed]
- Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal Structure of Agaricus Bisporus Mushroom Tyrosinase: Identity of the Tetramer Subunits and Interaction with Tropolone. Biochemistry 2011, 50, 5477–5486. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed]
Sample | B | F | S |
---|---|---|---|
Terpenoids | ++ | + | − |
Alkaloids | − | + | + |
Tannins | + | + | + |
Flavonoids | + | + | + |
Saponins | − | + | ++ |
Sample | TPC (mg GAE/g Extract) * | TFC (mg QE/g Extract) * |
---|---|---|
Fruit Extract | 4.35 ± 0.39 | 0.65 ± 0.01 |
Seed Extract | 11.55 ± 2.44 | 2.72 ± 0.04 |
Bark Extract | 3.86 ± 0.10 | 0.99 ± 0.02 |
Sample | DPPH | FRAP |
---|---|---|
Fruit Extract | 83.19 ± 0.57 | 210.99 ± 8.13 |
Seed Extract | 5.71 ± 0.58 | 5181.67 ± 7.83 |
Bark Extract | 10.75 ± 0.31 | 1101.62 ± 39.89 |
Quercetin | 3.39 ± 0.09 | 1202.57 ± 44.73 |
C (µg/mL) | Abs | Blank | % inh | Mean ± SD | IC50 (µg/mL) | Regression Equation |
---|---|---|---|---|---|---|
23.44 | 0.522 | 0.801 | 36.39 | 38.34 ± 1.75 | y = 0.087x + 40.03 R2 = 0.95 | |
0.516 | 0.801 | 39.81 | ||||
0.521 | 0.801 | 38.81 | ||||
46.88 | 0.526 | 0.801 | 43.90 | 45.50 ± 1.71 | ||
0.481 | 0.801 | 47.30 | ||||
0.518 | 0.801 | 45.30 | ||||
93.75 | 0.415 | 0.801 | 49.89 | 49.13 ± 0.76 | ||
0.482 | 0.801 | 49.13 | 114.14 | |||
0.491 | 0.801 | 48.38 | ||||
187.5 | 0.395 | 0.801 | 61.37 | 59.65 ± 1.95 | ||
0.428 | 0.801 | 60.04 | ||||
0.418 | 0.801 | 57.54 | ||||
375 | 0.331 | 0.801 | 74.65 | 70.98 ± 6.36 | ||
0.299 | 0.801 | 63.64 | ||||
0.312 | 0.801 | 74.65 |
No | RT | [M+H]+ m/z | Ion Fragments m/z | Formula | Name |
---|---|---|---|---|---|
1 | 0.936 | 191.015 | 173.008 191.055 192.022 | C6H8O7 | Citric acid |
2 | 0.826 | 162.075 | 116.070 163.079 164.091 | C6H11NO4 | 2-Aminoadipic acid |
3 | 7.795 | 265.140 | 266.146 | C15H20O4 | (±)-Abscisic acid |
4 | 15.297 | 359.310 | 360.320 | C21H42O4 | 1-Stearoylglycerol |
361.320 | |||||
5 | 0.813 | 191.060 | 191.020 | C7H12O6 | D-(-)-Quinic acid |
192.022 | |||||
193.059 | |||||
6 | 1.214 | 169.013 | 168.005 | C7H6O5 | Gallic acid |
170.017 | |||||
171.017 | |||||
7 | 17.302 | 391.283 | 541.537 | C24H38O4 | Bis(2-ethylhexyl) phthalate |
540.534 | |||||
8 | 14.666 | 282.278 | 283.282 | C18H35NO | Oleamide |
9 | 5.555 | 198.127 | 197.854 | C14H15N | Dibenzylamine |
198.203 | |||||
10 | 14.055 | 377.266 | 273.310 | C21H38O4 | 1-Linoleoyl glycerol |
360.362 | |||||
356.287 | |||||
11 | 5.567 | 465.103 | 464.279 | C21H20O12 | Myricitrin |
466.106 | |||||
467.082 | |||||
12 | 0.779 | 175.119 | 176.091 | C6H14N4O2 | L-(+)-Arginine |
178.107 | |||||
13 | 14.452 | 256.263 | 255.645 | C16H33NO | Hexadecanamide |
255.232 | |||||
257.247 | |||||
258.269 | |||||
14 | 5.565 | 319.044 | 319.155 | C15H10O8 | Myricetin |
320.048 | |||||
321.049 | |||||
322.125 | |||||
14 | 12.873 | 295.227 | 296.229 | C18H30O3 | 9-Oxo-10(E),12(E)- |
301.140 | octadecadienoic acid | ||||
15 | 14.647 | 357.299 | 359.305 | C21H40O4 | Monoolein |
358.303 | |||||
16 | 8.455 | 249.148 | 250.151 247.133 | C15H20O3 | 6-Hydroxy-5a,9-dimethyl-3-methylene-3a,4,5,5a,6,7,9a,9b-octahydronaphtho[1,2-b]furan-2(3H)-one |
17 | 9.707 | 307.154 | 308.157 303.156 | C17H22O5 | 9a-Hydroxy-3,8a-dimethyl- 5-methylene-2-oxo-2,4,4a,5,6,7,8,8a,9,9a-decahydronaphtho[2,3-b] furan-8-yl acetate |
18 | 5.746 | 253.179 | 252.087 | C15H24O3 | NP-008095 |
254.183 | |||||
255.062 | |||||
19 | 10.827 | 291.159 | 293.165 | C17H22O4 | NP-000295 |
314.144 | |||||
20 | 1.627 | 127.039 | 123.117 | C6H6O3 | 5-Hydroxymethyl-2- |
124.039 | furaldehyde | ||||
21 | 12.448 | 279.232 | 280.235 | C18H30O2 | α-Eleostearic acid |
282.279 | |||||
22 | 0.835 | 118.086 | 119.089 120.065 | C5H11O2 | Valine |
23 | 7.670 | 179.106 | 180.109 181.014 | C11H14O2 | 5-Phenylvaleric acid |
24 | 1.337 | 166.086 | 167.089 | C9H11O2 | L-Phenylalanine |
168.065 | |||||
25 | 8.902 | 387.166 | 388.169 389.171 | C11H16 | n-Amylbenzene |
26 | 8.900 | 195.137 | 196.141 209.153 213.148 | C12H20O3 | Traumatin |
27 | 8.759 | 213.127 | 214.131 214.577 | C15H16O | 2-(3-Phenylpropyl)phenol |
PK and Toxicity | Property | Unit | 5-PVA | V | L-PA | n-AB | 2-AAA | T | 2-(3-PP)P | RA |
---|---|---|---|---|---|---|---|---|---|---|
Absorption | Caco-2 (log Paap) | log Paap | −4.9 | −5.61 | −4.94 | −4.2 | −5.91 | −4.64 | −4.82 | −4.48 |
Human Oral Bioavailability 20% | Category (BA/Non-BA) | BA | BA | BA | BA | BA | Non | BA | BA | |
Human Intestinal Absorption | Category (A/Non-A) | A | A | A | A | A | A | A | A | |
Madin–Darby Canine Kidney | cm/s | −3.88 | −1.68 | −4.38 | −3.76 | −4.63 | −4.03 | −4.32 | −4.53 | |
Human Oral Bioavailability 50% | Category (BA/Non-BA) | BA | N | N | BA | N | N | BA | N | |
P-Glycoprotein Inhibitor | Category (Inhibitor/Non) | N | N | N | N | N | N | N | N | |
P-Glycoprotein Substrate | Category (Substrate/Non) | N | N | N | N | N | N | N | N | |
Skin Permeability | log Kp | −2.99 | −3.15 | −1.56 | −3.45 | −2.57 | −2.12 | −2.86 | −2.86 | |
Distribution | Blood–Brain Barrier (Central Nervous System) | log PS | −1.76 | −3.8 | −2.36 | −2.4 | −3.66 | −2.06 | −1.42 | −2.32 |
Blood–Brain Barrier | Category (Penetrating/Non) | P | P | P | P | P | P | P | P | |
Fraction Unbound (Human) | free proportion | 0.8 | 0.46 | −0.37 | 1.18 | −0.09 | 0.51 | 1.31 | 1.17 | |
Plasma Protein Binding | therapeutic index | 46.9 | 1.58 | 52.98 | 26.62 | 4.57 | 32.95 | 77.92 | 57.55 | |
Steady-State Volume of Distribution | log VDss | 0.68 | 0.59 | 0.3 | 4.22 | 0.46 | 0.94 | 2.47 | 2.02 | |
Metabolism | Breast Cancer Resistance Protein | Category (Inhibitor/Non) | N | N | N | N | N | N | N | I |
CYP 1A2 Inhibitor | Category (Inhibitor/Non) | N | N | N | I | N | N | I | N | |
CYP 1A2_substrate | Category (Substrate/Non) | N | N | N | S | N | N | S | N | |
CYP 2C19 Inhibitor | Category (Inhibitor/Non) | N | N | N | I | N | N | I | N | |
CYP2C19 substrate | cyp2c19_substrate | N | N | N | N | N | N | N | N | |
CYP 2C9 Inhibitor | Category (Inhibitor/Non) | N | N | N | I | N | N | I | I | |
CYP 2C9 Substrate | Category (Substrate/Non) | N | S | S | N | N | S | S | S | |
CYP2D6 Inhibitor | Category (Inhibitor/Non) | N | N | N | N | N | N | N | I | |
CYP2D6 Substrate | Category (Substrate/Non) | N | N | N | S | N | N | S | N | |
CYP 3A4 Inhibitor | Category (I/Non) | N | N | N | N | N | N | N | N | |
CYP 3A4 Substrate | Category (S/Non) | N | N | N | N | N | N | S | S | |
OATP1B1 | Category (Inhibitor/Non) | N | N | N | N | N | N | N | I | |
OATP1B3 | Category (Inhibitor/Non) | N | N | N | N | N | N | N | N | |
Excretion | Clearance | Log (ml/min/kg) | 5.6 | 1.89 | 9.08 | 7.26 | −1.01 | −0.17 | 6.93 | −2.16 |
Organic Cation Transporter 2 | Category (Inhibitor/Non) | N | N | N | N | N | N | N | N | |
Half-Life of Drug | Category (Half-life ≥ 3 hs/Half-life < 3 hs) | <3hs | <3hs | <3hs | <3hs | ≥3hs | ≥3hs | <3hs | <3hs |
Property | 5-PVA | V | L-PA | n-AB | 2-AAA | T | 2-(3-PP)P | RA |
---|---|---|---|---|---|---|---|---|
AMES Mutagenesis | √ | √ | √ | √ | √ | √ | √ | √ |
Avian | √ | √ | √ | √ | √ | √ | √ | √ |
Bee | √ | X | √ | √ | √ | √ | √ | √ |
Bioconcentration Factor, log10 (L/kg) | 0.27 | −1.19 | −0.43 | 2.68 | −0.22 | −0.05 | 1.85 | 0.87 |
Biodegradation | X | X | X | √ | X | X | √ | √ |
Carcinogenesis | √ | √ | √ | X | √ | √ | √ | √ |
Crustacean | √ | √ | √ | X | √ | X | X | X |
Liver Injury I (DILI) | √ | √ | X | √ | √ | √ | √ | √ |
Eye Corrosion | √ | √ | √ | X | X | X | √ | √ |
Eye irritation | X | X | X | X | X | X | X | X |
Maximum Tolerated Dose, log mg/kg/day | 1.02 | 2.21 | 1.98 | 0.3 | 1.8 | 1.5 | 1.0 | 0.38 |
Liver Injury II | X | √ | X | X | √ | √ | X | X |
hERG Blockers | √ | √ | X | √ | √ | √ | √ | √ |
Daphnia Maga, −log10 [(mg/L)/(1000*MW)] | 3.57 | 3.91 | 3.46 | 5.02 | 2.32 | 4.9 | 5.48 | 4.05 |
Micronucleus | √ | √ | X | √ | √ | √ | √ | √ |
NR-AhR | √ | √ | √ | √ | √ | √ | √ | √ |
NR-AR | √ | √ | √ | √ | √ | √ | √ | √ |
NR-AR-LBD | √ | √ | √ | √ | √ | √ | √ | √ |
NR-Aromatase | √ | √ | √ | √ | √ | √ | √ | √ |
NR-ER | √ | √ | √ | √ | √ | √ | √ | √ |
NR-ER-LBD | √ | √ | √ | √ | √ | √ | √ | X |
NR-GR | √ | √ | √ | √ | √ | √ | √ | √ |
NR-PPAR-gamma | √ | √ | √ | √ | √ | √ | √ | X |
NR-TR | √ | √ | √ | √ | √ | √ | √ | X |
T. Pyriformis, −log10[(mg/L)/(1000*MW)] | 3.06 | −0.25 | 1.25 | 4.37 | 3.13 | 4.52 | 5.06 | 6.12 |
Rat (Acute), log[1/(mol/kg)] | 1.91 | 1.7 | 2.06 | 1.64 | 1.3 | 1.95 | 1.87 | 2.07 |
Rat (Chronic Oral), log(mg/kg_bw/day) | 2.09 | 2.03 | 2.17 | 2.09 | 2.04 | 2.06 | 1.93 | 2.26 |
Fathead Minnow, −log10[(mg/L)/(1000*MW)] | 3.94 | 3.4 | 3.62 | 3.97 | 3.48 | 3.94 | 4.43 | 5.18 |
Respiratory Disease | √ | √ | √ | √ | √ | X | √ | X |
Skin Sensitization | X | X | √ | X | X | X | X | X |
SR-ARE | √ | √ | √ | √ | √ | √ | X | X |
SR-ATAD5 | √ | √ | √ | √ | √ | √ | √ | √ |
SR-HSE | √ | √ | √ | √ | √ | √ | √ | X |
SR-MMP | √ | √ | √ | √ | √ | √ | X | X |
SR-p53 | √ | √ | √ | √ | √ | √ | √ | √ |
Compound | CID | Interaction | Distance (A) | Bond | Type of Bond |
---|---|---|---|---|---|
2-Aminoadipic acid | 469 | :10:H8-A:SER195:OG | 2.10548 | Hydrogen Bond | Conventional Hydrogen Bond |
:10:H10-A:SER195:OG | 1.80197 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H11-A:VAL216:O | 1.68497 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A:GLN192:NE2-:10:O4 | 3.15798 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H11-A:VAL216:N | 2.69377 | Unfavorable | Unfavorable Donor–Donor | ||
L-Phenylalanine | 6140 | :10:H6-A:SER195:OG | 2.57393 | Hydrogen Bond | Conventional Hydrogen Bond |
:10:H6-A:SER214:O | 2.63281 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H11-A:CYS191:O | 1.59077 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H3-A:SER195:OG | 2.58541 | Hydrogen Bond | Carbon–Hydrogen Bond | ||
A: GLN192:NE2-:10 | 3.89193 | Hydrogen Bond | Pi–Donor Hydrogen Bond | ||
:10:H11-A:CYS191:N | 2.55659 | Unfavorable | Unfavorable Donor–Donor | ||
Valine | 6287 | :10:H9-A:SER195:OG | 2.28235 | Hydrogen Bond | Conventional Hydrogen Bond |
:10:H10-A:CYS191:O | 2.42935 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H11-A:SER195:OG | 2.22809 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A:GLN192:NE2-:10:O2 | 3.25682 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H2-A:SER195:OG | 2.28054 | Hydrogen Bond | Carbon–Hydrogen Bond | ||
A: PHE215:CA-:10:O1 | 3.47172 | Hydrogen Bond | Carbon–Hydrogen Bond | ||
:10:C1-A:VAL216 | 4.02234 | Hydrophobic | Alkyl | ||
:10:H10-A:SER195:N | 2.56414 | Unfavorable | Unfavorable Donor–Donor | ||
n-Amylbenzene | 10,864 | :10:C4-A:VAL216 | 4.00007 | Hydrophobic | Alkyl |
:10-A:VAL216 | 5.41977 | Hydrophobic | Pi–Alkyl | ||
5-Phenylvaleric acid | 16,757 | :10:H14-A:CYS191:O | 1.68264 | Hydrogen Bond | Conventional Hydrogen Bond |
A:SER195:N-:10:O1 | 2.78092 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A:SER195:OG-:10 | 3.56553 | Hydrogen Bond | Pi–Donor Hydrogen Bond | ||
:10-A:VAL216 | 5.28161 | Hydrophobic | Alkyl | ||
A: HIS57-:10 | 5.28158 | Hydrophobic | Pi–Alkyl | ||
2-(3-Phenylpropyl)phenol | 572,468 | :10:H16-A:CYS191:O | 1.82042 | Hydrogen Bond | Conventional Hydrogen Bond |
A:SER195:N-:10:O1 | 2.82822 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A:SER195:OG-:10:O1 | 2.79543 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A: HIS57-:10 | 4.91782 | Hydrophobic | Pi–Pi Stacked | ||
:10-A:VAL216 | 4.92124 | Hydrophobic | Alkyl | ||
:10-A:VAL216 | 4.3249 | Hydrophobic | Pi–Alkyl | ||
:10:C14-A:THR213:CG2 | 2.06988 | Unfavorable | Unfavorable Bump | ||
:10:H14-A:THR213:CG2 | 1.31125 | Unfavorable | Unfavorable Bump | ||
:10:H16-A:ASP194:N | 2.64189 | Unfavorable | Unfavorable Donor–Donor | ||
Traumatin | 5,312,889 | :10:H19-A:VAL216:O | 2.23678 | Hydrogen Bond | Conventional Hydrogen Bond |
:10:H19-A:SER217:O | 2.33672 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A:GLN192:NE2-:10:O2 | 2.99847 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10-A:VAL216 | 4.75325 | Hydrophobic | Alkyl | ||
:10-A:VAL216 | 4.56525 | Hydrophobic | Alkyl | ||
Retinoic acid | 444,795 | A:ARG217A:CD-:10:O1 | 3.34058 | Hydrogen Bond | Carbon–Hydrogen Bond |
:10:C7-A:VAL216 | 2.87356 | Hydrophobic | Alkyl | ||
:10:C8-A:VAL216 | 4.45649 | Hydrophobic | Alkyl | ||
:10-A:VAL216 | 5.03321 | Hydrophobic | Alkyl | ||
:10:C13-A:ARG217A | 3.79967 | Hydrophobic | Alkyl | ||
:10:C18-A:VAL99 | 5.46514 | Hydrophobic | Alkyl | ||
A: HIS57-:10:C10 | 4.98999 | Hydrophobic | Pi–Alkyl | ||
A: TRP172-:10:C18 | 5.46878 | Hydrophobic | Pi–Alkyl | ||
A: PHE215-:10:C18 | 4.6441 | Hydrophobic | Pi–Alkyl | ||
:10:C3-A:SER195:OG | 2.11805 | Unfavorable | Unfavorable Bump | ||
:10:H3-A:SER195:OG | 1.09989 | Unfavorable | Unfavorable Bump | ||
:10:H8-A:VAL216:CG2 | 1.80531 | Unfavorable | Unfavorable Bump |
Compound | CID | Interaction | Distance (A) | Bond | Bond Type |
---|---|---|---|---|---|
2-Aminoadipic acid | 469 | :10:H9-A:ASN260:O | 2.59891 | Hydrogen Bond | Conventional Hydrogen Bond |
:10:H10-A:MET280:O | 2.2952 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H11-A:HIS259:NE2 | 2.88339 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H11-A:HIS296:NE2 | 2.16919 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A:HIS61:CE1-:10:O4 | 3.0639 | Hydrogen Bond | Carbon–Hydrogen Bond | ||
L-Phenylalanine | 6140 | :10:H11-A:HIS259:NE2 | 1.95423 | Hydrogen Bond | Conventional Hydrogen Bond |
:10:H11-A:HIS296:NE2 | 227029 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A: HIS259:CE1-:10:O2 | 3.12422 | Hydrogen Bond | Carbon–Hydrogen Bond | ||
:10:H3-A:HIS263 | 2.43753 | Hydrophobic | Pi–Sigma | ||
A: HIS263-:10 | 4.09972 | Hydrophobic | Pi–Pi Stacked | ||
A: PHE264-:10 | 4.88035 | Hydrophobic | Pi–Pi T-shaped | ||
:10-A:VAL283 | 5.23036 | Hydrophobic | Pi–Alkyl | ||
A:HIS61:CE1-:10:N1 | 222005 | Unfavorable | Unfavorable Bump | ||
A:HIS61:CE1-:10:H7 | 1.49841 | Unfavorable | Unfavorable Bump | ||
Valine | 6287 | A:VAL283:N-:10:O2 | 3.0412 | Hydrogen Bond | Conventional Hydrogen Bond |
:10:H10-A:ASN260:OD1 | 2.73625 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H11-A:MET280:O | 1.80915 | Hydrogen Bond | Conventional Hydrogen Bond | ||
:10:H2-A:HIS263 | 2.50188 | Hydrophobic | Pi–Sigma | ||
:10:C1-A:VAL283 | 3.81457 | Hydrophobic | Alkyl | ||
A: HIS259-:10:C1 | 5.47901 | Hydrophobic | Pi–Alkyl | ||
A: HIS263-:10:C1 | 4.38926 | Hydrophobic | Pi–Alkyl | ||
n-Amylbenzene | 10,864 | A:VAL283:CG2-:10 | 3.86529 | Hydrophobic | Pi–Sigma |
A:HIS263-:10 | 3.67353 | Hydrophobic | Pi–Pi Stacked | ||
:10:C4-A:VAL283 | 4.94484 | Hydrophobic | Alkyl | ||
A:PHE264-:10:C4 | 5.20499 | Hydrophobic | Pi–Alkyl | ||
:10-A:ALA286 | 4.5319 | Hydrophobic | Pi–Alkyl | ||
5-Phenylvaleric acid | 16,757 | :10:H14-A:HIS263:NE2 | 3.00302 | Hydrogen Bond | Conventional Hydrogen Bond |
:10:H14-A:HIS296:NE2 | 2.54051 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A:HIS259:CE1-:10:O2 | 3.25609 | Hydrogen Bond | Carbon–Hydrogen Bond | ||
A: VAL283-:10 | 4.15 | Hydrophobic | Alkyl | ||
A: ALA286-:10 | 3.60867 | Hydrophobic | Alkyl | ||
A: HIS263-:10 | 3.82739 | Hydrophobic | Pi–Alkyl | ||
:10-A:VAL283 | 5.33656 | Hydrophobic | Pi–Alkyl | ||
2-(3-Phenylpropyl)phenol | 572,468 | :10:H16-A:HIS263:NE2 | 2.10946 | Hydrogen Bond | Conventional Hydrogen Bond |
:10-:10 | 4.02915 | Hydrophobic | Pi–Pi Stacked | ||
A: VAL283-:10 | 3.96369 | Hydrophobic | Alkyl | ||
A: ALA286-:10 | 3.60936 | Hydrophobic | Alkyl | ||
A: HIS61-:10 | 5.49858 | Hydrophobic | Pi–Alkyl | ||
A: HIS263-:10 | 3.74104 | Hydrophobic | Pi–Alkyl | ||
:10-A:VAL283 | 4.41892 | Hydrophobic | Pi–Alkyl | ||
:10-A:VAL283 | 5.14575 | Hydrophobic | Pi–Alkyl | ||
A:HIS259:CE1-:10:H10 | 1.77522 | Unfavorable | Unfavorable Bump | ||
Traumatin | 5,312,889 | :10:H19-A:GLU256:OE2 | 2.10595 | Hydrogen Bond | Conventional Hydrogen Bond |
:10:H2-A:HIS263 | 2.30065 | Hydrophobic | Pi–Sigma | ||
A: VAL283-:10 | 4.42447 | Hydrophobic | Alkyl | ||
A:VAL283-:10 | 3.68636 | Hydrophobic | Alkyl | ||
A:ALA286-:10 | 4.55147 | Hydrophobic | Alkyl | ||
A:ALA286-:10 | 4.92503 | Hydrophobic | Alkyl | ||
A:HIS61-:10 | 5.06211 | Hydrophobic | Pi–Alkyl | ||
A:HIS85-:10 | 4.59661 | Hydrophobic | Pi–Alkyl | ||
A:HIS263-:10 | 4.30442 | Hydrophobic | Pi–Alkyl | ||
Retinoic acid | 444,795 | A:ARG268:CD-:10:O2 | 3.63325 | Hydrogen Bond | Carbon–Hydrogen Bond |
A:VAL283-:10 | 5.29642 | Hydrophobic | Alkyl | ||
A:VAL283-:10 | 4.09657 | Hydrophobic | Alkyl | ||
A:ALA286-:10:C10 | 2.90699 | Hydrophobic | Alkyl | ||
A:HIS61-:10 | 4.84395 | Hydrophobic | Pi–Alkyl | ||
A:HIS61-:10:C10 | 3.91738 | Hydrophobic | Pi–Alkyl | ||
A:HIS85-:10 | 4.2203 | Hydrophobic | Pi–Alkyl | ||
A:HIS94-:10 | 5.25314 | Hydrophobic | Pi–Alkyl | ||
A:HIS259-:10:C8 | 4.98592 | Hydrophobic | Pi–Alkyl | ||
A:HIS263-:10 | 4.34395 | Hydrophobic | Pi–Alkyl | ||
A:HIS263-:10:C7 | 4.77534 | Hydrophobic | Pi–Alkyl | ||
A:HIS263-:10 | 4.66221 | Hydrophobic | Pi–Alkyl | ||
A:HIS263-:10:C10 | 3.75815 | Hydrophobic | Pi–Alkyl | ||
A:HIS263-:10:C13 | 4.69426 | Hydrophobic | Pi–Alkyl | ||
A:PHE264-:10:C13 | 3.79419 | Hydrophobic | Pi–Alkyl | ||
A:PHE292-:10:C10 | 4.99287 | Hydrophobic | Pi–Alkyl | ||
A:HIS296-:10 | 5.04505 | Hydrophobic | Pi–Alkyl | ||
A:HIS85:CD2-:10:C8 | 2.31781 | Unfavorable | Unfavorable Bump | ||
A:HIS85:CD2-:10:H12 | 1.42596 | Unfavorable | Unfavorable Bump | ||
A:HIS259:CE1-:10:C2 | 2.03096 | Unfavorable | Unfavorable Bump | ||
A:HIS259:CE1-:10:C7 | 2.30287 | Unfavorable | Unfavorable Bump | ||
A:HIS259:CE1-:10:H2 | 1.38313 | Unfavorable | Unfavorable Bump | ||
Inhibitor (native ligand) | :10:H1-A:MET280:O | 1.79416 | Hydrogen Bond | Conventional Hydrogen Bond | |
:10:H2-A:MET280:O | 2.04212 | Hydrogen Bond | Conventional Hydrogen Bond | ||
A:VAL283:CG2-:10 | 3.88696 | Hydrophobic | Pi–Sigma | ||
A:HIS263-:10 | 3.65091 | Hydrophobic | Pi–Pi Stacked | ||
:10-A:ALA286 | 4.95416 | Hydrophobic | Pi–Alkyl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wenas, D.M.; Elya, B.; Sutriyo, S.; Setiawan, H.; Othman, R.; Nur, S.; Triadisti, N.; Yunita, F.; Setyaningsih, E.P. In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts. Molecules 2025, 30, 3168. https://doi.org/10.3390/molecules30153168
Wenas DM, Elya B, Sutriyo S, Setiawan H, Othman R, Nur S, Triadisti N, Yunita F, Setyaningsih EP. In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts. Molecules. 2025; 30(15):3168. https://doi.org/10.3390/molecules30153168
Chicago/Turabian StyleWenas, Desy Muliana, Berna Elya, Sutriyo Sutriyo, Heri Setiawan, Rozana Othman, Syamsu Nur, Nita Triadisti, Fenny Yunita, and Erwi Putri Setyaningsih. 2025. "In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts" Molecules 30, no. 15: 3168. https://doi.org/10.3390/molecules30153168
APA StyleWenas, D. M., Elya, B., Sutriyo, S., Setiawan, H., Othman, R., Nur, S., Triadisti, N., Yunita, F., & Setyaningsih, E. P. (2025). In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts. Molecules, 30(15), 3168. https://doi.org/10.3390/molecules30153168