Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = tumbling corrections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5072 KiB  
Article
Mutations in the Receptor Binding Domain of Severe Acute Respiratory Coronavirus-2 Omicron Variant Spike Protein Significantly Stabilizes Its Conformation
by Michael H. Peters
Viruses 2024, 16(6), 912; https://doi.org/10.3390/v16060912 - 4 Jun 2024
Cited by 1 | Viewed by 1275
Abstract
The Omicron variant and its sub-lineages are the only current circulating SARS-CoV-2 viruses worldwide. In this study, the conformational stability of the isolated Receptor Binding Domain (RBD) of Omicron’s spike protein is examined in detail. The parent Omicron lineage has over ten mutations [...] Read more.
The Omicron variant and its sub-lineages are the only current circulating SARS-CoV-2 viruses worldwide. In this study, the conformational stability of the isolated Receptor Binding Domain (RBD) of Omicron’s spike protein is examined in detail. The parent Omicron lineage has over ten mutations in the ACE2 binding region of the RBD that are specifically associated with its β hairpin loop domain. It is demonstrated through biophysical molecular computations that the mutations in the β hairpin loop domain significantly increase the intra-protein interaction energies of intra-loop and loop–RBD interactions. The interaction energy increases include the formation of new hydrogen bonds in the β hairpin loop domain that help stabilize this critical ACE2 binding region. Our results also agree with recent experiments on the stability of Omicron’s core β barrel domain, outside of its loop domain, and help demonstrate the overall conformational stability of the Omicron RBD. It is further shown here through dynamic simulations that the unbound state of the Omicron RBD remains closely aligned with the bound state configuration, which was not observed for the wild-type RBD. Overall, these studies demonstrate the significantly increased conformational stability of Omicron over its wild-type configuration and raise a number of questions on whether conformational stability could be a positive selection feature of SARS-CoV-2 viral mutational changes. Full article
(This article belongs to the Special Issue Molecular Epidemiology of SARS-CoV-2, 3rd Edition)
Show Figures

Graphical abstract

6 pages, 1851 KiB  
Correction
Correction: Liao et al. A Comparison of the Fine-Grinding Performance between Cylpebs and Ceramic Balls in the Wet Tumbling Mill. Minerals 2022, 12, 1007
by Ningning Liao, Caibin Wu, Jianjuan Li, Xin Fang, Yong Li, Zhongxiang Zhang and Wenhang Yin
Minerals 2024, 14(1), 105; https://doi.org/10.3390/min14010105 - 18 Jan 2024
Viewed by 1299
Abstract
In the original publication [...] Full article
Show Figures

Figure 5

21 pages, 5088 KiB  
Article
Reliability Design of Mechanical Systems Such as Compressor Subjected to Repetitive Stresses
by Seongwoo Woo and Dennis L. O’Neal
Metals 2021, 11(8), 1261; https://doi.org/10.3390/met11081261 - 10 Aug 2021
Cited by 9 | Viewed by 3463
Abstract
This study demonstrates the use of parametric accelerated life testing (ALT) as a way to recognize design defects in mechanical products in creating a reliable quantitative (RQ) specification. It covers: (1) a system BX lifetime that X% of a product population fails, created [...] Read more.
This study demonstrates the use of parametric accelerated life testing (ALT) as a way to recognize design defects in mechanical products in creating a reliable quantitative (RQ) specification. It covers: (1) a system BX lifetime that X% of a product population fails, created on the parametric ALT scheme, (2) fatigue and redesign, (3) adapted ALTs with design alternations, and (4) an evaluation of whether the system design(s) acquires the objective BX lifetime. A life-stress model and a sample size formulation, therefore, are suggested. A refrigerator compressor is used to demonstrate this method. Compressors subjected to repetitive impact loading were failing in the field. To analyze the pressure loading of the compressor and carry out parametric ALT, a mass/energy balance on the vapor-compression cycle was examined. At the first ALT, the compressor failed due to a cracked or fractured suction reed valve made of Sandvik 20C carbon steel (1 wt% C, 0.25 wt% Si, 0.45 wt% Mn). The failure modes of the suction reed valves were similar to those valves returned from the field. The fatigue failure of the suction reed valves came from an overlap between the suction reed valve and the valve plate in combination with the repeated pressure loading. The problematic design was modified by the trespan dimensions, tumbling process, a ball peening, and brushing process for the valve plate. At the second ALT, the compressor locked due to the intrusion between the crankshaft and thrust washer. The corrective action plan specified to perform the heat treatment to the exterior of the crankshaft made of cast iron (0.45 wt% C, 0.25 wt% Si, 0.8 wt% Mn, 0.03 wt% P). After these design modifications, there were no troubles during the third ALT. The lifetime of the compressor was secured to have a B1 life of 10 years. Full article
Show Figures

Figure 1

18 pages, 2075 KiB  
Proceeding Paper
Reliability Design of Mechanical Systems Such as Compressor Subjected to Repetitive Stresses
by Seongwoo Woo, Dennis L. O’Neal, Samson Mekbib Atnaw and Muluneh Mekonnen Tulu
Mater. Proc. 2021, 3(1), 14; https://doi.org/10.3390/IEC2M-09257 - 20 Feb 2021
Cited by 1 | Viewed by 1715
Abstract
This paper suggests parametric accelerated life testing (ALT) as a systematic reliability technique to generate the reliability quantitative (RQ) specification such as mission cycle for identifying design flaws in mechanical systems as exerting the accelerated load, defined as the reverse of stress ratio, [...] Read more.
This paper suggests parametric accelerated life testing (ALT) as a systematic reliability technique to generate the reliability quantitative (RQ) specification such as mission cycle for identifying design flaws in mechanical systems as exerting the accelerated load, defined as the reverse of stress ratio, R. Parametric ALT therefore is a procedure to improve the fatigue for mechanical products subjected to repetitive loading. It includes: (1) a system BX lifetime shaped on the parametric ALT plan; (2) a fatigue failure and design; (3) tailored ALTs with alternatives; and (4) an assessment of whether the design(s) of the product attains the targeted BX lifetime. A BX life ideas, a life-stress model, and a sample size formulation for parametric ALT are proposed. A reciprocating compressor in a domestic refrigerator is utilized to explain this methodology. The compressor was subjected to repetitive impact loading due to the pressure difference between condenser and evaporator, which results in the compressor field failure. To analyze and conduct parametric ALTs, as mass/energy balance was utilized on the vapor-compression refrigerating cycle, a simple pressure loading of the compressor in operating the refrigerator was investigated. At the first ALT, the compressor was locked due to the fractured suction reed valve made of Sandvik 20C carbon steel (1 C, 0.25 Si, 0.45 Mn). The dominant failure modes of the suction reed valve in the parametric ALTs were established to be very close to that of the fractured product from the marketplace. The root cause of the fatigue failure of the suction reed valve was an amount of overlap between the suction reed valve and the valve plate in combination of repeated pressure loading in the compressor. To supply sufficient mechanical strength, the design faults were altered by the trespan dimensions tumbling process, a ball peening and brushing process for the valve plate. At the second ALT, a compressor was locked due to the intrusion between the crankshaft and the thrust washer. The corrective action plan was to give heat treat the surface of crankshaft made of cast iron (0.45 C, 0.25 Si, 0.8 Mn, 0.03 P). After these alternations, there were no issues at the third ALT. The lifetime of the compressor was ensured to have B1 life 10 years. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Metallurgy and Metals)
Show Figures

Figure 1

10 pages, 1708 KiB  
Article
Hardened Steels and Their Machining
by Karel Osička and Josef Chladil
Crystals 2021, 11(2), 182; https://doi.org/10.3390/cryst11020182 - 12 Feb 2021
Cited by 3 | Viewed by 2005
Abstract
This article discusses the issue of hardened steel machining. Many components in the engineering industry use hardening as the final heat treatment. These components usually occupy a significant position in a given assembly unit. They guarantee the correct operation of the entire technical [...] Read more.
This article discusses the issue of hardened steel machining. Many components in the engineering industry use hardening as the final heat treatment. These components usually occupy a significant position in a given assembly unit. They guarantee the correct operation of the entire technical equipment in total cooperation with other components. The quality of these components depends on the integrity of their surface. The production of these parts is usually carried out by traditional technological procedures. Clearly, an example of such a technology is grinding. However, this article discusses the application of other finishing technologies using a tool material made of cubic boron nitride (CBN). The technology used is finishing turning with subsequent tumbling technology. The subject of the evaluation is the integrity of the surface. In this part of the experiments, there are mainly individual parameters of surface roughness. Compared components are bearing rings, in this case the inner surface of the housing ring. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 830 KiB  
Article
A Capacitive Displacement Sensing Technique for Early Detection of Unbalanced Loads in a Washing Machine
by Melur K. Ramasubramanian and Karthik Tiruthani
Sensors 2009, 9(12), 9559-9571; https://doi.org/10.3390/s91209559 - 30 Nov 2009
Cited by 9 | Viewed by 15388
Abstract
Horizontal axis washing machines are water and energy efficient and becoming popular in the USA. Unlike a vertical axis washer, these do not have an agitator and depend solely on tumbling for the agitation of laundry during the wash cycle. However, due to [...] Read more.
Horizontal axis washing machines are water and energy efficient and becoming popular in the USA. Unlike a vertical axis washer, these do not have an agitator and depend solely on tumbling for the agitation of laundry during the wash cycle. However, due to the constant shifting of laundry during washing, the load distribution is often unbalanced during the high speed spin cycle. We present a displacement-based sensing method to detect unbalance early while the spin rate (rpm) is well below the resonance frequency so that corrective actions may be taken prior to the high speed spin cycle. Experimental and analytical characterizations of the sensor configuration are presented. Results show that the displacement sensor is more appropriate than an accelerometer for this application and offer the potential for a simple, reliable, low cost detection of unbalance. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

Back to TopTop