Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts
Abstract
1. Introduction
2. Results and Discussion
2.1. Total Phenolic and Flavonoid Content
2.2. Chemical Composition
3. Antioxidant Effects
3.1. Enzyme Inhibitory Effects
3.2. Cell Assays
3.3. Transcription Factor Analysis
3.4. Molecular Docking
3.5. Molecular Dynamics Simulation
4. Materials and Methods
4.1. Plant Collection
4.2. Plant Extract Preparation
4.3. Spectrophotometric Assay for Total Phenolic and Flavonoid Contents
4.4. UHPLC-MS/MS Metabolomic Analysis
4.5. Assays for In Vitro Antioxidant Capacity
4.6. Inhibitory Effects Against Some Key Enzymes
4.7. Cell Cultivation
4.8. Cytotoxicity Assay
4.9. Cell Culture Experiments for Subsequent qPCR Analysis
4.10. RNA Extraction
4.11. Synthesis of cDNA
4.12. Quantitative Polymerase Chain Reaction (qPCR)
4.13. TF Analysis
4.14. Protein and Ligand Preparation
4.15. Docking Grid and Parameters
4.16. Validation and Interaction Analysis
4.17. Molecular Dynamics Simulation
4.18. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Brinza, I.; Abd-Alkhalek, A.M.; El-Raey, M.A.; Boiangiu, R.S.; Eldahshan, O.A.; Hritcu, L. Ameliorative effects of rhoifolin in scopolamine-induced amnesic zebrafish (Danio rerio) model. Antioxidants 2020, 9, 580. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Baschieri, A.; Amorati, R. Methods to determine chain-breaking antioxidant activity of nanomaterials beyond DPPH•. A review. Antioxidants 2021, 10, 1551. [Google Scholar] [CrossRef]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef]
- Quan, N.V.; Xuan, T.D.; Tran, H.-D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef]
- Rana, D.; Bhatt, A.; Lal, B.; Parkash, O.; Kumar, A.; Uniyal, S.K. Use of medicinal plants for treating different ailments by the indigenous people of Churah subdivision of district Chamba, Himachal Pradesh, India. Environ. Dev. Sustain. 2021, 23, 1162–1241. [Google Scholar] [CrossRef]
- Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 2012, 27, 269. [Google Scholar] [CrossRef]
- Grey-Wilson, C.; Mathew, B. Bulbs: The Bulbous Plants of Europe and Their Allies; Viking Press: New York, NY, USA, 1981. [Google Scholar]
- Bhattacharya, S.; Maity, S.; Pramanick, D.; Hazra, A.K.; Choudhury, M. HPLC of phenolic compounds, antioxidant and antimicrobial activity of bulbs from three Ornithogalum species available in India. Int. J. Pharm. Pharm. Sci. 2016, 8, 187–192. [Google Scholar]
- Chen, K.; Du, L.; Liu, H.; Liu, Y. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco. BMC Plant Biol. 2019, 19, 390. [Google Scholar] [CrossRef]
- Kahraman, O. Enlarging of Grape Hyacinth Bulb at Different Nutrient Solution Ratios in Soilless Culture. Commun. Soil Sci. Plant Anal. 2022, 53, 1411–1419. [Google Scholar] [CrossRef]
- Mulholland, D.A.; Schwikkard, S.L.; Crouch, N.R. The chemistry and biological activity of the Hyacinthaceae. Nat. Prod. Rep. 2013, 30, 1165–1210. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ. Sci. Pollut. Res. 2022, 29, 81112–81129. [Google Scholar] [CrossRef]
- Özcan, M.M.; Doğu, S.; Uslu, N. Effect of species on total phenol, antioxidant activity and phenolic compounds of different wild onion bulbs. J. Food Meas. Charact. 2018, 12, 902–905. [Google Scholar] [CrossRef]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total antioxidant capacity: Biochemical aspects and clinical significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Xiao, L.; Sun, Y.; Tsao, R. Paradigm shift in phytochemicals research: Evolution from antioxidant capacity to anti-inflammatory effect and to roles in gut health and metabolic syndrome. J. Agric. Food Chem. 2022, 70, 8551–8568. [Google Scholar] [CrossRef]
- Pasquet, P.; Julien-David, D.; Zhao, M.; Villain-Gambier, M.; Trébouet, D. Stability and preservation of phenolic compounds and related antioxidant capacity from agro-food matrix: Effect of pH and atmosphere. Food Biosci. 2024, 57, 103586. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, W.; Zhang, J.; Song, D.; Zhuang, L.; Ma, Q.; Yang, X.; Liu, X.; Zhang, J.; Zhang, H. Antioxidant capacity of phenolic compounds separated from tea seed oil in vitro and in vivo. Food Chem. 2022, 371, 131122. [Google Scholar] [CrossRef]
- Castronuovo, D.; Cardone, L.; Candido, V. Effects of pre-germinative treatments and temperatures on tassel hyacinth [Muscari comosum (L.) Mill.] seeds. Agronomy 2024, 14, 225. [Google Scholar] [CrossRef]
- Larocca, M.; Di Marsico, M.; Riccio, P.; Rossano, R. The in vitro antioxidant properties of Muscari comosum bulbs and their inhibitory activity on enzymes involved in inflammation, post-prandial hyperglycemia, and cognitive/neuromuscular functions. J. Food Biochem. 2018, 42, e12580. [Google Scholar] [CrossRef]
- Casacchia, T.; Sofo, A.; Casaburi, I.; Marrelli, M.; Conforti, F.; Statti, G.A. Antioxidant, enzyme-inhibitory and antitumor activity of the wild dietary plant Muscari comosum (L.) Mill. Int. J. Plant Biol. 2017, 8, 6895. [Google Scholar] [CrossRef]
- Miadoková, E.; Mašterová, I.; Vlčková, V.; Dúhová, V.; Tóth, J. Antimutagenic potential of homoisoflavonoids from Muscari racemosum. J. Ethnopharmacol. 2002, 81, 381–386. [Google Scholar] [CrossRef]
- Cicco, N.; Castronuovo, D.; Candido, V. Antioxidant activity, total phenolic content and morphological traits in 1 to 4-year-old Muscari comosum bulbs cultivated in three growing environments. Agriculture 2024, 14, 178. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Pugliese, A.; Bonesi, M.; Solimene, U.; Menichini, F. Chelating, antioxidant and hypoglycaemic potential of Muscari comosum (L.) Mill. bulb extracts. Int. J. Food Sci. Nutr. 2010, 61, 780–791. [Google Scholar] [CrossRef]
- Tena, N.; Martín, J.; Asuero, A.G. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef]
- Einbond, L.S.; Reynertson, K.A.; Luo, X.-D.; Basile, M.J.; Kennelly, E.J. Anthocyanin antioxidants from edible fruits. Food Chem. 2004, 84, 23–28. [Google Scholar] [CrossRef]
- Topal, F.; Yılmaz, F.; Topal, M.; Menevşeoğlu, A. Exploring the Antioxidant and Neuroprotective Potential of Muscari armeniacum: Phenolic Profiling and Enzyme Inhibition. Turk. J. Agric.-Food Sci. Technol. 2025, 13, 204–209. [Google Scholar] [CrossRef]
- Taşkın, T.; Avcı, E.; Rayaman, E.; Yılmaz, B.N.; Aydın, S.; Yılmaz, A.M.; Emre, G. Investigation of Antioxidant, Antimicrobial and Cytotoxic Activities of Different Extracts of Muscari armeniacum. Turk. J. Agric. Nat. Sci. 2025, 12, 187–196. [Google Scholar] [CrossRef]
- Hodges, J.R. Alzheimer’s centennial legacy: Origins, landmarks and the current status of knowledge concerning cognitive aspects. Brain 2006, 129, 2811–2822. [Google Scholar] [CrossRef]
- Li, Q.; Xiong, B.; Wang, Y.; Lyu, W.; Xing, S.; Chen, Y.; Liao, Q.; He, S.; Feng, F.; Liu, W. A highly effective and stable butyrylcholinesterase inhibitor with multi-faceted neuroprotection and cognition improvement. Eur. J. Med. Chem. 2022, 239, 114510. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Menichini, F. Natural and synthetic tyrosinase inhibitors as antibrowning agents: An update. Compr. Rev. Food Sci. Food Saf. 2012, 11, 378–398. [Google Scholar] [CrossRef]
- Deri, B.; Kanteev, M.; Goldfeder, M.; Lecina, D.; Guallar, V.; Adir, N.; Fishman, A. The unravelling of the complex pattern of tyrosinase inhibition. Sci. Rep. 2016, 6, 34993. [Google Scholar] [CrossRef]
- de Melo, E.B.; da Silveira Gomes, A.; Carvalho, I. α-and β-Glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 2006, 62, 10277–10302. [Google Scholar] [CrossRef]
- Galasko, D.; Montine, T.J. Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark. Med. 2010, 4, 27–36. [Google Scholar] [CrossRef]
- Beal, M.F. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann. N.Y. Acad. Sci. 2003, 991, 120–131. [Google Scholar] [CrossRef]
- Du, P.; Zhang, X.; Luo, K.; Li, Y.; Fu, C.; Xiao, J.; Xiao, Q. Curculigoside mitigates hepatic ischemia/reperfusion-induced oxidative stress, inflammation, and apoptosis via activation of the Nrf-2/HO-1 pathway. Hum. Exp. Toxicol. 2022, 41, 09603271221087146. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, F.; Tang, H.; Huang, C.; Xie, G.; Huang, T.; Li, Y.; Liu, C.; Wang, H.; Chen, B. Islet Transplantation Attenuating Testicular Injury in Type 1 Diabetic Rats Is Associated with Suppression of Oxidative Stress and Inflammation via Nrf-2/HO-1 and NF-κB Pathways. J. Diabetes Res. 2019, 2019, 8712492. [Google Scholar] [CrossRef]
- Bonomini, F.; Tengattini, S.; Fabiano, A.; Bianchi, R.; Rezzani, R. Atherosclerosis and oxidative stress. Histol. Histopathol. 2008, 23, 381–390. [Google Scholar]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- de Vries, H.E.; Witte, M.; Hondius, D.; Rozemuller, A.J.; Drukarch, B.; Hoozemans, J.; van Horssen, J. Nrf2-induced antioxidant protection: A promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic. Biol. Med. 2008, 45, 1375–1383. [Google Scholar] [CrossRef]
- Min, K.-j.; Lee, J.T.; Joe, E.-h.; Kwon, T.K. An IκBα phosphorylation inhibitor induces heme oxygenase-1 (HO-1) expression through the activation of reactive oxygen species (ROS)–Nrf2–ARE signaling and ROS–PI3K/Akt signaling in an NF-κB-independent mechanism. Cell. Signal. 2011, 23, 1505–1513. [Google Scholar] [CrossRef]
- Giglio, F.; Castiglione Morelli, M.A.; Matera, I.; Sinisgalli, C.; Rossano, R.; Ostuni, A. Muscari comosum L. Bulb extracts modulate oxidative stress and redox signaling in hepg2 cells. Molecules 2021, 26, 416. [Google Scholar] [CrossRef]
- Jaiswal, V.; Lee, H.-J. The bioactivity and phytochemicals of Muscari comosum (Leopoldia comosa), a plant of multiple pharmacological activities. Int. J. Mol. Sci. 2024, 25, 2592. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Zengin, G.; Uysal, A.; Diuzheva, A.; Gunes, E.; Jekő, J.; Cziáky, Z.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: A multi-functional insight. J. Pharm. Biomed. Anal. 2018, 160, 374–382. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Yagi, S.; Cetiz, M.V.; Zengin, G.; Bakar, K.; Himidi, A.A.; Mohamed, A.; Skorić, M.; Glamočlija, J.; Gašić, U. Novel Natural Candidates for Replacing Synthetic Additives in Nutraceutical and Pharmaceutical Areas: Two Senna Species (S. alata (L.) Roxb. and S. occidentalis (L.) Link). Food Sci. Nutr. 2024, 13, e4705. [Google Scholar] [CrossRef]
- Cetiz, M.V.; Yagi, S.; Kurt, U.; Koyuncu, I.; Yuksekdag, O.; Caprioli, G.; Acquaticci, L.; Angeloni, S.; Senkardes, I.; Zengin, G. Bridging HPLC-ESI-MS/MS analysis and in vitro biological activity assay through molecular docking and network pharmacology: The example of European nettle tree (Celtis australis L.). eFood 2024, 5, e70026. [Google Scholar] [CrossRef]
- Zengin, G.; Yagi, S.; Cziáky, Z.; Jekő, J.; Yildiztugay, E.; Maugeri, A.; Russo, C.; Cetiz, M.V.; Navarra, M. Exploring the chemical constituents and biological activities of leaf and twig extracts of two Amygdalus species from Turkey’s flora: Cell-free, in vitro and molecular docking approaches. Food Biosci. 2025, 64, 105869. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
Part | Extracts | TPC (mg GAE/g) | TFC (mg RE/g) |
---|---|---|---|
Flower | MeOH | 18.44 ± 0.69 e | 7.26 ± 0.13 d |
Water | 26.47 ± 0.27 a | 10.61 ± 0.10 c | |
Leaves | MeOH | 22.44 ± 0.45 c | 27.30 ± 0.06 a |
Water | 23.76 ± 0.50 b | 20.94 ± 0.16 b | |
Bulb | MeOH | 20.82 ± 0.50 d | 3.44 ± 0.01 e |
Water | 5.64 ± 0.11 f | 0.95 ± 0.03 f |
Leaves | Flowers | Bulb | ||||
---|---|---|---|---|---|---|
Compounds | MeOH | Water | MeOH | Water | MeOH | Water |
2,5-Dideoxy-2,5-imino-DL-glycero-D-manno-heptitol 7-O-apioside | + | − | − | − | + | − |
2,5-Imino-2,5,6-trideoxy-DL-glycero-D-manno-heptitol | + | − | + | + | + | + |
Hyacinthacine A1 or Hyacinthacine A2 | + | + | + | + | + | + |
2,5-Dideoxy-2,5-imino-DL-glycero-D-manno-heptitol | + | + | + | − | + | + |
Hyacinthacine A3 | + | − | + | + | + | − |
Hyacinthacine B3 | + | + | + | + | + | + |
Hyacinthacine C1 | + | + | + | + | + | + |
2,5-Dideoxy-2,5-imino-DL-glycero-D-manno-heptitol 7-beta-D-xylopyranoside | + | − | + | − | + | + |
Citric acid | + | + | + | + | + | + |
Syringic acid-4-O-glucoside | + | + | + | + | + | − |
Uralenneoside | + | + | + | + | + | − |
Unidentified iridoid derivative 1 | + | + | + | + | + | − |
p-Coumaric acid-4-O-glucoside | + | + | + | + | − | − |
Asperulosidic acid | + | + | + | + | + | − |
Unidentified iridoid derivative 2 | − | − | + | − | − | − |
Ferulic acid-4-O-glucoside | + | + | − | − | − | − |
1-O-(p-Coumaroyl)glucose trans isomer | − | − | + | + | − | − |
p-Coumaric acid | + | − | + | + | − | − |
Luteolin-O-trihexosylhexoside | + | + | + | − | − | − |
Luteolin-O-dihexosylhexoside | + | + | + | − | − | − |
p-Coumaroylmalic acid | − | − | + | − | − | − |
Luteolin-O-(glucuronyl)pentosylhexoside | + | + | + | + | − | − |
Muscariflavone A or isomer | + | + | + | + | + | + |
Luteolin-7-O-sophoroside | + | + | − | − | − | − |
Luteolin-O-glucuronylhexoside | + | + | + | + | − | − |
Chrysoeriol-O-(glucuronyl)dipentosylhexoside isomer 1 | + | + | + | + | − | − |
Muscariflavone B | + | + | + | + | − | − |
Muscariflavone C | + | + | + | + | − | − |
Muscariflavone A or isomer | + | + | + | + | + | + |
Chrysoeriol-O-(glucuronyl)dipentosylhexoside isomer 2 | + | + | + | + | − | − |
Chrysoeriol-O-(glucuronyl)pentosylhexoside | + | + | + | + | − | − |
Apigenin-O-glucuronylhexoside | + | + | + | + | − | − |
3′,5,7-Trihydroxyhomoisoflavanone | − | − | − | − | + | + |
N-trans-Coumaroyltyramine | − | − | + | − | + | − |
N-trans-Feruloyltyramine | − | − | + | − | + | − |
Cosmosiin (Apigenin-7-O-glucoside) | + | + | − | − | − | − |
Luteolin-O-(hydroxycinnamoyl)hexosylhexoside | + | + | − | − | − | − |
5,8-Dihydroxy-3-(3,4-dihydroxybenzyl)-7-methoxy-4-chromanone | + | − | − | − | + | − |
Apigenin-7-O-glucuronide | + | + | + | + | − | − |
Chrysoeriol-O-glucuronide | + | + | + | + | − | − |
Kaempferol-O-pentoside | − | − | + | + | − | − |
Naringenin (4′,5,7-Trihydroxyflavanone) | − | − | + | + | + | − |
7-Hydroxy-3-(3-hydroxy-4-methoxybenzyl)-5-methoxy-4-chromanone | + | + | ||||
5,7-Dihydroxy-3-(3,4-dihydroxybenzyl)-6-methoxy-4-chromanone | + | − | − | − | − | − |
3′,4′,5,7-Tetrahydroxyhomoisoflavanone | + | − | − | − | + | + |
Sacranoside A or isomer | + | + | + | + | − | − |
Luteolin (3′,4′,5,7-Tetrahydroxyflavone) | + | − | + | − | − | − |
Kaempferol-O-(p-coumaroyl)hexoside | − | − | + | + | − | − |
Kaempferol (3,4′,5,7-Tetrahydroxyflavone) | − | − | + | − | − | − |
5,7-Dihydroxy-3-(3-hydroxy-4-methoxybenzyl)-6-methoxy-4-chromanone | + | − | − | − | + | + |
4′,5,7-Trihydroxyhomoisoflavanone | + | − | − | − | − | − |
5,7-Dihydroxy-3-(4-hydroxy-3-methoxybenzyl)-6-methoxy-4-chromanone | + | − | − | − | + | + |
7-Hydroxy-3-(3,4-dihydroxybenzyl)-5-methoxy-4-chromanone | − | − | − | − | + | + |
7-Methoxy-3′,4′,5-trihydroxy-spiro[2H-1-benzopyran-3(4H),7′-bicyclo[4.2.0]octa[1,3,5]trien]-4-one | − | − | − | − | + | + |
Apigenin (4′,5,7-Trihydroxyflavone) | + | + | + | + | + | − |
Dihydroisomuscomosin | + | + | + | + | ||
4′-Methoxy-3′,5,7-trihydroxy-spiro[2H-1-benzopyran-3(4H),7′-bicyclo[4.2.0]octa[1,3,5]trien]-4-one | − | − | − | − | + | − |
Chrysoeriol (3′-Methoxy-4′,5,7-trihydroxyflavone) | + | + | + | + | − | − |
Dimethoxy-trihydroxy(iso)flavone | + | − | + | + | − | − |
Muscaroside G or isomer | + | + | + | + | + | + |
Muscaroside B or E | + | + | + | + | + | + |
Muscaroside H | + | + | + | + | + | + |
Muscaroside A | + | + | + | + | + | + |
Muscaroside J | + | − | + | + | + | − |
Isomuscomosin | + | + | + | − | − | − |
Muscaroside I | + | + | + | + | + | + |
Phytosphingosine | − | − | − | − | + | − |
Muscaroside C | + | + | + | − | + | + |
Part | Extracts | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | Chelating (mg EDTAE/g) | PBD (mmol TE/g) |
---|---|---|---|---|---|---|---|
Flower | MeOH | 15.81 ± 0.64 d | 36.34 ± 1.04 c | 34.73 ± 1.59 d | 24.84 ± 0.80 c | 7.88 ± 0.37 e | 1.21 ± 0.11 a |
Water | 23.75 ± 0.26 c | 46.52 ± 0.68 b | 42.36 ± 0.60 c | 35.27 ± 0.51 b | 20.59 ± 0.40 d | 0.88 ± 0.03 b | |
Leaves | MeOH | 15.81 ± 0.29 d | 35.97 ± 0.09 c | 46.67 ± 0.82 b | 32.49 ± 0.53 b | 24.35 ± 0.27 b | 1.26 ± 0.05 a |
Water | 26.79 ± 0.09 b | 60.78 ± 0.35 a | 37.71 ± 1.85 d | 35.67 ± 0.90 b | 31.02 ± 0.11 a | 0.78 ± 0.05 b | |
Bulb | MeOH | 39.34 ± 0.31 a | 60.78 ± 0.56 a | 60.96 ± 1.33 a | 46.04 ± 3.29 a | 6.01 ± 0.39 f | 1.21 ± 0.02 a |
Water | 5.09 ± 0.44 e | 8.67 ± 1.18 d | 13.83 ± 0.14 e | 10.72 ± 0.18 d | 23.07 ± 0.28 c | 0.89 ± 0.01 b |
Part | Extracts | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|---|
Flower | MeOH | 1.82 ± 0.05 b | 1.26 ± 0.16 b | 42.36 ± 3.95 b | 0.51 ± 0.01 b | 0.02 ± 0.01 d |
Water | 0.21 ± 0.06 d | na | na | 0.14 ± 0.01 c | 0.11 ± 0.03 c | |
Leaves | MeOH | 1.70 ± 0.02 b | 1.46 ± 0.05 b | 44.68 ± 2.53 b | 0.57 ± 0.02 a | 0.16 ± 0.03 c |
Water | 0.41 ± 0.06 c | na | na | 0.10 ± 0.01 d | 0.27 ± 0.03 b | |
Bulb | MeOH | 1.96 ± 0.05 a | 2.19 ± 0.33 a | 57.19 ± 0.87 a | 0.56 ± 0.02 a | 2.32 ± 0.01 a |
Water | 0.11 ± 0.01 d | na | na | 0.07 ± 0.01 d | na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilofar, N.; Zengin, G.; Cetiz, M.V.; Yildiztugay, E.; Cziáky, Z.; Jeko, J.; Ferrante, C.; Kostka, T.; Esatbeyoglu, T.; Dall’Acqua, S. Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts. Molecules 2025, 30, 2855. https://doi.org/10.3390/molecules30132855
Nilofar N, Zengin G, Cetiz MV, Yildiztugay E, Cziáky Z, Jeko J, Ferrante C, Kostka T, Esatbeyoglu T, Dall’Acqua S. Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts. Molecules. 2025; 30(13):2855. https://doi.org/10.3390/molecules30132855
Chicago/Turabian StyleNilofar, Nilofar, Gokhan Zengin, Mehmet Veysi Cetiz, Evren Yildiztugay, Zoltán Cziáky, József Jeko, Claudio Ferrante, Tina Kostka, Tuba Esatbeyoglu, and Stefano Dall’Acqua. 2025. "Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts" Molecules 30, no. 13: 2855. https://doi.org/10.3390/molecules30132855
APA StyleNilofar, N., Zengin, G., Cetiz, M. V., Yildiztugay, E., Cziáky, Z., Jeko, J., Ferrante, C., Kostka, T., Esatbeyoglu, T., & Dall’Acqua, S. (2025). Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts. Molecules, 30(13), 2855. https://doi.org/10.3390/molecules30132855