Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = turbulent tube flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8437 KB  
Article
Experimental and Numerical Study of Forced Convection of Water/EG-Al2O3 Nanofluids
by Przemysław Kozak, Jacek Barański and Janusz T. Cieśliński
Energies 2026, 19(3), 832; https://doi.org/10.3390/en19030832 - 4 Feb 2026
Abstract
This paper presents the results of numerical and experimental studies of forced convection of water/EG-Al2O3 nanofluids through a horizontal stainless steel tube (8 mm inner diameter; 2000 mm length). As a base fluid, distilled water/EG mixture of three volume ratios [...] Read more.
This paper presents the results of numerical and experimental studies of forced convection of water/EG-Al2O3 nanofluids through a horizontal stainless steel tube (8 mm inner diameter; 2000 mm length). As a base fluid, distilled water/EG mixture of three volume ratios (90:10, 80:20, and 60:40) is used. Nanoparticle mass concentrations are 0.1%, 1%, and 5%. The tested nanofluids are prepared by use of the two-step method. No dispersant is used to stabilize the suspension. Transition and turbulent flow regimes are tested. The commercial code Ansys Fluent 19.3 is used to conduct numerical simulations. A k-ε turbulence model with an expanded boundary layer function is adopted. A homogeneous nanofluid model is assumed, with thermophysical properties depending on the mean fluid temperature and nanoparticle concentration. The nanofluids are treated as incompressible Newtonian fluids. Both experimental and numerical studies showed an increase in the average Nusselt number with the addition of Al2O3 nanoparticles to each of the water/EG mixtures. However, the experimental results indicated that, at the maximum mass nanoparticle concentration of 5%, the Nusselt number increased by 42%, whereas the numerical simulations showed an increase of only 16% compared with the base fluid. Both experimental studies and numerical simulations show the flow resistance of the nanofluid increases with increasing nanoparticle concentration. Similarly to heat transfer, the numerical calculations predict lower pressure drops than those observed experimentally. For the maximum nanoparticle mass concentration of 5%, the experimental results indicate an increase in nanofluid flow resistance of about 95%, while numerical simulations predict an increase of about 50%, compared to the base liquid. The generalized correlation equations are proposed to calculate the average Nusselt number and the friction factor valid for the turbulent flow of water-based nanofluids and water/EG mixtures with a volumetric water fraction above 60% and a mass concentration of nanoparticles in the range of 0.1% ≤ φm ≤ 5%. Full article
Show Figures

Figure 1

25 pages, 3807 KB  
Article
Numerical Analysis of Heat Transfer Process and Mechanisms for High-Temperature Air Flowing Across Staggered Lined Fine Tubes
by Qinyi Zhang, Yi Feng, Chunxiao Zhu, Jiaxin Zheng, Xin Xu, Min Du, Zhengyu Mo and Licheng Sun
Energies 2026, 19(3), 796; https://doi.org/10.3390/en19030796 - 3 Feb 2026
Abstract
This study investigates the flow and heat transfer mechanisms of high-temperature air flowing across staggered lined fine tubes in a SABRE-type precooler. Large-Eddy Simulation (LES) was employed to model three-dimensional unsteady flow under constant-property and variable-property air models at inlet temperatures of 400–800 [...] Read more.
This study investigates the flow and heat transfer mechanisms of high-temperature air flowing across staggered lined fine tubes in a SABRE-type precooler. Large-Eddy Simulation (LES) was employed to model three-dimensional unsteady flow under constant-property and variable-property air models at inlet temperatures of 400–800 K. The results show that increasing temperature substantially enhances vorticity, turbulent kinetic energy, heat flux, and Nusselt number, while flow separation and pressure drop are intensified. However, when temperature-dependent air properties are incorporated, the wake width increases and the separated shear layers become thicker, while the turbulence/unsteadiness intensity decreases. Consequently, the near-wall shear is reduced and the heat transfer coefficients are lower. Compared with variable-property predictions, constant-property models overestimate the average Nusselt number by 20–40% and the local pressure drop by 40–65%, and they underestimate the air-side temperature drop along the tube rows. These findings demonstrate that real-gas effects significantly alter both aerodynamic resistance and thermal performance. Overall, accurate representation of temperature-dependent air properties is essential for the reliable design, evaluation, and optimization of micro-tube precoolers. Full article
(This article belongs to the Special Issue Heat Transfer Performance and Influencing Factors of Waste Management)
28 pages, 4653 KB  
Article
Flow and Heat Transfer Analysis of Natural Gas Hydrate in Metal-Reinforced Composite Insulated Vertical Pipes
by Wei Tian, Wenkui Xi, Xiongxiong Wang, Changhao Yan, Xudong Yang, Yanbin Li and Yaming Wei
Processes 2026, 14(3), 447; https://doi.org/10.3390/pr14030447 - 27 Jan 2026
Viewed by 157
Abstract
The extraction of land gas resources requires efficient methods to address the issue of pipeline obstruction due to the accumulation of natural gas hydrates. The existing ground heating, downhole throttling, and decompression measures are energy-intensive. The metal-reinforced composite heat-insulation pipe serves as the [...] Read more.
The extraction of land gas resources requires efficient methods to address the issue of pipeline obstruction due to the accumulation of natural gas hydrates. The existing ground heating, downhole throttling, and decompression measures are energy-intensive. The metal-reinforced composite heat-insulation pipe serves as the production string for terrestrial natural gas wells, effectively minimizing temperature loss of natural gas within the wellbore. This innovation eliminates the need for ground heating equipment and downhole throttling devices in large-scale gas well production, thereby fundamentally achieving environmentally sustainable natural gas extraction, energy conservation, and cost reduction. This research simulates the operational circumstances and environmental characteristics of the Sulige gas field. Utilizing predictions and analyses of the formation characteristics of natural gas hydrate, the gas–solid two-phase flow DPM model, RNG k-ε turbulence model, heat transfer characteristics, and population balance model are employed to examine the concentration distribution, pressure distribution, velocity distribution, and heat transfer characteristics of natural gas hydrate within the vertical tube of the structure. The findings indicate that a reduction in natural gas production or an increase in hydrate volume fraction leads to significant accumulation of hydrate adjacent to the tube wall, while the concentration distribution of hydrate is more uniform at elevated production conditions. The pressure distribution of hydrate under each operational state exhibits a pattern characterized by a high central concentration that progressively diminishes towards the periphery. The unit pressure drop of hydrate markedly escalates with an increase in flow rate. As the ambient temperature of the formation rises or the flow rate escalates, the thermal loss of the hydrate along the pipeline diminishes, resulting in an elevated exit temperature. Minimizing the thermal conductivity of the composite pipe can significantly decrease the temperature loss of the hydrate along the pipeline, greatly aiding in hydrate inhibition during the extraction of natural gas from terrestrial wells. This paper’s research offers theoretical backing for the enduring technical application of metal-reinforced composite insulating pipes in terrestrial gas fields, including the Sulige gas field. Full article
(This article belongs to the Special Issue Advances in Gas Hydrate: From Formation to Exploitation Processes)
Show Figures

Figure 1

27 pages, 8829 KB  
Article
A Study on the Effect of Transverse Flow Intensity on the Cavitation Characteristics of a Vehicle Launched Underwater
by Yao Shi, Jinyi Ren, Shan Gao, Guiyong Zhang and Guang Pan
Appl. Sci. 2026, 16(3), 1152; https://doi.org/10.3390/app16031152 - 23 Jan 2026
Viewed by 147
Abstract
The high-speed motion of a vehicle underwater induces cavitation, and the resulting cavity alters the surface pressure distribution and flow field characteristics. This study employs a numerical approach combining the kω SST (Shear Stress Transport) turbulence model, the VOF (Volume of [...] Read more.
The high-speed motion of a vehicle underwater induces cavitation, and the resulting cavity alters the surface pressure distribution and flow field characteristics. This study employs a numerical approach combining the kω SST (Shear Stress Transport) turbulence model, the VOF (Volume of Fluid) multiphase flow model, the Schnerr–Sauer cavitation model, and the overlapping mesh technique. The numerical method is validated through the good agreement between simulation results and experimental data for both cavity shape and vehicle trajectory, with a maximum relative error of 6.1% in vertical displacement. The results indicate that during the launch-tube exit phase, with σ=0.235 and Fr=47.9, the vehicle acceleration causes the pressure at its shoulder to drop below the saturated vapor pressure, initiating cavitation. Under transverse flow (intensity U = 0.016–0.05), the cavity becomes asymmetric. Specifically, the axial length and radial thickness on the back side are significantly larger than those on the face side, and this asymmetry intensifies with increasing transverse flow intensity. Furthermore, after exiting the launcher, the vehicle’s trajectory and attitude deflect towards the back side and the deflection amplitude increases, with horizontal displacement and attitude angle variation positively correlated with transverse flow intensity. Full article
(This article belongs to the Special Issue Research on the Movement Dynamics of Ships and Underwater Vehicles)
Show Figures

Figure 1

33 pages, 9540 KB  
Article
Impact of Flame Tube Convergent Segment Wall Configurations on Main Combustor Performance
by Duo Wang, Juan Wang, Hongjun Lin, Feng Li, Yinze Zhao, Dichang Wang, Yunchuan Tan and Kai Zhao
Fire 2025, 8(12), 476; https://doi.org/10.3390/fire8120476 - 12 Dec 2025
Viewed by 510
Abstract
This study investigates the effect of the flame tube convergent segment wall configuration on the performance of a High-Temperature-Rise (HTR) triple-swirler main combustor. Three configurations were evaluated: the Vitosinski principle (Scheme A), the equal velocity gradient criterion (Scheme B), and a novel convex-arc [...] Read more.
This study investigates the effect of the flame tube convergent segment wall configuration on the performance of a High-Temperature-Rise (HTR) triple-swirler main combustor. Three configurations were evaluated: the Vitosinski principle (Scheme A), the equal velocity gradient criterion (Scheme B), and a novel convex-arc flow-facing method (Scheme C). Three-dimensional numerical simulations were conducted using validated RANS equations with the Realizable k-ε turbulence model and a non-premixed PDF combustion model. The results demonstrate that the proposed Scheme C, characterized by an inflection-free convex contour, successfully avoids the localized high-velocity region and achieves a more uniform flow field. A systematic comparison reveals that Scheme C achieves the highest outlet temperature distribution quality (lowest OTDF and RTDF), the highest combustion efficiency, and the lowest total pressure loss (TPL) in the convergent segment among the three designs. In conclusion, the comprehensive analysis confirms that the convex-arc design (Scheme C), by eliminating the geometric discontinuity of an inflection point, provides the best overall performance for the HTR combustor under takeoff conditions. Full article
Show Figures

Figure 1

26 pages, 5400 KB  
Article
Adjoint Optimization for Hyperloop Aerodynamics
by Mohammed Mahdi Abdulla, Seraj Alzhrani, Khalid Juhany and Ibraheem AlQadi
Vehicles 2025, 7(4), 160; https://doi.org/10.3390/vehicles7040160 - 12 Dec 2025
Viewed by 790
Abstract
This work investigates how the vehicle-to-tube suspension gap governs compressible flow physics and operating margins in Hyperloop-class transport at 10 kPa. To our knowledge, this is the first study to apply adjoint aerodynamic optimization to mitigate gap-induced choking and shock formation in a [...] Read more.
This work investigates how the vehicle-to-tube suspension gap governs compressible flow physics and operating margins in Hyperloop-class transport at 10 kPa. To our knowledge, this is the first study to apply adjoint aerodynamic optimization to mitigate gap-induced choking and shock formation in a full pod–tube configuration. Using a steady, pressure-based Reynolds-averaged Navier-Stokes (RANS) framework with the GEnerlaized K-Omega (GEKO) turbulence model, a simulation for the cruise conditions was performed at M = 0.5–0.7 with a mesh-verified analysis (medium grid within 0.59% of fine) to quantify gap effects on forces and wave propagation. For small gaps, the baseline pod triggers oblique shocks and a near-Kantrowitz condition with elevated drag and lift. An adjoint shape update—primarily refining the aft geometry under a thrust-equilibrium constraint—achieves 27.5% drag reduction, delays the onset of choking by ~70%, and reduces the critical gap from d/D ≈ 0.025 to ≈0.008 at M = 0.7. The optimized configuration restores a largely subcritical passage, suppressing normal-shock formation and improving gap tolerance. Because propulsive power at fixed cruise scales with drag, these aerodynamic gains directly translate into operating-power reductions while enabling smaller gaps that can relax tube-diameter and suspension mass requirements. The results provide a gap-aware optimization pathway for Hyperloop pods and a compact design rule-of-thumb to avoid choking while minimizing power. Full article
Show Figures

Figure 1

28 pages, 6222 KB  
Review
Forced Convective Heat Transfer in Tubes and Ducts: A Review of Prandtl Number, Geometry, and Orientation Effects
by Mohd Farid Amran, Sakhr M. Sultan and Chih Ping Tso
Symmetry 2025, 17(12), 2119; https://doi.org/10.3390/sym17122119 - 9 Dec 2025
Viewed by 927
Abstract
This paper presents a comprehensive review of forced convective heat-transfer phenomena in fluids, emphasizing the influence of fluid properties, tube geometries, and flow orientations under varying Prandtl numbers. Key governing parameters—including velocity, viscosity, thermal conductivity, density, specific heat, surface area, and flow regime [...] Read more.
This paper presents a comprehensive review of forced convective heat-transfer phenomena in fluids, emphasizing the influence of fluid properties, tube geometries, and flow orientations under varying Prandtl numbers. Key governing parameters—including velocity, viscosity, thermal conductivity, density, specific heat, surface area, and flow regime (laminar or turbulent)—are expressed through dimensionless groups such as the Nusselt (Nu), Reynolds (Re), and Prandtl (Pr) numbers. The review encompasses heat-transfer characteristics of low-, medium-, and high-Prandtl-number fluids flowing through circular, square, triangular, and elliptical tubes in both horizontal and vertical orientations, aiming to critically evaluate the effectiveness and trends reported in previous studies. Where applicable, symmetry correlations—based on equivalent thermal and hydrodynamic behaviour along geometrically symmetric boundaries—were considered to interpret flow uniformity and heat-transfer distribution across cross-sectional profiles. Analysis reveals that over 84% of the reviewed studies emphasize on horizontal configurations and 55% on circular geometries, with medium-Prandtl-number fluids dominating experimental investigations. While these studies provide valuable insights, significant research gaps remain. Limited attention has been given to vertical orientations, where buoyancy effects may alter flow behaviour due to temperature and pressure gradients arising from variations in fluid density and viscosity, to non-circular geometries that enhance boundary-layer disruption, and to extreme-Prandtl-number fluids such as liquid metals and heavy oils, which are vital in advanced industrial applications. Bridging these gaps presents opportunities to design and optimize diverse engineering systems requiring efficient convective heat transfer. Practical examples include coolant flow in nuclear reactors, heat dissipation in high-performance CPUs, and high-speed airflow over automotive radiators. This review therefore underscores the need for future research extending forced-convection studies beyond conventional configurations, with particular emphasis on vertical orientations, complex geometries, and underexplored Prandtl-number regimes. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

35 pages, 10685 KB  
Article
Heat Transfer Prediction for Internal Flow Condensation in Inclined Tubes
by Mateus Henrique Corrêa, Victor Gouveia Ferrares, Alexandre Garcia Costa, Matheus Medeiros Donatoni, Maurício Mani Marinheiro, Daniel Borba Marchetto and Cristiano Bigonha Tibiriçá
Fluids 2025, 10(12), 326; https://doi.org/10.3390/fluids10120326 - 9 Dec 2025
Viewed by 433
Abstract
This study investigates the heat transfer coefficient (HTC) during flow condensation inside smooth inclined tubes, analyzing the combined effects of flow orientation, fluid properties and flow characteristics on the thermal performance. The literature review indicates that the channel inclination effect on the HTC [...] Read more.
This study investigates the heat transfer coefficient (HTC) during flow condensation inside smooth inclined tubes, analyzing the combined effects of flow orientation, fluid properties and flow characteristics on the thermal performance. The literature review indicates that the channel inclination effect on the HTC remains insufficiently understood, highlighting the need for further investigation. Thus, a comprehensive experimental database comprising 4944 data points was compiled from 24 studies, including all flow directions, from upward, to horizontal, downward, and intermediate orientations. The study reveals that the influence of flow inclination on the HTC can be ruled by a criterion based on the liquid film thickness Froude number, Frδ. At Frδ > 4.75, the effect of flow inclination becomes negligible, while under Frδ < 4.75, the inclination can have a considerable effect on the HTC. The experimental data show that at low Froude numbers, upward flow typically exhibits higher HTC compared to downward flow, attributed to enhanced interfacial turbulence caused by opposing gravitational and shear forces. In contrast, under vertical downward flow, the annular pattern is more prominent, with reduced interfacial disturbances, limiting HTC performance. The compiled experimental database for inclined channels was compared against an update list of prediction methods, including seven correlations incorporating the inclination angle as an input parameter. Additionally, a new simple correction factor including the effect of inclined tubes was proposed based on the flow inclination angle and on the liquid film thickness Froude number. The proposed correction factor improved the prediction of well-ranked correlations in the literature by over 20% for stratified flow pattern conditions and by more than 5% for low Froude number values. These findings present new insights into how tube inclination can affect heat transfer in a two-phase flow. Full article
Show Figures

Figure 1

29 pages, 6120 KB  
Article
Intensification of Thermal Performance of a Heat Exchanger Tube with Knitted Wire Coil Turbulators Installed
by K. Wongcharee, T. Shoon Wai, N. Maruyama, M. Hirota, V. Chuwattanakul, P. Promthaisong and S. Eiamsa-ard
Eng 2025, 6(12), 337; https://doi.org/10.3390/eng6120337 - 26 Nov 2025
Viewed by 386
Abstract
This study reports on heat transfer augmentation by knitted wire coil turbulators in a fully developed turbulent regime. Four knitted wire coil turbulators with different wire loop number densities (N = 6, 8, 10, and 12 loops per pitch, with 1.0 pitch [...] Read more.
This study reports on heat transfer augmentation by knitted wire coil turbulators in a fully developed turbulent regime. Four knitted wire coil turbulators with different wire loop number densities (N = 6, 8, 10, and 12 loops per pitch, with 1.0 pitch = 6.8 mm) were tested. Each was made by winding a 0.7 mm copper wire around a 1.0 mm core rod. Experiments were conducted under a constant 600 W/m2 wall heat flux. The flow behaviors observed through a dye injection technique revealed that the wire coil induced secondary flows and developed shear layers, contributing to enhanced heat transfer. Heat transfer improved with increasing wire loop number density. Application of knitted wire coil turbulators increased the Nusselt number (Nu) by 86, 95.4, 103.2, and 109.3% for N = 6, 8, 10, and 12, respectively. This corresponded to increased friction factors (f) by 1.77, 1.97, 2.15, and 2.31 times, respectively. The tube with coils having N = 12 yielded the highest thermal performance index (TPI), 1.4, at a Reynolds number of 5000. The empirical correlations for Nu, f, and TPI showed deviations within ±2.1, ±0.68, and ±2.28%, respectively. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

23 pages, 7900 KB  
Article
Effect of Protrusions on the Falling Film Flow and Heat Transfer of Oily Wastewater Outside an Elliptical Tube
by Yiqi Lu, Hao Lu, Wenjun Zhao, Chuanxiao Zheng and Yajie Li
Coatings 2025, 15(11), 1340; https://doi.org/10.3390/coatings15111340 - 18 Nov 2025
Viewed by 397
Abstract
This study addresses the optimized design of falling-film heat exchanger tubes, aiming to enhance heat transfer efficiency and reduce thermal losses, thereby offering potential pathways for efficient green energy utilization. Ten tube models were established and analyzed using computational fluid dynamics (CFD) under [...] Read more.
This study addresses the optimized design of falling-film heat exchanger tubes, aiming to enhance heat transfer efficiency and reduce thermal losses, thereby offering potential pathways for efficient green energy utilization. Ten tube models were established and analyzed using computational fluid dynamics (CFD) under constant heat flux conditions. The study investigated the effects of the position, number, and ellipticity (e) of external protrusions on the flow characteristics and heat transfer performance of oily wastewater. The simulation revealed that different protrusion configurations significantly influence hydrodynamic behavior and heat transfer mechanisms. It was found that introducing flow disturbances at an early developmental stage enhances the overall heat transfer performance of the external fluid. Specifically, for a tube with e = 0.5, the heat transfer coefficients (HTC) initially increases and then decreases with increasing Reynolds numbers (Re). This behavior is attributed to the reduction in flow stability caused by the protrusions at higher Re values, which promotes vortex shedding and leads to more complex flow patterns, thereby impairing heat transfer efficiency. Furthermore, as the number of protrusions increases, the overall HTC of the enhanced elliptical tube also follows a trend of an initial increase and then decrease. These results suggest the existence of an optimal protrusion density that enhances turbulence without incurring excessive resistance that would degrade thermal performance. Full article
(This article belongs to the Section Liquid–Fluid Coatings, Surfaces and Interfaces)
Show Figures

Figure 1

18 pages, 4181 KB  
Article
Numerical Investigation of a New Segmented Annular Ring Tube for Heat Transfer Enhancement in Solar Water Heating Systems
by Mohamed Said Kahaleras, Sabbah Ataya, Lina Chouichi, Yacine Karmi, Omar Reffas, Issam Bousba, Abdessalam Otmani and Haithem Boumediri
Energies 2025, 18(21), 5831; https://doi.org/10.3390/en18215831 - 5 Nov 2025
Viewed by 514
Abstract
This study presents a numerical investigation of a parabolic trough absorber tube equipped with a novel Angularly Segmented Ring Turbulator (ASRT), designed to enhance heat transfer through periodic flow disturbance and improved wall–fluid interaction. The proposed ASRT geometry consists of segmented annular rings [...] Read more.
This study presents a numerical investigation of a parabolic trough absorber tube equipped with a novel Angularly Segmented Ring Turbulator (ASRT), designed to enhance heat transfer through periodic flow disturbance and improved wall–fluid interaction. The proposed ASRT geometry consists of segmented annular rings arranged along the tube length, characterized by two key parameters: the number of angular segments per ring (Nr = 4, 6, 8) and the angular spacing of each segment (α = 20° and 40°). Three dimensional simulations were performed using the finite volume method under turbulent flow conditions, with Reynolds numbers ranging from 3300 to 11,000. A non-uniform solar heat flux, obtained via Monte Carlo Ray Tracing (MCRT), was applied as a boundary condition at the outer wall to replicate realistic solar concentration. The results reveal that the ASRT significantly improves convective heat transfer, with the Nusselt number ratio Nu/Nus reaching up to 3.7 for α = 20° and Nr = 8. This enhancement is accompanied by a moderate rise in the friction factor ratio f/fs, reaching approximately 7.5 at Re = 3300, indicating efficient turbulence promotion with acceptable hydraulic penalties. The Performance Evaluation Criterion (PEC) ranges from 1.7 to 1.9, confirming the superiority of ASRT over the smooth tube. Full article
Show Figures

Figure 1

10 pages, 955 KB  
Proceeding Paper
Enhancing Parabolic Trough Collector Performance Through Surface Treatment: A Comparative Experimental Analysis
by Abdullah Rahman, Nawaf Mehmood Malik and Muhammad Irfan
Eng. Proc. 2025, 111(1), 30; https://doi.org/10.3390/engproc2025111030 - 28 Oct 2025
Cited by 1 | Viewed by 436
Abstract
Parabolic trough collectors (PTCs) are effective solar thermal systems, but their performance can be significantly enhanced through surface treatments. This research investigates the enhancement of thermal performance in parabolic trough collectors (PTCs) by experimentally evaluating the results of surface coating on the absorber [...] Read more.
Parabolic trough collectors (PTCs) are effective solar thermal systems, but their performance can be significantly enhanced through surface treatments. This research investigates the enhancement of thermal performance in parabolic trough collectors (PTCs) by experimentally evaluating the results of surface coating on the absorber tube surface. To achieve this objective, a closed-loop PTC system was fabricated to conduct an experimental comparison between a conventional simple copper tube and a black-painted copper tube. The experimental setup was placed in Islamabad, Pakistan, operated under both laminar and turbulent flow conditions to measure key performance metrics, of temperature difference (ΔT) between the inlet and outlet. The results demonstrate a significant performance advantage for the black-painted tube. In laminar flow, the black-painted tube achieved an average ΔT of 3.54 °C, compared to 2.11 °C for the simple copper tube. Similarly, in turbulent flow, the black-painted tube’s ΔT was 2.1 °C, surpassing the simple copper tube’s 1.57 °C. This superior performance is primarily attributed to the black surface’s high solar absorptivity, which more effectively captures and converts solar radiation into thermal energy. The findings highlight the critical role of surface treatment in optimizing PTC efficiency and provide a practical method for improving solar thermal energy systems. Full article
Show Figures

Figure 1

21 pages, 5705 KB  
Article
Research on Internal Flow and Runner Force Characteristics of Francis Turbine
by Jianwen Xu, Peirong Chen, Yanhao Li, Xuelin Yang and An Yu
Water 2025, 17(20), 3004; https://doi.org/10.3390/w17203004 - 19 Oct 2025
Viewed by 646
Abstract
Francis turbines are widely used due to their large capacity and broad head adaptability, placing higher demands on the internal flow characteristics and runner performance of the units. In this paper, numerical simulations of a Francis turbine model were conducted using ANSYS CFX [...] Read more.
Francis turbines are widely used due to their large capacity and broad head adaptability, placing higher demands on the internal flow characteristics and runner performance of the units. In this paper, numerical simulations of a Francis turbine model were conducted using ANSYS CFX 2022 R1. The SST turbulence model, ZGB cavitation model, and VOF multiphase flow model were selected for the calculations. The internal flow characteristics and pressure pulsations in the runner and draft tube under different operating conditions were analyzed, and the variations in normal and tangential forces acting on the runner blades during operation were investigated. The results indicate significant differences in the internal flow within the runner and draft tube under various guide vane opening conditions. The pressure pulsation in the unit is influenced by both the internal flow in the draft tube and the rotation of the runner. The mechanical load on the runner blades is affected by multiple factors, including the wake from upstream fixed guide vanes, rotor–stator interaction, and downstream vortex ropes. Under low-flow conditions, the variation in forces acting on the runner blades is relatively small, whereas under high-flow conditions, the runner blades are prone to abrupt force fluctuations at 0.6–0.8 times the rotational frequency. This is manifested as periodic abrupt force changes in both the X and Y directions of the runner blades under high-flow conditions. The normal force in the Z-direction of the runner blades increases instantaneously and then decreases immediately, while the tangential force decreases instantaneously and then increases promptly. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

12 pages, 1854 KB  
Article
Flow Stabilization and Velocity Uniformity in a Göttingen-Type Closed-Circuit Subsonic Wind Tunnel with an Expanded Test Section
by Justas Šereika, Paulius Vilkinis, Agnė Bertašienė and Edgaras Misiulis
Appl. Sci. 2025, 15(20), 11021; https://doi.org/10.3390/app152011021 - 14 Oct 2025
Viewed by 768
Abstract
Flow stabilization and velocity uniformity in a Göttingen-type closed-circuit subsonic aerodynamic wind tunnel with an expanded test section are investigated in this study. Both experimental and numerical approaches were employed. The experiments were performed by using Laser Doppler Anemometry, Pitot tubes, and thermal [...] Read more.
Flow stabilization and velocity uniformity in a Göttingen-type closed-circuit subsonic aerodynamic wind tunnel with an expanded test section are investigated in this study. Both experimental and numerical approaches were employed. The experiments were performed by using Laser Doppler Anemometry, Pitot tubes, and thermal anemometry. For numerical simulations, Reynolds-averaged Navier–Stokes simulations with a standard k-ε turbulence model were employed to evaluate flow characteristics in the velocity range of 0.05–20 m/s. The study shows that a properly contoured contraction nozzle suppresses inlet turbulence and ensures stable Reynolds-independent core flow. The contraction nozzle significantly accelerates and redistributes the flow, allowing rapid hydrodynamic stabilization and ensuring velocity measurements with high repeatability. These characteristics are inherent in a benchmark facility. Additionally, the study shows that the outlet-to-inlet diameter has the most prominent role in longitudinal velocity distribution in the test section. An optimal ratio of 1.10 was identified, stabilizing the pressure distribution and providing the most uniform longitudinal velocity profile. These findings offer geometry-dependent design guidelines for achieving high-quality measurements in Göttingen-type wind tunnels with expanded test sections and support accurate velocity measurement instrument calibration and aerodynamic testing. Full article
Show Figures

Figure 1

24 pages, 5200 KB  
Article
Numerical Investigation of Particle Behavior Under Electrostatic Effect in Bifurcated Tubes
by Yanlin Zhao, Haowen Liu, Yonghui Ma and Jun Yao
Fluids 2025, 10(10), 263; https://doi.org/10.3390/fluids10100263 - 10 Oct 2025
Viewed by 678
Abstract
As the prevalence of respiratory diseases continues to rise, inhalation therapy has emerged as a crucial method for their treatment. The effective transmission of medications within the respiratory tract is vital to achieve therapeutic outcomes. Given that most inhaled particles carry electrostatic charges, [...] Read more.
As the prevalence of respiratory diseases continues to rise, inhalation therapy has emerged as a crucial method for their treatment. The effective transmission of medications within the respiratory tract is vital to achieve therapeutic outcomes. Given that most inhaled particles carry electrostatic charges, understanding the electrostatic effect on particle behavior in bifurcated tubes is of significant importance. This work combined Large Eddy Simulation-Lagrangian particle tracking (LES-LPT) technology to simulate particle behavior with three particle sizes (10, 20, and 50 μm) from G2 to G3 (“G” stands for generation) in bifurcated tubes, either with or without electrostatics, under typical human physiological conditions (Re = 1036). The results indicate that the electrostatic force has a significant effect on particle behavior in bifurcated tubes, which increases with particle size. Within the bifurcated tubes, the electrostatic force enhances particle movement in alignment with the secondary flow as well as intensifies the interaction of particles with local turbulent vortices and promotes particle dispersion rather than agglomeration. On the other hand, the distribution of the electrostatic field is influenced by particle behavior. Higher particle concentration presents stronger electrostatic strength, which increases with particle size. Therefore, it can be concluded that the electrostatic interactions among particles can prevent particles from aggregating and enhance the efficiency of inhalation therapy. Full article
(This article belongs to the Special Issue Research on the Formation and Movement of Droplets)
Show Figures

Figure 1

Back to TopTop