Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = two-dimensional nanomaterial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 6887 KiB  
Review
Charging the Future with Pioneering MXenes: Scalable 2D Materials for Next-Generation Batteries
by William Coley, Amir-Ali Akhavi, Pedro Pena, Ruoxu Shang, Yi Ma, Kevin Moseni, Mihrimah Ozkan and Cengiz S. Ozkan
Nanomaterials 2025, 15(14), 1089; https://doi.org/10.3390/nano15141089 - 14 Jul 2025
Viewed by 474
Abstract
MXenes, a family of two-dimensional carbide and nitride nanomaterials, have demonstrated significant promise across various technological domains, particularly in energy storage applications. This review critically examines scalable synthesis techniques for MXenes and their potential integration into next-generation rechargeable battery systems. We highlight both [...] Read more.
MXenes, a family of two-dimensional carbide and nitride nanomaterials, have demonstrated significant promise across various technological domains, particularly in energy storage applications. This review critically examines scalable synthesis techniques for MXenes and their potential integration into next-generation rechargeable battery systems. We highlight both top-down and emerging bottom-up approaches, exploring their respective efficiencies, environmental impacts, and industrial feasibility. The paper further discusses the electrochemical behavior of MXenes in lithium-ion, sodium-ion, and aluminum-ion batteries, as well as their multifunctional roles in solid-state batteries—including as electrodes, additives, and solid electrolytes. Special emphasis is placed on surface functionalization, interlayer engineering, and ion transport properties. We also compare MXenes with conventional graphite anodes, analyzing their gravimetric and volumetric performance potential. Finally, challenges such as diffusion kinetics, power density limitations, and scalability are addressed, providing a comprehensive outlook on the future of MXenes in sustainable energy storage technologies. Full article
(This article belongs to the Special Issue Pioneering Nanomaterials: Revolutionizing Energy and Catalysis)
Show Figures

Figure 1

18 pages, 4672 KiB  
Article
Tailoring Porosity and CO2 Capture Performance of Covalent Organic Frameworks Through Hybridization with Two-Dimensional Nanomaterials
by Hani Nasser Abdelhamid
Inorganics 2025, 13(7), 237; https://doi.org/10.3390/inorganics13070237 - 11 Jul 2025
Viewed by 384
Abstract
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity [...] Read more.
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity of COF-1 and the preservation of framework integrity after integrating the 2D nanomaterials. FT-IR spectra exhibited pronounced vibrational fingerprints of imine linkages and validated the functional groups from the COF and the integrated nanomaterials. TEM images revealed the integration of the two components, porous, layered structures with indications of interfacial interactions between COF and 2D nanosheets. Nitrogen adsorption–desorption isotherms revealed the microporous characteristics of the COFs, with hysteresis loops evident, indicating the development of supplementary mesopores at the interface between COF-1 and the 2D materials. The BET surface area of pristine COF-1 was maximal at 437 m2/g, accompanied by significant micropore and Langmuir surface areas of 348 and 1290 m2/g, respectively, offering enhanced average pore widths and hierarchical porous strcuture. CO2 adsorption tests were investigated showing maximum adsorption capacitiy of 1.47 mmol/g, for COF-1, closely followed by COF@BN at 1.40 mmol/g, underscoring the preserved sorption capabilities of these materials. These findings demonstrate the promise of designed COF-based hybrids for gas capture, separation, and environmental remediation applications. Full article
Show Figures

Graphical abstract

20 pages, 2436 KiB  
Article
Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives
by Maria Jarząbek-Karnas, Zuzanna Bojarska, Patryk Klemczak, Łukasz Werner and Łukasz Makowski
Int. J. Mol. Sci. 2025, 26(14), 6640; https://doi.org/10.3390/ijms26146640 - 10 Jul 2025
Viewed by 495
Abstract
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. [...] Read more.
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. Due to the high cost and limited availability of noble metals, there is growing interest in developing alternative, low-cost catalytic materials. In recent years, two-dimensional transition metal dichalcogenides (2D TMDCs), such as molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), have attracted considerable attention due to their promising electrochemical properties for hydrogen evolution reactions (HERs). These materials exhibit unique properties, such as a high surface area or catalytic activity localized at the edges of the layered structure, which can be further enhanced through defect engineering or phase modulation. To increase the catalytically active surface area, the investigated materials were deposited on a carbon-based support—Vulcan XC-72R—selected for its high electrical conductivity and large specific surface area. This study investigated the physicochemical and electrochemical properties of six catalyst samples with varying MoS2 and ReS2 to carbon support ratios. Among the composites analyzed, the best sample on MoS2 (containing the most carbon soot) and the best sample on ReS2 (containing the least carbon soot) were selected. These were then used as cathode catalysts in an experimental PEM electrolyzer setup. The results confirmed satisfactory catalytic activity of the tested materials, indicating their potential as alternatives to conventional noble metal-based catalysts and providing a foundation for further research in this area. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

20 pages, 6245 KiB  
Article
Purification and Preparation of Graphene-like Nanoplates from Natural Graphite of Canindé, CE, Northeast-Brazil
by Lucilene Santos, Alejandro Ayala, Raul Silva, Thiago Moura, João Farias, Augusto Nobre, Bruno Araújo, Francisco Vasconcelos and Janaína Rocha
Materials 2025, 18(13), 3162; https://doi.org/10.3390/ma18133162 - 3 Jul 2025
Viewed by 508
Abstract
In this study, flotation tests were conducted on a laboratory scale using a sample of microcrystalline graphite ore from the Canindé region, Ceará, Brazil. The objective was to investigate the grinding time, reagent dosage, and purification process for obtaining graphene-based nanomaterials. Natural graphite [...] Read more.
In this study, flotation tests were conducted on a laboratory scale using a sample of microcrystalline graphite ore from the Canindé region, Ceará, Brazil. The objective was to investigate the grinding time, reagent dosage, and purification process for obtaining graphene-based nanomaterials. Natural graphite has a stacked planar structure and exhibits polymorphism with rhombohedral, hexagonal, and turbostratic geometries, characteristics that directly influence its properties and technological applications. The results demonstrated that it was possible to obtain rougher concentrate with a graphite carbon content of 23.4% and a recovery of 86.4%, using a grinding time of 7.5 min and reagent dosages of 150 g/t of kerosene and 100 g/t of Flotanol D-25. This flotation process resulted in a graphite concentrate with 76.6% graphite carbon content. To increase the purity of the concentrate and expand its industrial applications, the graphite was purified in an alkaline autoclave using the hydrothermal method. In the next stage, acid leaching was performed, and this chemical treatment destabilized the regular stacking of the graphite layers, promoting the formation of graphene-like nanoplates, including monolayer graphene. Thus, the nanomaterials obtained through the process developed in this study have potential for various innovative applications, such as lithium-ion batteries, electric vehicles, and two-dimensional graphene-based materials. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Multifunctional Applications)
Show Figures

Figure 1

18 pages, 16058 KiB  
Article
Surface-Confined Self-Assembly of Star-Shaped Tetratopic Molecules with Vicinal Interaction Centers
by Jakub Lisiecki and Damian Nieckarz
Molecules 2025, 30(12), 2656; https://doi.org/10.3390/molecules30122656 - 19 Jun 2025
Viewed by 404
Abstract
Precise control over the morphology of surface-supported supramolecular patterns is a significant challenge, requiring the careful selection of suitable molecular building blocks and the fine-tuning of experimental conditions. In this contribution, we demonstrate the utility of lattice Monte Carlo computer simulations for predicting [...] Read more.
Precise control over the morphology of surface-supported supramolecular patterns is a significant challenge, requiring the careful selection of suitable molecular building blocks and the fine-tuning of experimental conditions. In this contribution, we demonstrate the utility of lattice Monte Carlo computer simulations for predicting the topology of adsorbed overlayers formed by star-shaped tetratopic molecules with vicinal interaction centers. The investigated tectons were found to self-assemble into a range of structurally diverse architectures, including two-dimensional crystals, aperiodic mosaics, Sierpiński-like aggregates, and one-dimensional strands. The theoretical insights presented herein deepen our understanding of molecular self-assembly and may aid in the rational design of novel nanomaterials with tunable porosity, chirality, connectivity, and molecular packing. Full article
(This article belongs to the Special Issue Molecular Self-Assembly in Interfacial Chemistry)
Show Figures

Graphical abstract

16 pages, 4395 KiB  
Article
Nanoporous Copper Films via Dynamic Hydrogen Bubbling: A Promising SERS Substrate for Sensitive Detection of Methylene Blue
by Noor Tayyaba, Stefano Zago, Andrea Giura, Gianluca Fiore, Luigi Ribotta, Federico Scaglione and Paola Rizzi
Nanomaterials 2025, 15(12), 945; https://doi.org/10.3390/nano15120945 - 18 Jun 2025
Viewed by 427
Abstract
Cu-based nanomaterials have received considerable attention as promising and cost-effective substrates for surface-enhanced Raman spectroscopy (SERS) applications despite their relatively low enhancement factor (EF) compared to noble metals like gold and silver. In this study, a fast and affordable synthesis route is proposed [...] Read more.
Cu-based nanomaterials have received considerable attention as promising and cost-effective substrates for surface-enhanced Raman spectroscopy (SERS) applications despite their relatively low enhancement factor (EF) compared to noble metals like gold and silver. In this study, a fast and affordable synthesis route is proposed to obtain a three-dimensional porous copper film (NPC) via an electrodeposition technique based on the dynamic hydrogen bubbling template (DHBT). Two sets of NPC film were synthesized, one without additives and the other with cetyltrimethylammonium bromide (CTAB). The impacts of deposition time on the NPCs’ porous morphology, thickness, and SERS performance were systematically investigated. With the optimal deposition time, the nanopore sizes could be tailored from 26.8 to 73 μm without additives and from 12.8 to 24 µm in the presence of CTAB. The optimal additive-free NPC film demonstrated excellent SERS performance at 180 s of deposition, while the CTAB-modified film showed strong enhancement at 120 s towards methylene blue (MB), a highly toxic dye, achieving a detection limit of 10−6 M. Additionally, the samples with CTAB showed better efficiency than those without CTAB. The calculated EF of NPC was found to be 5.9 × 103 without CTAB and 2.5 × 103 with the CTAB, indicating the potential of NPC as a cost-effective candidate for high-performance SERS substrates. This comprehensive study provides insights into optimizing the structural morphology of the NPCs to maximize their SERS enhancement factor and improve their detection sensitivity toward MB, thus overcoming the limitations associated with conventional copper-based SERS substrates. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

33 pages, 4158 KiB  
Review
Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors
by Waqas Ahmad, Yihuan Wang, Guangqing Du, Qing Yang and Feng Chen
Nanomaterials 2025, 15(12), 943; https://doi.org/10.3390/nano15120943 - 18 Jun 2025
Cited by 1 | Viewed by 675
Abstract
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic [...] Read more.
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic combination of graphene and other functional materials enables superior plasmonic sensitivity, improves biomolecular interaction, and enhances signal transduction. Key focus areas include the fundamental principle of graphene-enhanced SPR, the functional advantages of graphene hybrid platforms, and their recent applications in detecting biomolecules, disease biomarkers, and pathogens. Finally, current limitations and potential future perspectives are discussed, highlighting the transformative potential of these hybrid nanomaterials in next-generation optical biosensing Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Optical Sensors, Second Edition)
Show Figures

Figure 1

15 pages, 3349 KiB  
Article
Potential of Graphene Doping Towards Superlubric Performance of Additively Manufactured Structures
by Pinelopi Katsivardi, Nikolaos Koutroumanis, Alexandros E. Karantzalis, Pantelis G. Nikolakopoulos and Konstantinos G. Dassios
Materials 2025, 18(12), 2730; https://doi.org/10.3390/ma18122730 - 10 Jun 2025
Viewed by 467
Abstract
Significant improvements in the tribological performance of graphene-doped additively manufactured structures are reported, with absolute values of friction coefficients reaching 0.09 corresponding to ca. 70% decreases from plain/un-doped samples. The findings highlight an impressive potential of the nanocarbon variant, to endow superior tribological [...] Read more.
Significant improvements in the tribological performance of graphene-doped additively manufactured structures are reported, with absolute values of friction coefficients reaching 0.09 corresponding to ca. 70% decreases from plain/un-doped samples. The findings highlight an impressive potential of the nanocarbon variant, to endow superior tribological performance to polymers, bringing them a step closer to the ideal superlubric regime. Such structures of intrinsic superlubric performance are envisioned as viable candidates for the containment of great amounts of energy, currently wasted as friction in a plethora of applications, hence also promoting an ecologically sustainable development. Indications that superlubricity is greatly promoted by nanocarbons, especially by the two-dimensional variant of graphene with excellent response in shear action, are investigated in combination with the effect of surface topography, for the investigation of the tribological performance of three-dimensional structures with geometric surface patterning, additively manufactured from graphene-doped polymers. Spectroscopic, mechanical, and microstructural characterization of plain polymer-based samples and their graphene-enhanced nanocomposite counterparts was followed by tribometric measurements for the establishment of the evolution of the friction coefficient on a certified commercial tribometer operating under the ball-on-disk configuration as well as on a conceptual purpose-built setup. The individual and combined effects of nanomaterial presence and patterning are reported, and the influence of manufacturing-prone micropatterning is examined. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

9 pages, 1252 KiB  
Communication
Dual Effects of Ag Doping and S Vacancies on H2 Detection Using SnS2-Based Photo-Induced Gas Sensor at Room Temperature
by Shaoling Wang, Xianju Shi, Na Fang, Haoran Ma and Jichao Wang
Materials 2025, 18(12), 2687; https://doi.org/10.3390/ma18122687 - 6 Jun 2025
Viewed by 474
Abstract
Hydrogen (H2) monitoring demonstrates significant practical importance for safety assurance in industrial production and daily life, driving the demand for gas-sensing devices with enhanced performance and reduced power consumption. This study developed a room-temperature (RT) hydrogen-sensing platform utilizing two-dimensional (2D) Ag-doped [...] Read more.
Hydrogen (H2) monitoring demonstrates significant practical importance for safety assurance in industrial production and daily life, driving the demand for gas-sensing devices with enhanced performance and reduced power consumption. This study developed a room-temperature (RT) hydrogen-sensing platform utilizing two-dimensional (2D) Ag-doped SnS2 nanomaterials activated by light illumination. The Ag-SnS2 nanosheets, synthesized through hydrothermal methods, exhibited exceptional H2 detection capabilities under blue LED light activation. The synergistic interaction between silver dopants and photo-activation enabled remarkable gas sensitivity across a broad concentration range (5.0–2500 ppm), achieving rapid response/recovery times (4 s/18 s) at 2500 ppm under RT. Material characterization revealed that Ag doping induced S vacancies, enhancing oxygen adsorption, while simultaneously facilitating photo-induced hole transfer for surface hydrogen activation. The optimized sensor maintained good response stability after five-week ambient storage, demonstrating excellent operational durability. Experimental results further demonstrated that Ag dopants enhanced hydrogen adsorption–activation, while S vacancies improved the surface oxygen affinity. This work provides fundamental insights into defect engineering strategies for the development of optically modulated gas sensors, proposing a viable pathway for the construction of energy-efficient environmental monitoring systems. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

22 pages, 10328 KiB  
Review
Graphene Research Progress in the Application of Anticorrosion and Antifouling Coatings
by Qichao Zhang, Xuan Liu, Yishan Jiang, Feng Xiao, Wencheng Wang and Jizhou Duan
Crystals 2025, 15(6), 541; https://doi.org/10.3390/cryst15060541 - 6 Jun 2025
Viewed by 1860
Abstract
Green coating research and development has taken a new turn in recent years because of the combination of nanomaterials and anticorrosive and antifouling coatings. Because of its distinct physicochemical characteristics, graphene, a novel two-dimensional material, exhibits significant promise in anticorrosive and antifouling coatings. [...] Read more.
Green coating research and development has taken a new turn in recent years because of the combination of nanomaterials and anticorrosive and antifouling coatings. Because of its distinct physicochemical characteristics, graphene, a novel two-dimensional material, exhibits significant promise in anticorrosive and antifouling coatings. The fundamental characteristics of graphene are presented in this paper along with an overview of its uses in anticorrosive films, anticorrosive coatings, and antifouling coatings. The mechanism underlying graphene anticorrosive and antifouling coatings is also presented, along with the difficulties associated with them and their potential future development. It seeks to serve as a resource for the study and use of anticorrosion and antifouling coatings based on graphene. Full article
(This article belongs to the Special Issue Graphene-Based Materials and Applications)
Show Figures

Figure 1

14 pages, 2252 KiB  
Article
First-Principles Design of Qubits in Charged Carbon Nanomaterials
by Hongping Yang, Minghui Wu, Fengyan Xie, Dongli Meng, Jun Luo and Jing Zhu
Materials 2025, 18(11), 2451; https://doi.org/10.3390/ma18112451 - 23 May 2025
Viewed by 415
Abstract
Our first-principles calculations have unveiled a profound influence of varied external charges on the energy levels and spin distributions of zero-, one-, and two-dimensional carbon nanomaterials. By leveraging the Fermi distribution formula, we systematically analyze the temperature-dependent electron occupancy probabilities of the highest [...] Read more.
Our first-principles calculations have unveiled a profound influence of varied external charges on the energy levels and spin distributions of zero-, one-, and two-dimensional carbon nanomaterials. By leveraging the Fermi distribution formula, we systematically analyze the temperature-dependent electron occupancy probabilities of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Notably, configurations with specific additional electron loads exhibit a stable total occupancy of HOMO + LUMO equal to 1 across a wide temperature range, forming a robust basis for orbital qubits. This stability persists even under Fermi energy corrections, demonstrating minimal temperature sensitivity up to 300 K. Furthermore, we identify a universal criterion—EHOMO + ELUMO = 2EFermi—that governs qubit feasibility across diverse carbon nanostructures, independent of dimensionality or atom count. Experimental validation via charge injection methods (e.g., gate modulation or electron beam irradiation) is supported by existing precedents in carbon-based quantum devices. Our findings establish low-dimensional carbon nanomaterials as versatile, scalable platforms for quantum computing, combining thermal stability and dimensional adaptability, thus bridging theoretical insights with practical quantum engineering. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

38 pages, 7289 KiB  
Review
The Biomodification and Biomimetic Synthesis of 2D Nanomaterial-Based Nanohybrids for Biosensor Applications: A Review
by Ranran Wang, Xinyue Wang, Yan Wang and Gang Wei
Biosensors 2025, 15(5), 328; https://doi.org/10.3390/bios15050328 - 20 May 2025
Viewed by 888
Abstract
Two-dimensional nanomaterials (2DNMs) exhibit significant potential for the development of functional and specifically targeted biosensors, owing to their unique planar nanosheet structures and distinct physical and chemical properties. Biomodification and biomimetic synthesis offer green and mild approaches for the fabrication of multifunctional nanohybrids [...] Read more.
Two-dimensional nanomaterials (2DNMs) exhibit significant potential for the development of functional and specifically targeted biosensors, owing to their unique planar nanosheet structures and distinct physical and chemical properties. Biomodification and biomimetic synthesis offer green and mild approaches for the fabrication of multifunctional nanohybrids with enhanced catalytic, fluorescent, electronic, and optical properties, thereby expanding their utility in constructing high-performance biosensors. In this review, we present recent advances in the synthesis of 2DNM-based nanohybrids via both biomodification and biomimetic strategies for biosensor applications. We discuss covalent and non-covalent biomodification methods involving various biomolecules, including peptides, proteins, DNA/RNA, enzymes, biopolymers, and bioactive polysaccharides. The engineering of biomolecule–nanomaterial interfaces for the creation of biomodified 2DNM-based nanohybrids is also explored. Furthermore, we summarize the biomimetic synthesis of 2DNM-based bio–nanohybrids through pathways such as bio-templating, biomolecule-directed self-assembly, biomineralization, and biomimetic functional integration. The potential applications of these nanohybrids in diverse biosensing platforms—including colorimetric, surface plasmon resonance, electrochemical, fluorescence, photoelectrochemical, and integrated multimodal biosensors—are introduced and discussed. Finally, we analyze the opportunities and challenges associated with this rapidly developing field. We believe this comprehensive review will provide valuable insights into the biofunctionalization of 2DNMs and guide the rational design of advanced biosensors for diagnostic applications. Full article
(This article belongs to the Special Issue Nano- and Micro-biosensing Technologies)
Show Figures

Figure 1

16 pages, 2967 KiB  
Article
Geometrical Evolution Pattern and Spectroscopic Properties of Terbium-Doped Germanium Anionic TbGen (n = 6–17) Nanoclusters: From Tb-Lined to Tb-Encapsulated Structures
by Chenliang Hao and Jucai Yang
Molecules 2025, 30(9), 2066; https://doi.org/10.3390/molecules30092066 - 6 May 2025
Viewed by 422
Abstract
Developing advanced materials with enhanced performance through the doping of nanoclusters is a promising strategy. However, there remains an insufficient understanding of the specific effects induced by such doped nanoclusters, particularly regarding the structural evolution pattern after doping with rare-earth elements and their [...] Read more.
Developing advanced materials with enhanced performance through the doping of nanoclusters is a promising strategy. However, there remains an insufficient understanding of the specific effects induced by such doped nanoclusters, particularly regarding the structural evolution pattern after doping with rare-earth elements and their impact on performance. To solve this problem, we used first-principles calculation to study the structural evolution pattern and spectroscopic properties of anionic TbGen (n = 6–17) nanoclusters through the ABCluster global search technique coupled with the mPW2PLYP double-hybrid density functional theory. The results revealed that the geometrical evolution pattern is from the typical Tb-linked structures (for n = 10–13, in which Tb acts as a linker connecting two germanium sub-clusters) to Tb-centered cage configurations (for n = 14–17). The simulated photoelectron spectroscopy of anionic TbGe16 agrees well with its experimental counterpart. Furthermore, we calculated properties such as infrared spectroscopy, Raman spectroscopy, ultraviolet–visible (UV–vis) spectra, magnetism, charge transfer, the HOMO-LUMO gap, and relative stability. The results suggest that TbGe12 and TbGe16 clusters, with their remarkable stability and tunable photothermal properties, can serve as ideal building blocks for developing novel functional nanomaterials. These clusters demonstrate promising applications in solar photothermal conversion, photoelectric conversion, and infrared imaging technologies through their distinct one- and three-dimensional architectures, respectively. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

16 pages, 10790 KiB  
Article
Preparation of Diamond Nanofluids and Study of Lubrication Properties
by Jiamin Yu, Junhao Wu, Chengcheng Jiao, Huanyi Chen, Xinxin Ruan, Wei Li, Genxiang Gong, Jinhong Yu, Kazuhito Nishimura, Nan Jiang, Tao Cai and Zhisheng Wu
Materials 2025, 18(9), 2052; https://doi.org/10.3390/ma18092052 - 30 Apr 2025
Viewed by 311
Abstract
As an emerging two-dimensional nanomaterial, diamond nanosheets have the advantages of high hardness and chemical stability; exhibiting good tribological properties when used as lubricant additives. However, the dispersion stability of nanomaterials as additives in lubricants remains a significant challenge. In this study, fluidized [...] Read more.
As an emerging two-dimensional nanomaterial, diamond nanosheets have the advantages of high hardness and chemical stability; exhibiting good tribological properties when used as lubricant additives. However, the dispersion stability of nanomaterials as additives in lubricants remains a significant challenge. In this study, fluidized and functionalized diamond nanofluids were prepared by grafting polyether amine on the surface of diamond nanosheets. By changing the state of diamond nanosheets, this material not only improved its own lubrication property, but also improved its dispersion in the lubricant. The friction test results demonstrated that the friction coefficient was reduced by 66.9% and the wear rate was reduced by 81.8% with the addition of 3 wt% of diamond nanofluid in water–glycol solution. This enhancement of lubricating properties is related to the excellent film-forming properties of diamond nanofluids during the tribology. This indicates that fluidized 2D diamond nanosheets have excellent lubricating properties and can significantly improve the friction properties of lubricants as additives. Full article
Show Figures

Figure 1

12 pages, 6465 KiB  
Article
Graphene-Based Organic Semiconductor Film for Highly Selective Photocatalytic CO2 Reduction
by Yanghong Xu, Haopeng Tang, Yifei Wang, Xiaofeng Zhu and Long Yang
Nanomaterials 2025, 15(9), 677; https://doi.org/10.3390/nano15090677 - 29 Apr 2025
Cited by 1 | Viewed by 525
Abstract
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)–diketopyrrolopyrrole (DPP) film photocatalyst. GO [...] Read more.
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)–diketopyrrolopyrrole (DPP) film photocatalyst. GO nanosheets facilitate the uniform dispersion of DPP nanoparticles (~5 nm) while simultaneously constructing an efficient charge transport network to mitigate carrier recombination. Under visible-light irradiation in an aqueous solution without sacrificial agents, the optimized GO–DPP50 film catalyst exhibited exceptional performance, achieving a CO production rate of 32.62 μmol·g⁻1·h⁻1 with nearly 100% selectivity. This represents 2.77-fold and 3.28-fold enhancements over pristine GO (8.65 μmol·g−1·h−1) and bare DPP (7.62 μmol·g−1·h−1), respectively. Mechanistic analysis reveals a synergistic mechanism. The 2D GO framework not only serves as a high-surface-area substrate for DPP anchoring, but also substantially suppresses charge recombination through rapid electron transport channels. Concurrently, the uniformly distributed DPP nanoparticles improve visible-light absorption efficiency and facilitate effective photogenerated carrier excitation. This work establishes a novel paradigm for the synergistic integration of 2D nanomaterials with organic semiconductors, providing critical design principles for developing high-performance film-based photocatalysts and selectivity control in CO2 reduction applications. Full article
Show Figures

Graphical abstract

Back to TopTop