Surface-Confined Self-Assembly of Star-Shaped Tetratopic Molecules with Vicinal Interaction Centers
Abstract
:1. Introduction
2. Results and Discussion
3. The Model and Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, Y.; Sun, W.; Wang, Y.; Shao, X.; Xu, X.; Cheng, F.; Li, J.; Wu, K. A Unified Model: Self-Assembly of Trimesic Acid on Gold. J. Phys. Chem. C 2007, 111, 10138–10141. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, J. Confined On-Surface Organic Synthesis: Strategies and Mechanisms. Surf. Sci. Rep. 2019, 74, 97–140. [Google Scholar] [CrossRef]
- Shang, J.; Wang, Y.; Chen, M.; Dai, J.; Zhou, X.; Kuttner, J.; Hilt, G.; Shao, X.; Gottfried, J.M.; Wu, K. Assembling Molecular Sierpiński Triangle Fractals. Nat. Chem. 2015, 7, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Chinaud-Chaix, C.; Marchenko, N.; Fernique, T.; Tricard, S. Do Chemists Control Plane Packing, i.e., Two-Dimensional Self-Assembly, At All Scales? New J. Chem. 2023, 47, 7014–7025. [Google Scholar] [CrossRef]
- Urgel, J.I.; Écija, D.; Lyu, G.; Zhang, R.; Palma, C.A.; Auwärter, W.; Lin, N.; Barth, J.V. Quasicrystallinity Expressed in Two-Dimensional Coordination Networks. Nat. Chem. 2016, 8, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Vargas, L.; Kim, E.; Attias, A.J. Beyond “Decorative” 2D Supramolecular Self-Assembly: Strategies Towards Functional Surfaces for Nanotechnology. Mater. Horiz. 2017, 4, 570–583. [Google Scholar] [CrossRef]
- Cai, L.; Gao, T.; Wee, A.T.S. Topology Selectivity of a Conformationally Flexible Precursor Through Selenium Doping. Nat. Commun. 2024, 15, 3235. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; Zhang, C. On-Surface Ullmann-Type Coupling Reactions of Aryl Halide Precursors with Multiple Substituted Sites. Nanomaterials 2025, 15, 646. [Google Scholar] [CrossRef]
- Ammon, M.; Sander, T.; Maier, S. On-Surface Synthesis of Porous Carbon Nanoribbons from Polymer Chains. J. Am. Chem. Soc. 2017, 139, 12976–12984. [Google Scholar] [CrossRef]
- Peyrot, D.; Silly, F. Toward Two-Dimensional Tessellation through Halogen Bonding between Molecules and On-Surface-Synthesized Covalent Multimers. J. Mol. Sci. 2023, 24, 11291. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Jin, Q.; Zhou, K.; Shi, Z.; Liu, P.N.; Ma, Y.Q. Self-Assembly and Local Manipulation of Au-Pyridyl Coordination Networks on Metal Surfaces. ChemPhysChem 2017, 18, 2088–2093. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Kuang, G.; Zhang, Q.; Shang, X.; Liu, P.N.; Lin, N. Self-Assembly of a Binodal Metal-Organic Framework Exhibiting a Demi-Regular Lattice. Faraday Discuss. 2017, 204, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lin, T.; Shi, Z.; Xia, F.; Dong, L.; Liu, P.N.; Lin, N. Structural Transformation of Two-Dimensional Metal–Organic Coordination Networks Driven by Intrinsic In-Plane Compression. J. Am. Chem. Soc. 2011, 133, 18760–18766. [Google Scholar] [CrossRef]
- Szabelski, P. Theoretical Modeling of the Structure Formation in Adsorbed Overlayers Comprising Molecular Building Blocks with Different Symmetries. Molecules 2025, 30, 866. [Google Scholar] [CrossRef]
- Nieckarz, D.; Nieckarz, K. Steering the Surface-Confined Self-Assembly of Multifunctional Star-Shaped Molecules. J. Phys. Chem. C 2023, 127, 12035–12054. [Google Scholar] [CrossRef]
- Nieckarz, D. Computer Simulations of Surface-Confined Cocrystals Cemented by 3-Fold Halogen Bonds. J. Phys. Chem. C 2025, 129, 9368–9382. [Google Scholar] [CrossRef]
- Szabelski, P.; Nieckarz, D.; Rżysko, W. Structure Formation in 2D Assemblies Comprising Functional Tripod Molecules with Reduced Symmetry. J. Phys. Chem. C 2017, 121, 25104–25117. [Google Scholar] [CrossRef]
- Baran, Ł.; Rżysko, W.; Szajnar, S. Archimedean Tessellation Found by the Variation of Building Blocks’ and Linkers’ Geometry: In Silico Investigations. J. Phys. Chem. C 2020, 124, 20101–20108. [Google Scholar] [CrossRef]
- Gorbunov, V.A.; Uliankina, A.I.; Myshlyavtsev, A.V. Off-Lattice Coarse-Grained Model of Surface-Confined Metal–Organic Architectures. J. Phys. Chem. C 2023, 127, 8281–8293. [Google Scholar] [CrossRef]
- Szabelski, P.; Rżysko, W.; Nieckarz, D. Directing the Self-Assembly of Tripod Molecules on Solid Surfaces: A Monte Carlo Simulation Approach. J. Phys. Chem. C 2016, 120, 13139–13147. [Google Scholar] [CrossRef]
- Fadeeva, A.I.; Gorbunov, V.A.; Solovyeva, O.S.; Stishenko, P.V.; Myshlyavtsev, A.V. Homologous Series of Flower Phases in Metal–Organic Networks on Au(111) Surface. J. Phys. Chem. C 2020, 124, 11506–11515. [Google Scholar] [CrossRef]
- Ibenskas, A.; Tornau, E.E. Modeling of Ribbon and Oblique Structures of Benzene-1,3,5-triyl-tribenzoic Acid. J. Phys. Chem. C 2020, 124, 18650–18659. [Google Scholar] [CrossRef]
- Björk, J. Reaction Mechanisms for On-Surface Synthesis of Covalent Nanostructures. J. Phys. Condens. Matter 2016, 28, 083002. [Google Scholar] [CrossRef]
- Jacquelín, D.K.; Soria, F.A.; Paredes-Olivera, P.A.; Patrito, E.M. Reactive Force Field-Based Molecular Dynamics Simulations on the Thermal Stability of Trimesic Acid on Graphene: Implications for the Design of Supramolecular Networks. ACS Appl. Nano Mater. 2021, 4, 9241–9253. [Google Scholar] [CrossRef]
- Nieckarz, D.; Szabelski, P. Simulation of the Self-Assembly of Simple Molecular Bricks into Sierpiński Triangles. Chem. Commun. 2014, 50, 6843–6845. [Google Scholar] [CrossRef]
- Rockel, D.; Korn, W.; Kohn, A.J. Manual of the Living Conidae; Mal de Mer Enterprises: Devon, UK, 1995. [Google Scholar]
- Wolfram, S. A New Kind of Science; Wolfram Media: Champaign, IL, USA, 2019. [Google Scholar]
- Li, C.; Zhang, X.; Li, N.; Wang, Y.; Jang, J.; Gu, G.; Zhang, Y.; Hou, S.; Peng, L.; Wu, K. Construction of Sierpiński Triangles up to the Fifth Order. J. Am. Chem. Soc. 2017, 139, 13749–13753. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Resenbluth, M.N.; Teller, A.H. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
Replica No. | |||
---|---|---|---|
1 | 1888 | 1952 | 1952 |
2 | 1891 | 1952 | 1953 |
3 | 1893 | 1953 | 1952 |
4 | 1892 | 1953 | 1952 |
5 | 1890 | 1952 | 1953 |
6 | 1890 | 1952 | 1952 |
7 | 1887 | 1953 | 1952 |
8 | 1888 | 1953 | 1952 |
9 | 1889 | 1952 | 1952 |
10 | 1892 | 1952 | 1952 |
Average | 1890.00 | 1952.40 | 1952.20 |
Standard deviation | 1.90 | 0.49 | 0.40 |
Range | 6.00 | 1.00 | 1.00 |
Replica No. | Under-Coordinated Molecules D | % |
---|---|---|
1 | 59 | 5.90 |
2 | 64 | 6.40 |
3 | 66 | 6.60 |
4 | 59 | 5.90 |
5 | 58 | 5.80 |
6 | 60 | 6.00 |
7 | 67 | 6.70 |
8 | 64 | 6.40 |
9 | 61 | 6.10 |
10 | 54 | 5.40 |
Average | 61.20 | 6.12 |
Standard deviation | 3.82 | - |
Range | 13 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisiecki, J.; Nieckarz, D. Surface-Confined Self-Assembly of Star-Shaped Tetratopic Molecules with Vicinal Interaction Centers. Molecules 2025, 30, 2656. https://doi.org/10.3390/molecules30122656
Lisiecki J, Nieckarz D. Surface-Confined Self-Assembly of Star-Shaped Tetratopic Molecules with Vicinal Interaction Centers. Molecules. 2025; 30(12):2656. https://doi.org/10.3390/molecules30122656
Chicago/Turabian StyleLisiecki, Jakub, and Damian Nieckarz. 2025. "Surface-Confined Self-Assembly of Star-Shaped Tetratopic Molecules with Vicinal Interaction Centers" Molecules 30, no. 12: 2656. https://doi.org/10.3390/molecules30122656
APA StyleLisiecki, J., & Nieckarz, D. (2025). Surface-Confined Self-Assembly of Star-Shaped Tetratopic Molecules with Vicinal Interaction Centers. Molecules, 30(12), 2656. https://doi.org/10.3390/molecules30122656